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A miR-137-related biological pathway of risk for Schizophrenia is associated with human 

brain emotion processing 

Abstract:  

Genome-Wide-Association studies have involved miR-137 in schizophrenia. However, the 

biology underlying this statistical evidence is unclear. Statistical polygenic risk for schizophrenia is 

associated with working memory, while other biological evidence involves miR-137 in emotion 

processing. We investigated the function of miR-137 target schizophrenia risk genes in humans. 

We identified a prefrontal co-expression pathway of schizophrenia-associated miR-137 

targets and validated the association with miR-137 expression in neuroblastoma cells. Alleles 

predicting greater co-expression of this pathway were associated with greater prefrontal activation 

during emotion processing in two independent cohorts of healthy volunteers (N1=222; N2=136). 

Statistical polygenic risk for schizophrenia was instead associated with prefrontal activation during 

working memory. 

A co-expression pathway links miR-137 and its target genes to emotion processing and risk 

for schizophrenia. Low prefrontal miR-137 expression may be related with SCZ risk via increased 

expression of target risk genes, itself associated with increased prefrontal activation during emotion 

processing. 
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Introduction 

Inter-individual variation in traits with complex heritability, like psychiatric disorders, is 

associated with polygenic inheritance. As genes do not code for diseases, polygenic risk for 

psychiatric disorders like Schizophrenia (SCZ) and Autism Spectrum Disorders is likely enacted via 

molecular pathways affecting neurophysiological phenotypes (1-3). Accordingly, Polygenic Risk 

Scores cumulating the statistical effects of genetic variants associated with SCZ are associated with 

neural activity during working memory (4-6) and emotion processing (7, 8). This evidence indicates 

that statistical measures of genetic risk for SCZ are related with normal variation in brain features, 

including functional activity during cognitive and emotion processing as a possible mechanism 

linking risk to behavior. However, Polygenic Risk Scores do not provide information about the 

molecular pathways involved in the association of SCZ positive variants with system-level 

phenotypes. The purpose of whole-genome Polygenic Risk Scores lumping all variants together is to 

collect signal from all biological pathways involved. Understanding the mechanisms behind SCZ 

biology requires approaches integrating biological information in the score computation. 

As many of the SCZ risk variants are non-coding and may control gene expression (9-11), co-

expression regulation represents a potential mechanism to parse statistical summaries of genetic risk 

into biologically meaningful pathways. Importantly, several studies have found that SCZ risk genes 

are significantly co-expressed (12-14). PsychENCODE and other studies have suggested that 

biological networks gather converging effects of many genetic variants affecting neurophysiological 

and clinical phenotypes via expression quantitative trait loci (11, 15-17). 

Candidate master regulators linking risk variants with gene expression include micro-RNAs  

targeting SCZ risk genes (18). Of these, miR-137 is probably the most biologically plausible 

candidate, potentially linking co-expression regulation with SCZ risk factors. Indeed, miR-137 

genetic variation is associated with SCZ (19), with miR-137 brain transcription levels, with inter-

individual variability in SCZ clinical measures, and with prefrontal cortex activity and connectivity 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 3, 2020. ; https://doi.org/10.1101/2020.08.03.230227doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.230227


5 
 

in healthy controls (20). The risk allele of rs1625579, a miR-137 single nucleotide polymorphism 

(SNP) associated with SCZ, is associated with lower miR-137 expression in the dorsolateral 

prefrontal cortex (21), with working memory-related prefrontal activity (22, 23) and with activity and 

connectivity of the emotion processing brain network (24, 25). Taken together, these studies suggest 

that miR-137-related risk for SCZ is relevant to brain function during working memory and emotion 

processing, possibly via pleiotropic effects on SCZ phenotypes.  

MiR-137 regulates the expression of many genes (26), therefore one possible mechanism for 

its effects in SCZ is co-expression regulation. Accordingly, two studies parsed the polygenic effects 

of miR-137 on task-based brain activation.  

Potkin and coworkers (27) reported that variants associated with brain activity during WM 

are located in loci co-expressed with SCZ risk genes. Consistent with the role of miR-137 in 

orchestrating working memory gene co-expression, miR-137 target genes harbored variants 

associated with brain activity during working memory. However, there was no direct link between 

miR-137 targets and risk-related gene co-expression in the human brain.  

Cosgrove and coworkers (28) parsed the SCZ-Polygenic Risk Score by including only miR-

137 targets and found that it was associated with brain activity during working memory. They failed 

to identify significant effects of the Polygenic Risk Score in 83 participants performing an emotion 

processing task. While these studies are in agreement on the relationship between miR-137 targets, 

SCZ risk, prefrontal cortex, and working memory, they do not support a functional role of miR-137 

in emotion processing. This evidence suggests that miR-137 is related with SCZ via pathways 

common to working memory, but it is worth reiterating that Polygenic Risk Scores do not provide 

biological information. The question thus stands, whether miR-137 is linked with working memory 

per se, or whether these findings instead depend on weighting genetic variants by SCZ risk. 
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At variance with the evidence derived from these approaches, molecular evidence 

independent of SCZ implicates miR-137 in emotion processing. MiR-137 is expressed in the 

amygdala more than in the prefrontal cortex (21), and its expression is upregulated by the 

metabotropic glutamate-receptor-5 (mGluR5); in turn, miR-137 contributes to mGluR5 function in 

the emotion processing brain network (20, 29). The lacking association between miR-137 and 

emotion processing in studies employing polygenic approaches may be attributed to statistical power 

limitations of earlier studies. Alternatively, the polygenic approaches used may have diluted the effect 

of risk pathways affecting emotion processing with unrelated signal, e.g., because only a subset of 

the SCZ loci targeted by miR-137 is associated with emotion processing. We thus hypothesized that 

1) miR-137 target genes are co-expressed in the human brain with SCZ risk genes, and 2) are 

associated with functional brain activity during emotion processing. 

Therefore, we investigated whether: i) miR-137 target genes are co-expressed in the human 

prefrontal cortex and how they relate with SCZ risk; ii) co-expressed miR-137 targets are related with 

working memory or emotion processing brain activity in humans based on biologically stratified 

genetic scores, and which genes are involved; iii) SCZ Polygenic Risk Scores combining variants 

harbored in miR-137 target genes based on SCZ risk stratification predict working memory or 

emotion processing brain activity in larger cohorts than those previously reported. Figure 1 reports a 

synopsis of the study. 

We identified co-expression modules enriched for miR-137 targets in human post-mortem 

prefrontal cortex and validated the modules in neuroblastoma cells. We linked post-mortem co-

expression networks with system-level phenotypes via co-expression quantitative trait loci (co-

eQTLs (30-32)), i.e., SNPs associated with gene co-expression which were combined into a Polygenic 

Co-expression Index (PCImiR-137) used to test further associations. The PCImiR-137 indexes the 

predicted expression of a subset of miR-137 targets associated with SCZ risk that are co-expressed 

in the prefrontal cortex. Therefore, this index identifies a miR-137 related biological pathway of risk. 
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Additionally, we computed a previously reported Polygenic Risk Score parsed to include variants 

harbored in miR-137 target genes (28). The PRSmiR-137 includes the overall statistical risk for SCZ 

harbored in miR-137 target genes, weighted by their GWAS-derived effect size. Therefore, it is an 

index of miR-137 related statistical measure of genetic risk. Both PCImiR-137 and PRSmiR-137 were tested 

as predictors of both working memory and emotion processing activation in the prefrontal cortex 

assessed via fMRI. 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 3, 2020. ; https://doi.org/10.1101/2020.08.03.230227doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.230227


8 
 

Results 

Our gene co-expression network included 51 modules, plus the grey module of 3,018 non-

clustered genes. Permutation tests revealed that gene-gene relationships in 28 out of 51 modules were 

preserved in three replication datasets (p<αBonferroni = .00033; Figure S1). Gene loadings on the module 

expression were concordant across all replication datasets (binomial p-values, all p<10-12; Figure S2), 

suggesting that the replications identified gene-gene relationships in the same direction as the 

discovery set. Four of these 28 modules were enriched for miR-137 target genes 

(p<αBonferroni=0.05/(284)=.00045; Table S3). Out of these four, only Darkorange was significantly 

enriched for genes in the SCZ risk loci (p=.0052 with αBonferroni=0.05/4=0.0125; nine genes in nine 

risk loci, see Table 1; Table S4 reports the list of Darkorange genes). Using a different method to 

quantify SCZ association, we found that genetic variants harbored within Darkorange genes were 

associated with greater SCZ risk compared to all remaining modules (MAGMA (33); p=.0012 with 

αBonferroni=0.05/28=0.0018; Figure 2). The module eigengene, i.e., the first principal component of 

Darkorange gene expression, explained the majority (54%) of Darkorange expression variance. 

Overall, the over-representation of genes and variants in the risk loci suggested that a component of 

the genetic risk for SCZ converged into Darkorange.  

 

Darkorange is enriched for neuronal markers and gene ontologies relevant to schizophrenia. 

Darkorange was comprised of 173 genes (156 protein-coding). Darkorange presented marker 

gene expression characteristic of glutamatergic and GABAergic neurons (34) (Figure S3) and was 

functionally enriched for biological processes relevant to SCZ (Figure 2), including synaptic signaling 

(GO:0099536, 19 genes, fold enrichment=5.8, pcorrected=8.3710-6) and nervous system development 

(GO:0007399, 41 genes, fold enrichment=2.4, pcorrected=6.3910-4). No chromosomal locus was 

significantly over-represented in Darkorange. Specific Expression Analysis revealed that 
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Darkorange genes are preferentially expressed in the PFC during young adulthood (pcorrected=1.710-

5, [pSI<.01]), with a pattern closely matching published findings on SCZ genes (35) (Figure S4). 

Darkorange was not enriched for TWAS (all p>.05). 

 

Darkorange topology links schizophrenia risk genes with miR-137 targets  

Brainspan data confirmed that miR-137 expression was more correlated with miR-137 targets 

than non-targets (Wilcoxon rank-sum test, p = .044). Specifically, correlations were more negative 

for miR-137 targets (on average, r = -.61) than for non-targets (average r = -.47). These results indicate 

that the genes identified above as being co-expressed with miR-137 are indeed more associated than 

others with miR-137 expression. 

Within Darkorange, the analysis of intramodular connectivity showed that miR-137 targets 

were more central, i.e., more strongly connected with the rest of the module, than non-targets 

(Wilcoxon rank-sum tests, p = 0.0093). Eight out of nine SCZ risk genes (Figure 2) had higher 

correlations with miR-137 targets than non-targets (all p < .05); gene KCNV1 reached marginal 

significance (p = .066). These results indicate that miR-137 targets are connected to SCZ risk genes 

above chance level; SCZ risk genes are more related with targets than with non-targets within 

Darkorange. 

 

Darkorange is enriched for genes modulated by miR-137 

To assess directly the contribution of miR-137 to the regulation of Darkorange, we used a 

cellular system allowing for a titration of miR-137 expression. Plasmid transfections were used to 

overexpress (OE) miR-137 in a Neuro2A (N2A) neuroblastoma cells. A CRISPR/Cas9 approach 

(Figure S5) was also developed to disrupt (KO) miR-137 expression in these same cells. Evaluation 
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of miR-137 expression using quantitative PCR confirmed the efficacy of the KO as well as OE 

procedures (Table S5). We quantified the effect of various levels of miR-137 expression on genome-

wide gene expression using microarray analysis (Supplemental Information [SI]-1.3).  

We identified 580 dose-dependently expressed genes (DDEGs) showing linear covariation 

with miR-137 across the transcriptome (qFDR<.05). Darkorange included 13 DDEGs out of 141 genes 

expressed in neuroblastoma cells, a significant proportion (p=.011; Figure 2; Figure S6). We assessed 

whether any other replicated modules were significantly enriched as a negative control. Only few 

modules over-represented miR-137 DDEGs (Figure 2), consistent with the human post-mortem data 

and supporting the relative specificity of Darkorange for miR-137 targets. 

 

The Polygenic Co-expression Index combines reproducible associations of SNPs with Darkorange. 

We translated Darkorange gene co-expression into the PCImiR-137 via the association of 

genetic variants with the module eigengene. SNP weights are available in Table S6. PCIs including 

between 7 and 15 SNPs were replicated (BRAINEAC: one-tailed p<.05, Table S6). Table 2 includes 

annotations of the first 15 SNPs. We adopted an inclusive approach to collect signal from multiple 

module genes and therefore tested the PCImiR-137 including 15 SNPs in the neuroimaging sample. 

 

Neuroimaging results confirm the association of polygenic risk for schizophrenia with working 

memory but reveal an association of miR-137 related co-expression with emotion processing. 

Table S7 reports complete fMRI statistics. During the emotion processing task, the linear term 

of the PCImiR-137 correlated positively with BOLD activity in a right prefrontal cluster including 

Brodmann areas 8, 9, and 46 within the discovery sample (peak Z=5.1; pFWE=.001; 97 voxels; MNI 

coordinates x=50; y=12; z=42; Figure 3). In the replication sample, the effect was in the same 
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direction and significant in BA9 (peak Z=3.5; pSVC=.007; 42 voxels; MNI coordinates x=46; y=12; 

z=31). Therefore, greater Darkorange predicted co-expression was associated with greater prefrontal 

activity during emotion processing. Greater PCImiR-137 was also associated with lower prefrontal-

amygdala connectivity during emotion processing (pSVC < .05; Figure S7). We found no effect of 

PRSmiR-137 on emotion processing. 

Conversely, we found no significant effect of the PCImiR-137 on working memory-related 

activity. Instead, PRSmiR-137 computed with two of the three SCZ association thresholds (p<.05 and 

p<.5) correlated positively with working memory activity in a right prefrontal cluster including BA8 

(SNP association p<.05 threshold: peak Z=4.5; pFWE=.008; 37 voxels; MNI coordinates x=27; y=27; 

z=58). This effect was specific for PRSmiR-137 and was not observed when using SCZ risk variants not 

harbored within miR-137 targets (SI-2). Further analyses suggested that statistical power was not an 

issue for the PCImiR-137 n-back analysis and removing Darkorange genes from the PRSmiR-137 did not 

affect results (SI-2). Additionally, to establish the specificity of the imaging associations, we explored 

ththe sameis association with PCIs derived from other modules enriched for SCZ risk genes (Black, 

Blue, and Lightcyan; see Figure 2) as a negative control. To compute these scores, we used the top 

15 independent SNPs within the module genes like we did for the Darkorange PCI. We found no 

significant association with the n-back task and no replicated association with the Faces task (data 

available on request).  
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Discussion 

We hypothesized that miR-137 regulates the co-expression of SCZ risk genes in the human 

prefrontal cortex and evaluated the involvement of miR-137 targets in working memory and emotion 

processing. Indeed, we found that miR-137 targets are co-expressed in at least four reproducible co-

expression modules. Of these, only Darkorange shows over-representation of SCZ genes and has a 

link with miR-137 supported by in vitro evidence. SNAP91, CACNB2, ATP2A2, BCL11B, GRIN2A, 

and NLGN4X genes appear at the intersection between miR-137-associated co-expression and SCZ 

risk. Gene Ontology analysis links Darkorange genes with Neurodevelopment and Synaptic 

Signaling, two biological functions implicated in SCZ. When we translated miR-137 effects on its 

targets into two polygenic indices respectively reflecting co-expression of a subset of SCZ risk genes 

targeted by miR-137 (PCImiR-137) or the whole-genome association with SCZ risk (PRSmiR-137), we 

obtained differential neuroimaging readouts in neurotypical individuals. We replicated prior evidence 

that PRSmiR-137 is associated with prefrontal activity during working memory, confirming that SCZ-

weighted genetic score associate miR-137 with working memory. Instead, genetic scores based on 

co-expression tell a different story: greater PCImiR-137 derived from a subset of miR-137 targets co-

expressed in the human PFC is associated with greater prefrontal activity and lower prefrontal-

amygdala coupling during emotion processing, but is not related with working memory. None of the 

three modules enriched for miR-137 but not enriched for SCZ showed an association with working 

memory. Taken together, this evidence shows that miR-137 targets are involved both in working 

memory and emotion processing SCZ phenotypes, but a subset of miR-137 potentially co-regulated 

genes appears more closely associated with emotion processing.  

Our approach has two advantages: first, it incorporates SCZ GWAS information in the module 

prioritization, but also includes co-expression information – whereas the Polygenic Risk Score only 

includes GWAS information; second, it parses miR-137 targets into sets of co-expressed genes, 

whereas the Polygenic Risk Score computed with all miR-137 targets cumulates statistical effects 
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with parsing them. Dissecting the overall genetic risk for SCZ into biologically meaningful 

information related with miR-137 co-expression regulation reveals previously unreported links 

between miR-137 targets and in vivo phenotypes of SCZ. We suggest that the functional role of miR-

137 in emotion processing is mediated by the co-expression of a gene set involved in SCZ risk. 

 

Common variation in target genes of miR-137 is related with emotion processing. 

We show that miR-137 is associated with co-expression of SCZ risk genes in human non-

psychiatric post-mortem PFC. Results are consistent across independent samples, thus reducing the 

chance of type I error (3, 36). In silico predictions of miR-137 association with Darkorange co-

expression are supported by in vitro experiments. Prior evidence that miR-137 SCZ-associated 

variants are related with working memory and not emotion processing brain activity is replicated, and 

we identify a role of miR-137 in emotion processing. Importantly, the sizes of the fMRI cohorts 

previously tested (25, 28) ranged up to 86 participants, whereas here we studied 358 individuals 

overall. As we assessed healthy individuals without familial psychiatric history, our findings speak 

to the role of physiological variation in a subset of miR-137 targets. In particular, greater miR-137 

target gene expression (mostly associated with lower miR-137 expression in the Brainspan dataset 

and in our experimental validation – Figure S6) – in turn linked with greater SCZ risk (21) – is 

associated with greater prefrontal activity and lower prefrontal-amygdala coupling during emotion 

processing. These findings are consistent with prior evidence of greater prefrontal activity in 

individuals carrying rs1625579 risk allele (23) and with decreased prefrontal-amygdala connectivity 

associated with SCZ risk (37). Notably, our findings link lateral prefrontal cortex with amygdala, 

rather than ventromedial prefrontal regions investigated in previous studies (25), like in previous 

reports associating disrupted lateral prefrontal-amygdala connectivity with genetic risk for SCZ (38). 

We propose that lower miR-137 expression in the prefrontal cortex is associated with risk for SCZ 
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by an increase of target gene expression. Some of the SCZ risk genes are co-expressed in the pathway 

we identified here, which is reproducibly related with increased prefrontal activity during emotion 

processing and decreased prefrontal-amygdala coupling. 

 

Co-expression of miR-137 target genes. 

The over-representation of synaptic and neurodevelopmental genes in Darkorange is 

consistent with prior evidence about miR-137 functions (39, 40). For example, He and coworkers 

(41) found that miR-137 expression was associated with synaptic protein levels in mouse 

hippocampus relating such dysfunction with Synaptotagmin-1, the main calcium sensor regulating 

brain synaptic vesicle release (42). In mice, overexpression of the Synaptotagmin-1 coding gene Syt1 

antagonizes deficits caused by miR-137 OE (43). Therefore, it is noteworthy that Syt1 is a member 

of Darkorange and a DDEG.  

Two further relevant genes are GRM5 and GSK3B. GRM5, coding for mGluR5, has been 

implicated in SCZ (44) and in affective phenotypes (45). Interestingly, mGlu5 acts via a pathway 

mediated by activation of phospholipase C and protein kinase C (46), a pathway also represented in 

Darkorange (PLCB1 and PRKCB). Similarly, many studies have implicated the Glycogene-

Synthetase-Kinase-3beta (GSK3B) gene in emotion processing (47) and in SCZ (48). GSK3B ranks 

among the most connected genes within Darkorange (Table S4), making it a potential hub of co-

expression. These findings are consistent with prior reports implicating GSK3B variants in SCZ 

intermediate phenotypes (48-50).  

 

Limitations 

 We identified Darkorange based on over-representation of predicted miR-137 targets. About 
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50 targets have been experimentally validated (26), but the number is likely much larger. As parsing 

50 genes across 51 co-expression modules would be inadequate for enrichment analysis, we relied on 

predictions, as done elsewhere (28). The reliability of these predictions limits our inferences. We 

endeavored to address this limitation by in vitro experiments showing that Darkorange stands out at 

the intersection between bioinformatics and findings in neuroblastoma cells (Figure 2). Notably, the 

overexpression we employed may be above the physiological range of variation, hence potentially 

exceeding the physiological response to miR-137. Although we do not have evidence that DDEGs 

are directly, rather than indirectly, targeted by miR-137, this evidence suggests a miR-137 association 

with Darkorange. Finally, relative to our previous work (31), we traded sample size for homogeneity, 

by selecting only neurotypical individuals of Caucasian ancestry in order to match the SCZ-GWAS 

(19) and our fMRI cohort. 

 

Conclusions 

As in prior reports, polygenic SCZ risk enriched for miR-137 target genes is associated with 

WM-related PFC activity. Furthermore, we identified the regulation of Darkorange gene co-

expression as a mechanism of miR-137 involvement in risk for SCZ. Darkorange co-eQTLs were 

associated with prefrontal activity and connectivity during emotion processing, in line with previous 

knowledge about miR-137 and emotion processing. We propose that low miR-137 expression in the 

prefrontal cortex is associated with SCZ risk via the increased expression of specific risk genes which 

is associated with increased prefrontal activation during emotion processing. 

The study of co-expression in post-mortem tissue and neuroimaging phenotypes disentangles 

the functional genetics of gene regulators with clinical relevance beyond PRS approaches. The 

biological role of miR-137 in SCZ likely acts via co-expressed gene sets. Here we have identified one 

of such sets related with emotion processing brain activity and connectivity in humans.  
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Materials and Methods 

Experimental Design 

Identification of a Gene Co-expression Network in the human prefrontal cortex. 

We used CommonMind Consortium RNA-sequencing data from post-mortem prefrontal 

cortex (9) to identify a gene co-expression network in HCs by means of Weighted Gene Co-

expression Network Analysis (WGCNA)(51). A dataset comparable with the fMRI sample in terms 

of age and ancestry included 147 neurotypical Caucasian adults (demographics in Table S1; SI-1.1). 

After correcting the expression data for confounding variables, we computed WGCNA as previously 

reported (31) on 17,173 genes. Here we used Spearman’s correlation as a weighted measure of gene-

gene relationships (52) to limit the impact of deviations from normality in expression data (53) (SI-

1.1).  

We validated the discovered gene-gene relationships using three independent datasets 

(BrainEAC (54) Frontal Cortex [N=123], Braincloud PFC BA46 [N=59](13) and GTEx (55) PFC 

BA9, [N=84], Table S1). A permutation approach served to compare module cohesiveness (56)(SI-

1.1). We assessed the replication of each module in the three datasets and performed a meta-analysis 

to obtain module-wise replication p-values (sum-log Fisher’s method; αBonferroni=.05/(Nmodules×3)). 

 

Module prioritization and functional analysis 

We assessed the overlap between genes in the successfully replicated co-expression modules 

and miR-137 target genes derived via a meta-analysis of four miRNA target databases (57-60). Then, 

we assessed the over-representation of genes located in loci previously associated with SCZ at 

genome-wide significance (19) within the miR-137-enriched modules (Table S2; SI-1.2). We 

characterized the modules of interest using the Gene Ontology Database (PANTHER)(61). We 
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investigated module function via enrichments for chromosomal locus (62), cell-type, and brain 

region-specific expression pattern (63) during neurodevelopment. To further assess the potential 

relationship between risk and gene expression, we also tested the over-representation of 

transcriptome-wide association study (TWAS)(11, 17, 64) variants in the selected modules. 

 

miR-137 targets in the prioritized modules and topology of schizophrenia risk genes  

As there was no direct quantification of miR-137 in the dataset we used to compute the 

network, we used the Brainspan dorsolateral prefrontal cortex data to verify the association between 

miR-137 and the modules of interest (only N = 10 had a miR-137 quantification available). We 

computed Pearson’s correlations between miR-137 and each module gene; then, we assessed the 

correlation difference between miR-137 targets and non-targets to support the set of targets we used. 

The fact that the prioritized modules show significant enrichment for both miR-137 and SCZ 

gene lists does not necessarily imply that the involved miR-137 targets are linked to SCZ genetic risk. 

Therefore, we overlapped the gene lists to identify miR-137 targets associated with SCZ risk within 

modules of interest and studied the topology of the network. Specifically, we explored whether miR-

137 targets were connected to SCZ risk genes above chance level and whether SCZ risk genes were 

more related with targets than with non-targets in the prioritized modules. To this aim, we used 

intramodular connectivity, a standard output of WGCNA, and assessed the difference of connectivity 

between targets/non-targets and SCZ risk genes (Wilcoxon rank-sum tests). To test the relationship 

of SCZ risk genes with targets and non-targets, we computed module-wise correlation matrices and 

assessed the difference in correlations with Wilcoxon rank-sum tests. 

 

Experimental validation in neuroblastoma cells and data analysis. 
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We modulated the expression of miR-137 in neuroblastoma Neuro2A cells to assess 

WGCNA-based predictions of a link between miR-137 and the expression of genes belonging to the 

prioritized modules (SI-1.3). A CRISPR-Cas9 approach involving a plasmid expressing both Cas9 

and a specific small guide RNA was used to generate miR-137 KO cells. A PcDNA3.2/V5 mmu-mir-

137 plasmid expressing miR137 was used for OE conditions (65). Impact of dose-dependent linear 

changes in miR-137 expression on transcriptome-wide expression was evaluated using microarrays 

(Mouse Gene 2.0 ST microarrays, Affymetrix/Thermo-Fisher). In the linear models, gene expression 

was the dependent variable and miR-137 quantification was the predictor. We thresholded results ad 

qFDR<.05 to obtain a list of dose-dependently expressed genes (DDEGs) and assessed DDEGs over-

representation in the target modules (SI-1.3).  

 

Biological genetic stratification of miR-137 target genes: the Polygenic Co-expression Index. 

In order to test systems-level phenotypes associated with the module of interest, we generated 

a Polygenic Co-expression Index (PCImiR-137). We identified SNPs in the module genes associated 

with the first principal component of module gene expression (a measure of co-expression of the 

whole module) and combined them into the PCImiR-137(13, 30, 66)(SI-1.4). We estimated the effect of 

allelic dosage via a Robust Linear Model (rlm function - robust R package) and ranked SNPs 

according to their p-value (31). Following prior reports, we assessed the top 50 ranked SNPs for PCI 

computation (31), and computed the PCImiR-137 picking the top set of SNPs that replicated the 

association with co-expression in the largest replication dataset we had available (BrainEAC; SI-1.4). 

 

Neuroimaging study. 

Participants. We recruited 358 healthy volunteers distributed in a discovery cohort of 222 

participants who had both EP and WM data available and a replication cohort of 136 participants for 
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the emotion processing task (Table S1). We evaluated a single working memory cohort because the 

PRSmiR-137 effect has already been reported independently (28) and the replication cohort did not have 

working memory scans. Inclusion/exclusion criteria have been described elsewhere (SI-1.5)(67). 

Participants signed an informed consent complying with the Declaration of Helsinki after full 

explanation of all procedures approved by the local ethics committee. 

Genetic score computation. We genotyped all participants (68) and performed imputation 

using Sanger Imputation Service and 1000 Genomes Project Phase 3 reference panel (including pre-

phasing and imputation with SHAPEIT2+PBWT (69, 70); genomic coordinates on GRCh37/hg19 

genomic reference build). We filtered out SNPs with missing rate >.05, Hardy-Weinberg equilibrium 

p<10-6, and minor allele frequency (MAF)<.01 and computed genomic eigenvariates to control for 

population stratification (71). 

The PCImiR-137 is the average of the co-expression effects of the top-ranked SNP alleles 

selected in the post-mortem study, which replicated in BrainEAC. Instead, we computed the PRSmiR-

137 for SCZ using standard procedures (71) with the miR-137 target gene list and SNPs reported in 

the original article (28)(SNP-level significance thresholds: p<10-5, p<.05, p<.5). SI-1.6 reports further 

scores computed to control for possible confounders and the pertinent results. 

Neuropsychological tasks. Our emotion processing Faces task (72-74) presented 

participants with angry, fearful, happy and neutral facial expressions from a validated set of facial 

pictures (SI-1.5). The N-back task probes working memory and has been widely used in 

neuroimaging (75-77). Participants performed three runs of a block design version of the task: 1-Back 

vs. 0-Back; 2-Back vs. 0-Back, and 3-Back vs. 0-Back, each lasting 240 s.  

 

Statistical Analysis 

fMRI data collection, pre-processing, and analysis followed standard procedures (SI-1.5)(13). 

We used SPM12 to perform multiple regression analyses for both tasks and for the two samples 
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separately. For the co-expression analysis, we used the linear and quadratic terms of PCImiR-137 (30, 

66, 78) as predictors and age, gender, and five genomic eigenvariates as covariates. For the PRSmiR-

137 analyses, we used PRSs as predictors and the same covariates reported above. In the working 

memory/emotion processing sample, we report results surviving pFWE<.05 threshold at whole brain 

level masked by task activity. In the emotion processing replication sample, we used the cluster 

detected in the discovery analysis and performed a small volume correction (pSVC<.05).  

To link miR-137 target gene predicted expression in the prefrontal cortex with prefrontal-

amygdala functional coupling, we additionally performed a connectivity analysis using a genetic-

physiological interaction approach (79). Specifically, we used the prefrontal seed associated with the 

PCImiR-137 and extracted movement- and task-corrected estimates from the bilateral amygdala (WFU 

Pickatlas (25); SI 1.5).  
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Table 1. PGC loci and genes overlapping with the module Darkorange and miR-137 targets.  
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Table 2. SNPs associated with the module Darkorange. 
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Figure captions: 

Figure 1. Study design. 

Figure 2. Module prioritization. Features of the Darkorange module. A. Intersection between 

Darkorange genes, Psychiatric Genomic Consortium (PGC) SCZ genes, and miR-137 targetome 

bioinformatic predictions in humans. B. Gene ontologies associated with Darkorange genes. 

Reported p-values are corrected for multiple comparisons. C. Overview of the over-representation in 

all replicated modules (28 out of 51) of miR-137 predicted targets in humans, of SCZ genes, of genetic 

variants associated with SCZ (MAGMA), and of dose-dependent expressed genes in neuroblastoma 

cells (DDEGs). The colormap highlights the specificity of Darkorange relative to other modules. D. 

Scatter plot illustrates the enrichment of each replicated module for miR-137 targets as assessed in 

neuroblastoma cells and in bioinformatic predictions in humans. The two assessments co-vary except 

for outliers Blue and Red. 

Figure 3. fMRI results. Top panels: render of the brain activation associated with PCImiR-137 during 

EP in the discovery (A.) and replication sample (B.).  C. Render of the brain activation associated 

with PRSmiR-137 during working memory in the discovery sample. Color bar indicates Z scores. Right 

in the figures is right in the brain. Each scatterplot refers to the cluster highlighted in the render on its 

top. In the scatterplots, axes are scaled with mean = 0 and standard deviation = 1. 
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