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ABSTRACT

We investigated the dynamic properties of the organism state fluctuations along individual aging
trajectories in a large longitudinal database of CBC measurements from a consumer diagnostics
laboratory. To simplify the analysis, we used a log-linear mortality estimate from the CBC variables
as a single quantitative measure of aging process, henceforth referred to as dynamic organism state
index (DOSI). We observed, that the age-dependent population DOSI distribution broadening could
be explained by a progressive loss of physiological resilience measured by the DOSI auto-correlation
time. Extrapolation of this trend suggested that DOSI recovery time and variance would simul-
taneously diverge at a critical point of 120 — 150 years of age corresponding to a complete loss of
resilience. The observation was immediately confirmed by the independent analysis of correlation
properties of intraday physical activity levels fluctuations collected by wearable devices. We con-
clude that the criticality resulting in the end of life is an intrinsic biological property of an organism
that is independent of stress factors and signifies a fundamental or absolute limit of human lifespan.

INTRODUCTION

Aging is manifested as a progressive functional decline
leading to exponentially increasing prevalence [T}, 2] and
incidence of chronic age-related diseases (e.g., cancers,
diabetes, cardiovascular diseases, etc. [3H5]) and disease-
specific mortality [6]. Much of our current understanding
of the relationship between aging and changes in phys-
iological variables over an organism’s lifespan originates
from large cross-sectional studies [7H9] and led to devel-
opment of increasingly reliable “biological clocks” or “bi-
ological age” estimations reflecting age-related variations
in blood markers [I0], DNA methylation (DNAm) states
[IT], [12] or patterns of locomotor activity [I3HI5] (see [16]
for a review of biological age predictors). All-cause mor-
tality in humans [I7, [I8] and the incidence of chronic age-
related diseases increase exponentially and double every
eight years [3]. Typically, however, the physiological in-
dices and the derived quantities such as biological age
predictions change from the levels observed in the young
organism at a much lower pace than it could be expected
from the Gompertzian mortality acceleration.

Most important factors that are strongly associated
with age are also known as the hallmarks of aging [19] and
may be, at least in principle, modified pharmacologically.
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In addition to that, by analogy to resilience in ecological
systems, the dynamic properties such as physiological re-
silience measured as the recovery rate from the organism
state perturbations [20, 2I] were also associated with
mortality [22] and thus may serve as an early warning
sign of impending health outcomes [23] 24]. Hence, a
better quantitative understanding of the intricate rela-
tionship between the slow physiological state dynamics,
resilience, and the exponential morbidity and mortality
acceleration is required to allow the rational design, de-
velopment, and clinical validation of effective anti-aging
interventions.

We addressed these theoretical and practical issues by
a systematic investigation of aging, organism state fluctu-
ations, and gradual loss of resilience in a dataset involv-
ing multiple Complete Blood Counts (CBC) measured
over short periods of time (a few months) from the same
person along the individual aging trajectory. To simplify
the matters, we followed [25] [26] and described the or-
ganism state by means of a single variable, henceforth
referred to as the dynamic organism state index (DOSI)
in the form of the log-transformed proportional all-cause
mortality model predictor. First, we observed that early
in life the DOSI dynamics quantitatively follows the uni-
versal ontogenetic growth trajectory from [27]. Once the
growth phase is completed, the indicator demonstrated
all the expected biological age properties, such as associ-
ation with age, multiple morbidity, unhealthy lifestyles,
mortality and future incidence of chronic diseases.

Late in life, the dynamics of the organism state cap-
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tured by DOSI along the individual aging trajectories
is consistent with that of a stochastic process (random
walk) on top of the slow aging drift. The increase in the
DOSI variability is approximately linear with age and
can be explained by the rise of the organism state recov-
ery time. The latter is thus an independent biomarker
of aging and a characteristic of resilience. Our analysis
shows that the auto-correlation time of DOSI fluctua-
tions grows (and hence the recovery rate decreases) with
age from about 2 weeks to over 8 weeks for cohorts ag-
ing from 40 to 90 years. The divergence of the recov-
ery time at advanced ages appeared to be an organism-
level phenomenon. This was independently confirmed
by the investigation of the variance and the autocorre-
lation properties of physical activity levels from another
longitudinal dataset of intraday step-counts measured by
wearable devices. We put forward arguments suggesting
that such behavior is typical for complex systems near a
bifurcation (disintegration) point and thus the progres-
sive loss of resilience with age may be a dynamic origin
of the Gompertz law. Finally, we noted, by extrapola-
tion, that the recovery time would diverge and hence the
resilience would be ultimately lost at the critical point at
the age in the range of 120 — 150 years, thus indicating
the absolute limit of human lifespan.

RESULTS
Quantification of aging and development

Complete blood counts (CBC) measurements are most
frequently included in standard blood tests and thus com-
prise a large common subset of physiological indices re-
ported across UKB (471473 subjects, age range 39 — 73
y.0.) and NHANES datasets (72925 subjects, age range
1 — 85 y.o., see Table [S]] for the description of the data
fields). To understand the character of age-related evo-
lution of the organism state we employed a convenient
dimensionality-reduction technique, the Principal Com-
ponent Analysis (PCA). The coordinates of each point in
Fig. is obtained by averaging the first three Principal
Component scores of PCA-transformed CBC variables in
age-matched cohorts in NHANES dataset. The average
points follow a well-defined trajectory or a flow in the
multivariate configuration space spanned by the physio-
logical variables and clearly correspond to various stages
of the organism development and aging.

Qualitatively, we differentiated three distinctive seg-
ments of the aging trajectory, corresponding to (I) early
adulthood (16 — 35 y.o.); (II) middle ages (35 — 65 y.o0.);
and (III) older ages (older than 65 y.o.). Inside each of
the segments, the trajectory was approximately linear.
This suggests that over long periods of time (age), CBC
variations other than noise could be described by the dy-
namics of a single dynamic variable (degree of freedom)
tracking the distance travelled along the aging trajectory
and henceforth referred to as the dynamic organism state

indicator (DOSI).

Morbidity and mortality rates increase exponentially
with age and a log-linear risk predictor model is a good
starting point for characterization of the functional state
of an organism and quantification of the aging process
[15,25]. Accordingly, we employed Cox proportional haz-
ards model [28] and trained it using the death register
of the NHANES study using log-transformed CBC mea-
surements and sex variable (but not age) as covariates.
Altogether, the training subset comprised 23814 partici-
pants aged 40 y.o. and older with 3799 death events ob-
served in the follow-up by year 2015. The mortality risk
model yielded a single value of log-hazards ratio for ev-
ery subject and increased in full age range of NHANES
participants (Figure . As we will see below, it was a
useful and dynamic measure of the organism state hence-
forth identified with DOSI.

Early in life the dynamics of the organism state has, of
course, nothing to do with the late-life increase of mortal-
ity rate (i.e., aging), but is rather associated with ontoge-
netic growth. Accordingly, we checked that the organism
state measured by DOSI follows closely the theoretical
trajectory of the body mass adopted from [27]:

w(t) = X(l - [1 - (%)VT eﬂ/to)él. (1)

Here z is the body mass, or in the linear regime any quan-
tity such as DOSI depending on the body mass, ¢ is the
age, tg is the characteristic time scale associated with the
development, and xg and X are the asymptotic levels of
same property at birth and in the fully grown state, re-
spectively. The dots and the dashed lines in Fig. rep-
resents age-cohorts averaged body mass trajectory and
the best fit of the age-cohort averaged DOSI levels by
Eq. for the same NHANES participants. The approx-
imation works remarkably well up until the age of about
40. The characteristic time scale from the fit, ¢t = 6.8
years, coincides almost exactly with the best fit value of
6.3 years obtained from the fit of body mass trajectory.

As the body size increases, the metabolic output per
unit mass slows down and the organism reaches a steady
state corresponding to the fully grown organism. The in-
spection of Fig. shows, however, that the equilibrium
solution of the organism growth problem appears to be
unstable in the long run and the organism state dynamics
measured by DOSI exhibits deviations from the station-
ary solution beyond the age of approximately 40 years
old.

To separate the effects of chronic diseases from disease-
free aging, we followed [29] and characterized the health
status of each study participant based the number of
health conditions diagnosed for an individual normalized
to the total number of conditions included in the analy-
sis to yield the “compound morbidity index” (CMI) with
values ranging from zero to one. The list of health con-
ditions common to the NHANES and UKB studies that
were used for CMI determination is given in Table[S2]and
described in Supplementary Information.
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FIG. 1: The graphical representation of the PCA for 5 — 85 year old NHANES participants follows an age-cohort
averaged aging trajectory. Centers of each sequential age cohort are plotted in first three PCs. Three approximately
linear segments are clearly seen in aging trajectory, corresponding to I) age<35; II) age 35-65; III) age>65.
Dynamic organism state indicator (DOSI) mean values (solid line) and variance (shaded area) are plotted relative
to age for all participants of NHANES study. The average line demonstrates nearly linear growth after age of 40.
In younger ages the dependence of age is different and consistent with the universal curve suggested by the general
model for ontogenetic growth [27]. To illustrate the general character of this early-life dependence we superimposed
it with the curve of mean weight in age cohorts of the same population (dotted line). All values are plotted in
normalized from as in [27]. The average DOSI of the “most frail” (CMI > 0.6) individuals is shown with the dashed
line. [C} Distributions of sex- and age-adjusted DOSI in cohorts of NHANES participants in different morbidity
categories relative to the DOSI mean in cohorts of “non-frail” (1 or no diagnoses, CMI < 0.1) individuals. Note that
the distribution function in the “most frail” group (more than 6 diagnoses, CMI > 0.6) exhibited the largest shift and
a profound deviation from the symmetric form.
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FIG. 2: Fraction of frail persons is strongly correlated with the excess DOSI levels, that is the difference between
the DOSI of an individual and its average and the sex- and age-matched cohort in the “non-frail” population in
NHANES. Exponential fit showed that until the age of 70 y.o. the fraction of the “most frail” individuals in the
population grows approximately exponentially with age with the doubling rate constants of 0.08 and 0.10 per year in
the NHANES and the UKB cohorts, respectively. [C} Distribution of log hazards ratio in age- and sex-matched cohorts
of NHANES participants who never smoked, smoked previously but quit prior to the time of study participation, or
were current smokers at the time of the study. The DOSI level is elevated for current smokers, while it is almost
indistinguishable between never-smokers and those who quit smoking (p > 0.05).

Multiple morbidity manifests itself as elevated DOSI and UKB, respectively).
levels. This can be readily seen from the difference be- For both NHANES and UKB, the largest shift was ob-
tween the solid and dashed lines in Fig. [IB] which rep-  served in the “most frail” (CMI > 0.6) population. The
resent the DOSI means in the cohorts of healthy (“non-  increasingly heavy tail at the high end of the DOSI dis-
frail”, CMI < 0.1) and “most frail” (CMI > 0.6) NHANES  tribution in this group is characteristic of an admixture
participants, respectively. In groups stratified by increas- of a distinct group of individuals occupying the adjacent
ing number of health condition diagnoses, the normalized region in the configuration space corresponding to the
distribution of DOSI values (after adjustment by the re- largest possible DOSI levels. Therefore, DOSI displace-
spective mean levels in age- and sex-matched cohorts of ~ ment from zero mean (after proper adjustments for age
healthy subjects) exhibited a progressive shift and in- and sex) was expected to reflect the fraction of “most
creased variability (see Figs. and for NHANES  frail” individuals in a cohort of any given age. This was
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confirmed to be true using the NHANES dataset (Fig.
r=091, p=26x10"1).

The fraction of “most frail” subjects still alive increased
exponentially at every given age until the age correspond-
ing to the end of healthspan was reached. The charac-
teristic doubling rate constants for the “most frail” pop-
ulation fractions were 0.087 and 0.094 per year in the
NHANES and the UKB cohorts, respectively, in com-
fortable agreement with the accepted Gompertz mortal-
ity doubling rate of 0.085 per year [30], see Fig.

We note that the prevalence of diseases in the
NHANES cohort is consistently higher than that in the
UKB population, although the average lifespan is com-
parable in the two countries. This may be a consequence
of the enrollment bias in the UKB: life tables analysis in
[31] suggests the UKB subjects appear to outlive typical
UK residents.

Dynamic organism state index (DOSI) and health
risks

In the most healthy subjects, i.e. those with no di-
agnosed diseases at the time of assessment, the DOSI
predicted the future incidence of chronic age-related dis-
eases observed during 10-year follow-up in the UB study
(Table . There was no relevant information available
in NHANES. We tested this association using a series of
Cox proportional hazard models trained to predict the
age at the onset/diagnosis of specific diseases. We ob-
served that the morbidity hazard ratios associated with
the DOSI relative to its mean in age- and sex-matched co-
horts were statistically significant predictors for at least
the most prevalent health conditions (those with more
than 3000 occurrences in the UKB population). The ef-
fect size (HR = 1.03 — 1.07) was the same regardless of
whether a disease was diagnosed first in a given individual
or followed any number of other diseases. Only emphy-
sema and heart failure which are known to be strongly as-
sociated with increased neutrophil counts [32] 33] demon-
strated particularly high associations. Therefore, we con-
clude that the DOSI is a characteristic of overall health
status that is universally associated with the risks of de-
veloping the most prevalent diseases and, therefore, with
the end of healthspan as indicated by the onset of the first
morbidity (HR =~ 1.05 for the “First morbidity” entry in
Table .

In the most healthy “non-frail” individuals with life-
shortening lifestyles/behaviors, such as smoking, the
DOSI was also elevated, indicating a higher level of risks
of future diseases and death (Fig. . Notably and in
agreement with the dynamic nature of DOSI, the effect
of smoking appeared to be reversible: while the age- and
sex- adjusted DOSI means were higher in current smok-
ers compared to non-smokers, they were indistinguish-
able between groups of individuals who never smoked and
who quit smoking (c.f. [15] [34]).

Physiological state fluctuations and loss of resilience

To understand the dynamic properties of the organ-
ism state fluctuations in relation to aging and diseases,
we used two large longitudinal datasets, jointly referred
to and available as GEROLONG, including anonymized
information on: a) CBC measurements from InVitro,
the major Russian clinical diagnostics laboratory and b)
physical activity records measured by step counts col-
lected by means of a freely available iPhone application.

The CBC slice of the combined dataset included blood
test results from 1758 male and 3268 female subjects aged
40 — 90 with complete CBC analyses that were sampled
16 — 20 times within a period of more than three years
(up to 42 months).

There was no medical condition information available
for the GEROLONG subjects. Hence, for the CBC mea-
surements we used the mean DOSI level corresponding to
the “most frail” NHANES and UKB participants as the
cutoff value to select “non-frail” GEROLONG individu-
als (920 male and 1865 female subjects aged 40 — 90) for
subsequent analysis.

The difference between the mean DOSI levels in groups
of the middle-aged and the eldest available individuals
was of the same order as the variation of DOSI across
the population at any given age (see Fig. . Accord-
ingly, serial CBC measurements along the individual ag-
ing trajectories revealed large stochastic fluctuations of
the physiological variables around its mean values, which
were considerably different among individual study par-
ticipants. Naturally, physiological variables at any given
moment of time reflect a large number of stochastic fac-
tors, such as manifestation of the organism responses
to endogenous and external factors (as in Fig. 2C)). We
therefore focused on the statistical properties of the or-
ganism state fluctuations.

Auto-correlation function is the single most important
statistical property of a stationary stochastic process rep-
resented by a time series x(t):

C(AL) = (52 (t + At)oz(t)),, 2)

where At is the time lag between the subsequent mea-
surements of z, éx(t) = z(t) — ()¢ is the deviation of
x from its mean value produced by the averaging (z(t));
along the individual trajectory(see e.g., [35]).

The autocorrelation function of z = DOSI averaged
over individual trajectories in subsequent age cohorts of
GEROLONG dataset was plotted vs. the delay time in
Fig.[3A]and exhibited exponential decay over a time scale
of approximately 2 — 8 weeks depending on age.

The exponential character of the autocorrelation func-
tion, C(At) ~ exp(—eAt) is a signature of stochastic
processes following a simple Langevin equation:

0t = —edx + f(), (3)

where 04 stands for the rate of change in fluctuations dz,
¢ is the relaxation or recovery rate, and f is the “force”
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FIG. 3: The auto-correlation function C'(At) of the DOSI fluctuations during several weeks averaged in sequential
10-year age-cohorts of GEROLONG subjects showed gradual age-related remodelling. Experimental data and fit to
autocorrelation function are shown with solid and dashed lines, respectively (see details in Supplementary Informa-
tion). The DOSI correlations are lost over time A¢ between the measurements and, hence, the DOSI deviations
from its age norm reach the equilibrium distribution faster in younger individuals. The auto-correlation function
C(At) of fluctuations of the negative logaritm of steps-per-day during several weeks averaged in sequential 10-year
age-cohorts of GEROLONG Stepcounts subset subjects showed similar gradual age-related remodelling. [ClL The
DOSI relaxation rate (or the inverse characteristic recovery time) computed for sequential age-matched cohorts from
the GEROLONG dataset decreased approximately linearly with age and could be extrapolated to zero at an age in
the range of ~ 110 — 170 y.o. (at this point, there is complete loss of resilience and, hence, loss of stability of the
organism state). The shaded area shows the 95% confidence interval. |E|. The inverse variance of DOSI decreased
linearly in all investigated datasets and its extrapolated value vanished (hence, the variance diverged) at an age in
the range of 120 — 150 y.o. We performed the linear fit for subjects 40 y.o. and older, excluding the “most frail”
(CMI > 0.6) individuals. The shaded areas correspond to the 95% confidence intervals. The blue dots and lines
show the inverse variance of log-scaled measure of total physical activity (the number of steps per day recorded by a
wearable accelerometer) for NHANES participants. Phenoage [25], calculated using explicit age and additional blood
biochemistry parameters also demonstrated age-related decrease of the inverse variance in NHANES population.

responsible for deviation of the organism state from its
equilibrium.

The auto-correlation function decay time (or simply
the auto-correlation time) is inversely proportional to the
relaxation (recovery) rate € and characterizes the time
scale involved in the equilibration of a system’s state in
response to external perturbations (see Supplementary
Information). We therefore propose using this quantity
as a measure of an organism’s “resilience”, the capacity

of an individual organism to resist and recover from the
effects of physiological or pathological stresses [36] [37]).

We fitted the DOSI auto-correlation functions av-
eraged over individuals representing subsequent age-
matched cohorts to an exponential function of the time
delay. We observed that recovery rates obtained from fit-
ting to data in the subsequent age-cohorts decreased ap-
proximately linearly with age (Fig. . Extrapolation to
older ages suggested that the equilibration rate and hence
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the resilience is gradually lost over time and is expected
to vanish (and hence the recovery time to diverge), at
some age of approximately 120 — 150 y.o.).

The exponential decay of auto-correlation function is
not merely a peculiarity of an organism state indicator
computed from CBC. We were able to use another set of
high resolution longitudinal measurements of daily step
counts collected by wearable devices. Step counts mea-
surements were obtained from users of fitness wristband
(3032 females, 1783 males of age 20 — 85 y.0.). The num-
ber of measurements for each user was at least 30 days
and up to 5 years.

In [I5] we observed, that the variability of physical
activity (namely, the logarithm of the average physical
activity), that is another hallmark of aging and is associ-
ated with age and risks of death or major deceases, also
increases with age and hence maybe used as an organ-
ism state indicator. The autocorrelation function of the
physical activity levels shows already familiar exponen-
tial profile and signs of the loss of resilience in subsequent
age-matched cohorts as shown in Fig. 3B]

The recovery rate inferred from as the inverse autocor-
relation time from physical activity levels trajectories is
plotted alongside the recovery rates from CBC-derived
DOSI in Fig. [3C] We observed that the recovery rates re-
vealed by the organism state fluctuations measured in
apparently unrelated subsystems of the organism (the
blood cell counts and physical activity levels) are highly
concordant, exhibit the same age-related dynamics.

Eq. predicts, that the variance of DOSI should also
increase with age. Indeed, according to the solution of
the Langevin equation with a purely random and uncor-
related force, (f(t+ At)f(¢)): = BI(At) (with §(z) being
the Dirac’s delta-fucntion and B being the power of the
stochastic noise), the fluctuations of z = DOSI should
increase with age thus reflecting the dynamics of the re-
covery rate: 02 = (6x2) ~ B/e.

Remarkably, the variability in a DOSI did increase
with age in every dataset evaluated in this study. Follow-
ing our theoretical expectations of the inverse relation be-
tween the resilience and the fluctuations, we plotted the
inverse variance of the DOSI computed in sex- and age-
matched cohorts representing the most healthy subjects
(see Fig. . Again, extrapolation suggested that, if the
tendency holds at older ages, the population variability
would increase indefinitely at an age of approximately
120 — 150 y.o.

As expected, the amplification of the fluctuations of
the organism state variables with age is not limited to
CBC features. In Fig. BD]we plotted the inverse variance
of this physical activity feature and found that it linearly
decreases with age in such a way that the corresponding
variance diverges at the same critical point at the age of
approximately 120 — 150 y.o.

To demonstrate the universality of of the organism
state dynamics, we followed the fluctuation properties
of the Phenoage, another log-linear mortality predictor
trained using the explicit age, sex and a number of bio-

FIG. 4: Representative aging trajectories are superim-
posed over the potential energy landscape (vertical axis)
representing regulatory constraints. The stability basin
“A” is separated from the unstable region “C” by the po-
tential energy barrier “B”. Aging leads to a gradual de-
crease in the activation energy and barrier curvature and
an exponential increase in the probability of barrier cross-
ing. The stochastic activation into a dynamically unsta-
ble (frail) state is associated with acquisition of multiple
morbidities and certain death of an organism. The white
dotted line “D” represents the trajectory of the attrac-
tion basin minimum. Examples 1 (black solid line) and 2
(black dashed line) represent individual life-long stochas-
tic DOSI trajectories that differ with respect to the age
of first chronic disease diagnosis.

chemical blood markers [25]. By its nature, PhenoAge is
another DOSI produced from a different set of features.
Unfortunately, we could not not obtain a sufficient num-
ber of individuals with all the relevant markers measure-
ments from the longitudinal dataset from InVitro. Ac-
cordingly, we could not compute the corresponding au-
tocorrelation function. We were, however, able to com-
pute PhenoAge for NHANES subjects and observed an
increase in variability of the PhenoAge estimate as a
function of chronological age and a possible divergence
of PhenoAge fluctuations at around the age of 150 y.o.

DISCUSSION

The simultaneous divergence of the organism state re-
covery times (critical slowing down in Fig. and the
increasing dynamic range of the the organism state fluc-
tuations (critical fluctuations in Fig. observed in-
dependently in two biological signals is characteristic of
proximity of a critical point [23, B5] at some advanced
age over 100 y.o. Under these circumstances, the organ-
ism state dynamics are stochastic and dominated by the
variation of the single dynamic variable (also known as
the order parameter) associated with criticality [23] B8].
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A proper identification of such a feature requires mas-
sive high quality longitudinal measurements and sophis-
ticated approaches auto-regressive models. In a similar
study involving CBC variables of aging mice, we were
able to obtain an accurate predictor associated with the
age, risks of death (and the remaining lifespan), and
frailty [39]. In this work we turned the reasoning around
and choose to quantify the organism state by the log-
linear proportional hazards estimate of the mortality
rate followed [I5] 25l 40], using CBC and physical ac-
tivity variables. This inherently dynamic quantitative
organism state indicator (DOSI) increased with age, pre-
dicted the prospective incidence of age-related diseases
and death, and was elevated in cohorts representing typ-
ical life-shortening lifestyles, such as smoking, or exhibit-
ing multiple morbidity.

The log-linear risks model predictor demonstrated a
non-trivial dependence on age also early in life, that is in
the age range with almost no recorded mortality events
in the training dataset. The age-cohort averaged DOSI
increased and then reached a plateau (Fig. in good
quantitatively consistent with the predictions of the uni-
versal theory of ontogenetic growth [27]. According to
the theory, the development of any organism is the re-
sult of a competition between the production of new tis-
sue and life-sustaining activities. The total amount of
the energy available scales as the fractional power of the
body mass m3/* according to the universal allometric
Kleiber-West law [41], 42]. On the one hand, the energy
requirements for the organism maintenance increase lin-
early as the body mass grows and hence the initial excess
metabolic power drives the growth of the organism until
it reaches the dynamic equilibrium corresponding to the
mature animal state.

As we can see in Fig. the mature human organism
is dynamically unstable in the long run and deviations
from the ontogenetic growth theory predictions pick up
slowly well after the organism is fully formed. The organ-
ism state dynamics measured by DOSI over lifetime qual-
itatively reveals at least three regimes reflecting growth,
maturation, and aging, respectively. The apparent life-
stages correspond well to the results of multi-variate PCA
of CBC variance (Fig. in this work and also that of
physical activity acceleration/deceleration patterns from
[15]. Every arm of the aging trajectory is characterized
by a specific set of features strongly associated with age
in the signal.

Schematically, the reported features of the longitudi-
nal organism state dynamics can be summarized with
the help of the following qualitative picture (Fig. . Far
from the critical point (at younger ages), the organism
state perturbations can be thought of as confined to the
vicinity of a possible stable equilibrium state in a poten-
tial energy basin (A). Initially, the dynamic stability is
provided by a sufficiently high potential energy barrier
(B) separating this stability basin from the inevitably
present dynamically unstable regions (C') in the space
of physiological parameters. While in stability basin,

an organism state experiences stochastic deviation from
the meta-stable equilibrium state, which is gradually dis-
placed (see the dashed line D) in the course of aging even
for the successfully aging individuals.

The characteristic organism state auto-correlation
time demonstrated here (3-6 weeks, see Fig. is much
shorter than lifespan. The dramatic separation of time
scales makes it very unlikely that the linear decline of the
recovery force measured by the recovery rate in Fig. [3C|
can be explained by the dynamics of the organism state
captured by the DOSI variation alone. Therefore, we
conclude that the progressive remodeling of the attrac-
tion basin geometry reflects adjustment of the DOSI fluc-
tuations to the slow independent process that is aging
itself. In this view, the aging drift of the DOSI mean
in cohorts of healthy individuals (as in Fig. is the
adaptive organism-level response reflecting, on average,
the increasing stress produced by the aging process.

The longitudinal analysis in this work demonstrated
that the organism state measured by DOSI follows a
stochastic trajectory driven mainly by the organism re-
sponses to unpredictable stress factors. Over lifetime,
DOSI increases slowsly, on average. The dynamic range
of the organism state fluctuations is proportional to the
power of noise and is inversely proportional to the re-
covery rate of the DOSI fluctuations. Therefore, the or-
ganism state of healthy individuals at any given age is
described by the mean DOSI level, the DOSI variabil-
ity and its auto-correlation time. Together, the three
quantities comprise the minimum set of biomarkers of
stress and aging in humans and could be determined and
altered, in principle, by different biological mechanisms
and therapeutic modalities.

The DOSI recovery rate characterizes fluctuations of
DOSI on time scales from few weeks to few months, de-
creases with age and thus indicates the progressive loss
of physiological resilience. Such age-related remodeling
of recovery rates has been previously observed in stud-
ies of various physiological and functional parameters in
humans and other mammals. For example, in humans,
a gradual increase in recovery time required after mac-
ular surgery was reported in sequential 10-year age co-
horts [43] and age was shown to be a significant factor for
twelve months recovery and the duration of hospitaliza-
tion after hip fracture surgery [44] 45], coronary artery
bypass [46], acute lateral ankle ligament sprain [47]. A
mouse model suggested that the rate of healing of skin
wounds also can be a predictor of longevity [48].

The resilience can only be measured directly from
high-quality longitudinal physiological data. Framing-
ham Heart Study [7], Dunedin Multidisciplinary Health
and Development Study [49] and other efforts produced
a growing number of reports involving statistical anal-
ysis of repeated measurements from the same persons,
see, e.g., [60, BI]. Most of the time, however, the subse-
quent samples are years apart and hence time between
the measurements greatly exceeds the organism state au-
tocorrelation time reported here. This is why, to the best
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of our understanding, the relation of the organism state
recovery rate and mortality has remained largely elusive.

In the presence of stresses, the loss of resilience should
lead to destabilization of the organism state. Indeed, in
a reasonably smooth potential energy landscape forming
the basin of attraction, the activation energy required for
crossing the protective barrier (B) decreases along with
the curvature at the same pace, that is, linearly with
age. Whenever the protective barrier is crossed, dynamic
stability is lost (see example trajectories 1 and 2 in Fig.
which differ by the age of crossing) and deviations
in the physiological parameters develop beyond control,
leading to multiple morbidities, and, eventually, death.

On a population level, activation into such a frail state
is driven by stochastic forces and occurs approximately
at the age corresponding to the end of healthspan, under-
stood as “disease-free survival”. Since the probability of
barrier crossing is an exponential function of the required
activation energy (i.e., the barrier height) [35], the weak
coupling between DOSI fluctuations and aging is then
the dynamic origin of exponential mortality acceleration
known as the Gompertz law. Since the remaining lifespan
of an individual in the frail state is short, the proportion
of frail subjects at any given age is proportional to the
barrier crossing rate, which is an exponential function of
age (see Fig. .

The end of healthspan can therefore be viewed as a
form of a nucleation transition [35], corresponding in our
case to the spontaneous formation of states of chronic
diseases out of the metastable phase (healthy organisms).
The DOSI is then the order parameter associated with
the organism-level stress responses at younger ages and
plays the role of the “reaction coordinate” of the tran-
sition to the frail state later in life. All chronic diseases
and death in our model originate from the dynamic insta-
bility associated with single protective barrier crossings.
This is, of course, a simplification and yet the assumption
could naturally explain why mortality and the incidence
of major age-related diseases increase exponentially with
age at approximately the same rate [3].

The reduction of slow organism state dynamics to that
of a single variable is typical for the proximity of a tip-
ping or critical point [23]. DOSI is therefore the property
of the organism as a whole, rather than a characteristics
of any specific functional subsystem or organism com-
partment. We did observe a neat concordance between
the organism state recovery rates (Fig. and DOSI
variance divergence (Fig. from seemingly unrelated
sources such as blood markers and the physical activ-
ity variables. This is likely a manifestation of common
dynamic origin of a substantial part of fluctuations in di-
verse biological signals ranging from blood markers (CBC
and PhenoAge covariates) to physical activity levels.

According to the presented model, external stresses
(such as smoking) or diseases produce perturbations that
modify the shape of the effective potential leading to the
shift of the equilibrium DOSI position. For example, the
mean DOSI values in cohorts of individuals who never

smoked or who quit smoking are indistinguishable from
each other, yet significantly different from (lower than)
the mean DOSI in the cohort of smokers (Fig. . Thus,
the effect of the external stress factor is reflected by a
change in the DOSI and is reversed as soon as the factor
is removed.

These findings agree with earlier observations suggest-
ing that the effects of smoking on remaining lifespan and
on the risks of developing diseases are mostly reversible
once smoking is ceased well before the onset of chronic
diseases [I5] 34]. The decline in the lung cancer risk af-
ter smoking ablation [52] is slower than the recovery rate
reported here. This may be the evidence suggesting that
long-time stresses may cause hard-to repair damage to
the specific tissues and thus produce lasting effects on
the resilience.

In the absence of chronic diseases when the organism
state is dynamically stable, the elevation of physiological
variables associated with the DOSI indicates reversible
activation of the most generic protective stress responses.
Moderately elevated DOSI levels are therefore protective
responses that can measured by molecular markers (e.g.,
C-reactive protein) and affects general physical and men-
tal health status [40]. On the other hand, the excessive
DOSI levels observed in older individuals can be thought
of as an aberrant activation of stress-responses beyond
the dynamic stability range. This is a characteristics of
chronic diseases and death.

We propose that therapies targeting frailty-associated
phenotypes (e.g., inflammation) would, therefore, pro-
duce distinctly different effects in disease-free versus frail
populations. In healthy subjects, who reside in the re-
gion of the stability basin (B) (see Fig. {4)), a treatment-
induced reduction of DOSI would quickly saturate over
the characteristic auto-correlation time and lead to a
moderate decrease in long-term risk of morbidity and
death without a change in resilience. Technically, this
would translate into an increase in healthspan, although
the reduction of health risks would be transient and dis-
appear after cessation of the treatment. In frail indi-
viduals, however, the intervention could produce lasting
effects and reduce frailty, thus increasing lifespan beyond
healthspan. This argument may be supported by longitu-
dinal studies in mice suggesting that the organism state
is dynamically unstable, the organism state fluctuations
get amplified exponentially at a rate compatible with the
mortality rate doubling time, and the effects of transient
treatments with life-extending drugs such as rapamycin
produce a lasting attenuation of frailty index [39].

The emergence of chronic diseases out of increasingly
unstable fluctuations of the organism state provides the
necessary dynamic argument to support the derivation
of the Gompertz mortality law in the Strehler-Mildvan
theory of aging [53]. In [54] B5], the authors suggested
that the exponential growth of disease burden observed
in the National Population Health Survey of Canadians
over 20 y.o. could be explained by an age-related decrease
in organism recovery in the face of a constant rate of
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exposure to environmental stresses. Our study provides
evidence suggesting that vanishing resilience cannot be
avoided even in the most successfully aging individuals
and, therefore, could explain the very high mortality seen
in cohorts of super-centennials characterized by the so-
called compression of morbidity (late onset of age-related
diseases [56]). Formally, such a state of “zero-resilience”
at the critical point corresponds to the absolute zero on
the vitality scale in the Strehler-Mildvan theory of aging,
thus representing a natural limit on human lifespan

The semi-quantitative description of human aging and
morbidity proposed here belongs to a class of phenomeno-
logical models. Whereas it is possible to associate the
variation of the organism state measured by DOSI with
the effects of stresses or diseases, the data analysis pre-
sented here does not provide any mechanistic explana-
tions for the progressive loss of resilience. It is worth
to note that the recent study predicts the maximum hu-
man lifespan limit from telomere shortening [57] that is
compatible with the estimations presented here. It would
therefore be interesting to see if the resilience loss in hu-
man cohorts is associated or even caused by the loss of
regenerative capacity due to Hayflick limit.

The proximity of the critical point revealed in this work
and corresponding to vanishing resilience indicates that
the apparent human lifespan limit is not likely to be im-
proved by therapies aimed against specific chronic dis-
eases or frailty syndrome. Thus, no dramatic improve-
ment of the maximum lifespan and hence strong life ex-
tension is possible by preventing or curing diseases with-
out interception of the aging process, the root cause of
the underlying loss of resilience. We do not foresee any
laws of nature prohibiting such an intervention. There-
fore, further development of the aging model presented
in this work may be a step towards experimental demon-
stration of a dramatic life-extending therapy.

MATERIALS AND METHODS

Full details for the materials and methods used in this
study, including information of the CBC parameters, Cox
proportional hazards model, health conditions, and anal-
ysis of physiological state fluctuations are provided in the
Supplementary Information.
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11
SUPPLEMENTARY INFORMATION
Complete Blood Count Datasets

NHANES CBC data were retrieved from the cate-
gory “Complete Blood Count with 5-part Differential -
Whole Blood” of Laboratory data for NHANES surveys
1999 — 2014. Corresponding UKB CBC data fields with
related database codes are listed in Table [SII Sam-
ples with missing (or filled with zero) data for any of
the used CBC components were discarded. Differential
white blood cell percentages were converted to cell counts
by multiplication by 0.01 x White blood ceel count. All
CBC parameters were log-transformed and normalized to
zero-mean and unit-variance based on data of NHANES
participants aged 40 y.o. and older to further carry out
PCA and train Cox proportional hazards model.

Step Counts Datasets

NHANES step counts per minute records during one
week were retrieved from the category “Physical Activity
Monitor” of Examination data for NHANES 2005 — 2006
survey.

Hazards model

The Cox proportional hazards model was trained using
NHANES 2015 Public-Use Linked Mortality data. CBC
data and mortality linked follow-up available for 40592
NHANES participants aged 18 — 85 y.o. was used. Cox
model was trained based on data of participants aged
40 — 85 y.o. (11731 male and 12076 female) with 3792
recorded death events during follow-up until the year
2015 (1999 — 2014 surveys). CBC components and the
biological sex label were used as covariates. The model
was well-predictive of all-cause mortality and yielded a
concordance index value of CI = 0.68 in NHANES and
CI = 0.66 in UKB (samples collected 2007 —2011, 216250
male and 255223 female participants aged 39 — 75 y.o.,
13162 recorded death events during follow-up until the
year 2016). The Cox proportional hazards model was
used as implemented in lifelines package (version 0.14.6)
in python. The model was then applied to calculate the
hazards ratio for all samples in the GEROLONG, UKB
and NHANES cohorts (including individuals younger
than 40 y.o.).

The dynamic organism state indicator (DOSI defined
as log-hazard ratio of the risk model throughout the
manuscript) turned out to be equally well associated with
mortality in the NHANES study (HR = 1.43) used for
training of the risk model and in the independent UKB
study (HR = 1.35; Table [S2)), which was used as a vali-
dation dataset.
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The most prevalent chronic diseases and health
status

We quantified the health status of individuals using the
sum of major age-related medical conditions that they
were diagnosed with, which we termed the compound
morbidity index, CMI. The CMI is similar in spirit to the
frailty index suggested for NHANES [29]. We were not
able to use the frailty index because it was based on Ques-
tionnaire and Examination data that were not consistent
between all NHANES surveys. Also, we did not have
enough corresponding data for the UKB dataset. For
CMI determination, we followed [56] and selected the top
11 morbidities strongly associated with age after the age
of 40. The list of health conditions included cancer (any
kind), cardiovascular conditions (angina pectoris, coro-
nary heart disease, heart attack, heart failure, stroke, or
hypertension), diabetes, arthritis and emphysema. No-
tably, we did not include dementia in the list of diseases
since it occurs late in life and hence is severely under-
represented in the UKB cohort due to its limited age
range. We categorized participants who had more than 6
of those conditions as the “most frail” (CMI > 0.6), and
those with CMI < 0.1 as the “non-frail”. NHANES data
for diagnosis with a health condition and age at diagnosis
is available in the questionnaire category “Medical Con-
ditions” (MCQ). Data on diabetes and hypertension was
retrieved additionally from questionnaire categories “Dia-
betes” (DIQ) and “Blood Pressure & Cholesterol” (BPQ),
respectively.
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UK Biobank does not provide aggregated data on these
medical conditions. Rather, it provides self-reported
questionnaire data (UKB, Category 100074) and diag-
noses made during hospital in-patient stay according to
ICD10 codes (UKB, Category 2002). We aggregated self-
reported and ICD10 (block level) data to match that of
NHANES for transferability of the results between pop-
ulations and datasets. We used the following ICD10
codes to cover the health conditions in UK Biobank: hy-
pertension (I10-115), arthritis (M00-M25), cancer (C00-
C99), diabetes (E10-E14), coronary heart disease (I20-
125), myocardial infarction (121, 122), angina pectoris
(120), stroke (I60-164), emphysema (J43, J44), and con-
gestive heart failure (I50).

Consistently with our previous observations in the
NHANES and UKB cohorts, DOSI also increased with
age in the longitudinal GEROLONG cohort. The average
DOSI level as well as its population variance at any given
age were, however, considerably larger than those in the
reference “non-frail” groups from the NHANES and UKB
studies (see Fig. |[S1A)). This difference likely reflects an
enrollment bias: many of the GEROLONG blood sam-
ples were obtained from patients visiting clinic centers,
presumably due to health issues. This could explain why
the GEROLONG population appeared generally more
frail in terms of DOSI than the reference cohorts of the
same age from other studies (Fig. compare the rel-
ative positions of the solid blue line and the two dashed
lines representing the GEROLONG cohort and the frail
cohorts of the NHANES and UKB studies, respectively).
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TABLE S1: CBC data used in the study.
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CBC component NHANES UKB

Hemoglobin (g/dL) LBXHGB Haemoglobin concentration (30020)

Red blood cell count (million cells/uL) LBXRBCSI Red blood cell (erythrocyte) count (20010)

Mean corpuscular volume (fL) LBXMCVSI Mean corpuscular volume (30040)

Mean corpuscular hemoglobin concentration (g/dL) LBXMC Mean corpuscular haemoglobin concentration (30060)
Red blood cell distribution width (%) LBXRDW  Red blood cell (erythrocyte) distribution width (30070)
Platelets (1000 cells/uL) LBXPLTSI  Platelet count (30080)

Monocytes (%) LBXMOPCT Monocyte percentage (30190)

Lymphocytes (%) LBXLYPCT Lymphocyte percentage (30180)

Eosinophils (%) LBXEOPCT Eosinophill percentage (30210)

White blood cell count (1000 cells/uL) LBXWBCSI White blood cell (leukocyte) count (30000)

TABLE S2: Significance of prediction of acquiring a health condition based on estimated log hazards ratio (adjusted for
age and gender). Only UKB subjects with none of the listed health conditions at the time of survey were considered;
the total number of subjects evaluated for each condition was 263956. The numbers in parentheses in the far right
column indicate the occurrence of the disease being the first diagnosis in an individual.

Condition HR (95% CI) p-value Nevents (Lis first morbidity )
Death 1.35 (1.33 - 1.37) 4.9E-110 4745 (927)
First morbidity 1.05 (1.05- 1.06) 3E-40 68126 (68126)
Hypertension 1.04 (1.04 - 1.05) 1.2E-13 31143 (25681)
Arthritis 1.07 (1.07 - 1.08) 1.7E-32 28745 (24451)
cancers 1.03 (1.02 - 1.04) 2.7E-05 18838 (15860)
Coronary heart disease 1.05 (1.04 - 1.06) 2.9E-05 7422 (5500)
Diabetes 1.03 (1.02 - 1.05) 0.0084 6605 (5265)
Angina pectoris 1.02 (1.00 - 1.03) 0.35 3747 (2164)
Emphysema 1.48 (1.45-1.51) 4.5E-108 2382 (1508)
Heart attack 1.05 (1.03- 1.08) 0.012 2186 (1605)
Stroke 1.10 (1.08 - 1.13) 4.1E-05 1686 (1168)
Heart failure 1.32 (1.20 - 1.36) 6.2E-26 1209 (583)
Bronchitis 118 (1.12 - 1.25)  0.0034 280 (177)
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FIG. S1: DOSI mean values (lines) and variance (shaded areas) are plotted relative to age for the NHANES (same
as in Fig. 1B), UKB and GEROLONG datasets (color-matched with respect to each study). For NHANES and UKB
the solid line and shaded regions mark the population average ad the range spanned by one standard deviation from
it for the “non-frail” (CMI < 0.1) participats. The population mean for the “most frail” (CMI > 0.6) individuals is
shown with dashed lines. Distributions of sex- and age-adjusted DOSI in cohorts of UKB participants in different
morbidity categories relative to the DOSI mean in cohorts of “non-frail” (one or no diagnoses, CMI < 0.1) individuals.
Note that the distribution function in the “most frail” group (more than 6 diagnoses, CMI > 0.6) exhibited the largest
shift and a profound deviation from the symmetric form, similarly as it was seen in NHANES.
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