A biased adenosine A_1R agonist elicits analgesia without cardiorespiratory depression

Mark J. Wall1*, Emily Hill1, Robert Huckstepp2, Kerry Barkan2, Giuseppe Deganutti3*, Michele Leuenberger4, Barbara Preti4, Ian Winfield2, Haifeng Wei5, Wendy Imlach6, Eve Dean1, Cherise Hume1, Stephanie Hayward1, Jess Oliver1, Fei-Yue Zhao3, David Spanswick5,6,7, Christopher A. Reynolds3*, Martin Lochner4, Graham Ladds2 and Bruno G. Frenguelli1

*Author for correspondence

1School of Life Sciences
University of Warwick
Gibbet Hill Rd
Coventry CV4 7AL, UK

2Department of Pharmacology
University of Cambridge
Tennis Court Road
Cambridge CB2 1PD, UK

3School of Biological Sciences
University of Essex
Wivenhoe Park
Colchester CO4 3SQ, UK

4Institute of Biochemistry and Molecular Medicine
University of Bern
3012 Bern, Switzerland

5NeuroSolutions Ltd, Coventry, UK.

6Department of Physiology
Monash Biomedicine Discovery Institute

Monash University

Innovation Walk

Clayton VIC 3800, Australia

Warwick Medical School

University of Warwick

Gibbet Hill Rd

Coventry CV4 7AL, UK

*Current Address:

Centre for Sport, Exercise and Life Sciences (CSELS),

Faculty of Health and Life Sciences,

Coventry University,

Coventry CV1 2DS, UK
Summary

The development of therapeutic agonists for G protein-coupled receptors (GPCRs) is hampered by the propensity of GPCRs to couple to multiple signalling pathways. This promiscuous coupling leads to numerous downstream cellular effects, some of which are therapeutically undesirable. This is especially the case for adenosine A₁ receptors (A₁Rs) whose clinical potential is undermined by the sedation and cardiorespiratory depression caused by conventional agonists. We have discovered that the A₁R-selective agonist, BnOCPA, is a potent and powerful analgesic but does not cause sedation, bradycardia, hypotension or respiratory depression. This unprecedented discrimination between native A₁Rs arises from BnOCPA’s unique and exquisitely biased activation of Gob among the six Gαi/o subtypes, and in the absence of β-arrestin recruitment. BnOCPA thus demonstrates a hitherto unknown Gα-selective activation of the native A₁R, sheds new light on the fundamentals of GPCR signalling, and reveals new possibilities for the development of novel therapeutics based on the far-reaching concept of biased agonism.

Short summary:

We describe the selective activation of an adenosine A₁ receptor-mediated intracellular pathway that provides potent analgesia in the absence of sedation or cardiorespiratory depression, paving the way for novel medicines based on the far-reaching concept of biased agonism.
Introduction

G protein-coupled receptors (GPCRs) are the targets of many FDA-approved drugs1,2. However, the promiscuity with which they couple to multiple G protein- and β-arrestin-activated intracellular signalling cascades leads to unwanted side effects. These side effects limit both the range of GPCRs suitable for drug-targeting, and the number of conditions for which treatments could be developed3,4. One family of GPCRs that has particularly suffered as drug targets from their promiscuous coupling are the four GPCRs for the purine nucleoside adenosine, despite the potential for using adenosine receptor agonists to treat many pathological conditions including cancer, and various cardiovascular, neurological and inflammatory diseases5,6,7. For example, activation of the widely-distributed adenosine A\textsubscript{1} receptor (A\textsubscript{1}R) with currently available agonists elicits multiple actions in both the central nervous system (CNS), such as the inhibition of synaptic transmission, neuronal hyperpolarization, and sedation, and in the cardiorespiratory system through slowing the heart (bradycardia), reducing blood pressure (hypotension), and depressing respiration (dyspnea)7,8,9,10. These multiple effects severely limit the prospects of A\textsubscript{1}R agonists as life-changing medicines, despite their potential use in a wide range of clinical conditions, such as glaucoma, type 2 diabetes mellitus, pain, epilepsy and cerebral ischemia7,11,12,13,14, and in which there are clear unmet clinical needs that could be addressed with novel therapeutics.

The therapeutic limitations of promiscuous GPCR coupling might be overcome through the development of biased agonists – compounds that selectively recruit one intracellular signalling cascade over another4,15,16. This signalling bias has most frequently been expressed in terms of Gα vs β-arrestin signalling17 and has been pursued in the treatment of drug addiction18, and in the context of opioid receptor agonists producing analgesia with reduced respiratory depression4, but not without controversy19. However, while other forms of bias exist, including between individual Gα subunits15,20, the challenge remains in translating GPCR signalling bias observed \textit{in vitro} to tangible, and physiologically- and clinically-relevant, selectivity at native receptors \textit{in vivo}3,4,21,22. Accordingly, while the potential to selectively drive the G protein-coupling of A\textsubscript{1}Rs has been described in several \textit{in vitro} studies23,24,25,26, to date no A\textsubscript{1}R-specific agonist has been reported that can elicit biased agonism at native A\textsubscript{1}Rs in intact physiological systems. To do so would introduce novel therapeutic opportunities across a wide range of debilitating clinical conditions.
Utilising molecular dynamics simulations, and Gαi/o subunit- and β-arrestin-specific cellular signalling assays, we describe how one A1R-selective agonist, BnOCPA27, fulfils the criteria for a biased agonist in exclusively activating Gob among the six members of the Gαi/o family of G protein subunits, and in the absence of β-arrestin recruitment. In addition, through a combination of CNS electrophysiology, physiological recordings of cardiorespiratory parameters, a sensitive assay of attention and locomotor function, and the use of a clinically-relevant model of chronic neuropathic pain, we demonstrate selective activation of native A1Rs and the delivery of potent analgesia without sedation, motor impairment or cardiorespiratory depression. Our data thus demonstrate the translation of agonist bias in vitro to therapeutically-tangible clinically-relevant observations in vivo. Such observations reveal the possibility of achieving agonist bias at native receptors, highlight the physiological benefits of such bias, and specifically speak to the possibility of unlocking the widespread clinical potential of A1R agonists.
RESULTS

The novel A₁R agonist BnOCPA exquisitely discriminates between native pre- and postsynaptic A₁Rs in the intact mammalian CNS.

BnOCPA (Fig. 1A) is a cyclopentyl derivative of adenosine and a highly selective and potent, full agonist at human adenosine A₁Rs (hA₁Rs; Fig. 1B; Supplementary Table 1). BnOCPA binds to the A₁R with an affinity equal to that of prototypical A₁R agonists CPA and NECA, and higher than that of the endogenous agonist adenosine (Fig. 1B; Supplementary Table 1). These initial pharmacological studies at recombinant hA₁Rs in cell lines did not reveal anything extraordinary about BnOCPA. However, when we investigated BnOCPA at native A₁Rs in rat hippocampal slices, against which BnOCPA is also a potent agonist with a 15-fold selectivity against A₂A and A₃Rs (Supplementary Table 2), we discovered properties of BnOCPA that were not consistent with those of typical A₁R agonists such as adenosine, CPA and NECA. In accordance with the effects of standard A₁R agonists, BnOCPA potently inhibited excitatory synaptic transmission in rat hippocampal slices (IC₅₀ ~65 nM; Fig. 1C to G and Supplementary Fig.1A to D), an effect attributable to activation of native presynaptic A₁Rs on glutamatergic terminals (Fig. 1C; Supplementary Fig. 1E, F). However, in stark contrast to adenosine and CPA, BnOCPA did not activate postsynaptic A₁Rs (Fig. 1C) to induce membrane hyperpolarisation, even at concentrations 15 times the IC₅₀ for the inhibition of synaptic transmission (Fig. 1H, I).

This peculiar and unprecedented discrimination between pre- and postsynaptic A₁Rs might possibly be explained in terms of either some hindrance in the binding of BnOCPA to A₁Rs on postsynaptic neurones, or, and unprecedented for an A₁R agonist, binding to the postsynaptic A₁R, but without the ability to activate the receptor. To test the latter hypothesis - that BnOCPA actually bound to postsynaptic A₁Rs, but without efficacy - we reasoned that BnOCPA might behave in a manner analogous to a receptor antagonist in preventing or reversing activation by other A₁R agonists, a property that has been predicted and observed for biased agonists at other receptors. To test this, we pre-applied BnOCPA then applied CPA (in the continued presence of BnOCPA). Remarkably, the co-application of CPA and BnOCPA resulted in a significant reduction of the effects of CPA on membrane potential (Fig. 1I; Supplementary Fig. 2A, B). In addition, membrane hyperpolarisation induced by the endogenous agonist adenosine was reversed by BnOCPA (Supplementary Fig. 2C). To test whether this was a trivial action of BnOCPA in blocking K⁺ channels...
channels mediating the postsynaptic hyperpolarisation, or in some other way non-specifically interfering with G protein signalling, we applied the GABA_B receptor agonist baclofen to CA1 pyramidal neurons. BnOCPA had no effect on membrane hyperpolarisation produced by baclofen (Supplementary Fig. 2D, E), confirming that the actions of BnOCPA were specific to the A₁R. These observations, of a lack of effect of BnOCPA on postsynaptic membrane potential, likely explained why, in a model of seizure activity with prominent postsynaptic depolarisation that promotes neuronal firing, (low Mg²⁺/high K⁺), BnOCPA had little effect (Fig. 1J, K). In contrast, equivalent concentrations of CPA completely suppressed neuronal firing (Fig. 1J, K).

BnOCPA demonstrates unique Gα signalling bias in the selective activation of Gob.

The observation that BnOCPA discriminates between pre- and postsynaptic A₁Rs might be explained if these receptors were to activate different intracellular pathways to mediate their effects, and that BnOCPA was not able to activate the pathway responsible for postsynaptic membrane hyperpolarisation. To test whether the actions of BnOCPA and the prototypical A₁R agonists were mediated via β-arrestins, we used a BRET assay for β-arrestin recruitment (Supplementary Fig. 3). We observed no β-arrestin recruitment at the A₁R using either BnOCPA, CPA or adenosine (Supplementary Fig. 3), observations that are consistent with those previously reported for recombinant A₁Rs expressing native sequences^{30,31,32,33,34}. The lack of β-arrestin recruitment is likely due to the lack of serine and threonine residues in the A₁R cytoplasmic tail, which makes the A₁R intrinsically biased against β-arrestin signalling^{17,35}. Accordingly, the differential actions of BnOCPA at pre- and postsynaptic A₁Rs are more likely to reside in selective activation of one Gα-mediated pathway over another.

To investigate whether BnOCPA has the ability to discriminate among the various Gαi/o subunits activated by adenosine, we generated a recombinant cell system (CHO-K1 cells) expressing both the hA₁R and individual pertussis toxin (PTX)-insensitive variants of individual Gαi/o subunits. In cells treated with PTX to inhibit endogenous Gα_{i/o}^{24,27} we observed that adenosine, CPA, NECA and the novel unbiased agonist HOCPA²⁷ activated a range of Gα_{i/o} subunits, including both Gα_i isoforms, Goa and Gob (Fig. 2A, B, C, D; Supplementary Table 1; Supplementary Figs. 4 & 5). Such promiscuous Gα coupling has been described previously for adenosine, CPA, and NECA at recombinant A₁Rs in cell lines^{23,28,29}. In stark contrast, BnOCPA displayed a unique and highly distinctive Gα_{i/o} subunit activation profile: BnOCPA was not able to activate
Gi1, Gi2, Gi3 or Gz, and was furthermore capable of discriminating between the two Goa isoforms via the selective activation of Gob, and not of Goa (Fig. 2A, B, C, D; Supplementary Fig. 4).

The selective and unique biased activation of Gob among the six Gαi/o subunits by BnOCPA can be observed in a comparison of the activation of Goa and Gob by the A1R agonists in their ability to inhibit the forskolin-stimulated accumulation of cAMP (Fig. 2E). Whereas adenosine, CPA, NECA and HOCPA activate both Goa and Gob to inhibit cAMP accumulation, BnOCPA is selectively biased to the activation of Gob, with no discernible activation of Goa. Further quantification of this bias through the application of the operational model of receptor agonism\(^{36,37,38}\) to remove potential issues of system bias, confirmed selective activation of Gob by BnOCPA, with no detectable response at Goa (Fig. 2F).

To establish the functional implications of BnOCPA’s profound bias for Gob over Goa, we hypothesised that BnOCPA should reduce the actions of adenosine on the inhibition of cAMP accumulation via Goa. This was indeed the case (Fig. 2G): BnOCPA antagonised the Goa-mediated inhibition of cAMP production by adenosine in a concentration-dependent manner that was quantitatively similar (pK\(_i\) ~6.9) to BnOCPA’s ability to bind to the hA1R (pK\(_i\) ~6.6; Fig. 1B). This observation, of the ability of BnOCPA to antagonise the actions of adenosine on cAMP inhibition, revealed no agonism at Goa at concentrations up to 100 μM (>10\(^5\) greater than the IC\(_{50}\) against cAMP accumulation; Fig. 1B), and, moreover, had parallels with the antagonising effects of BnOCPA on membrane potential in the CNS (Fig. 1H, I; Supplementary Fig. 2A, C). These data suggest that BnOCPA has the unique ability of displaying both agonist and antagonist-like properties at both recombinant and native A1Rs; properties that are expected of a true biased agonist.

The data from whole-cell patch-clamp recordings showed that BnOCPA did not influence neuronal membrane potential at native A1Rs (Fig. 1H, I), while experiments in recombinant hA1Rs showed that BnOCPA did not activate Goa (Fig. 2A, C-F). We thus predicted that A1Rs in the hippocampus, where Goo is highly expressed\(^{39,40,41}\), particularly at extra-synaptic sites\(^{42}\), should act via Goa to induce membrane hyperpolarisation. To test this we injected a series of previously validated interfering peptides\(^{43}\) against Goa and Gob into CA1 pyramidal cells during whole-cell voltage clamp recordings. Introduction of the Goa interfering peptide caused a significant attenuation of the adenosine-induced outward current, whereas neither the scrambled peptide nor the Gob peptide had any effect on outward current amplitude (Fig. 2H, I). Thus, membrane potential hyperpolarisation occurs mainly through A1R activation of Goa. The data from
recombinant receptors demonstrating the inability of BnOCPA to activate Goa (Fig. 2A, C-F) thus explains why BnOCPA did not cause membrane hyperpolarisation, and indeed prevented or reversed the hyperpolarisation induced by CPA or adenosine, respectively (Fig. 1H, I; Supplementary Fig. 2A, C).

The signalling bias displayed by BnOCPA is reflected in non-canonical binding modes and a selective interaction with Gαi/o subunits

To understand better the unusual signalling properties of BnOCPA and the highly specific Gα coupling, we carried out dynamic docking simulations to study the basic orthosteric binding mode of BnOCPA in an explicit, fully flexible environment using the active cryo-EM structure of the A1R (PDB code 6D9H; Supplementary Movie 1). We compared BnOCPA to the unbiased agonists adenosine and HOCPA, and an antagonist (PSB36) of the A1R (Fig. 3A-C). BnOCPA engaged the receptor with the same fingerprint as adenosine44 (Fig. 3A) and HOCPA, (Fig. 3B, Supplementary Movie 2). Further explorations of the BnOCPA docked state using metadynamics (MD) simulations revealed interchangeable variations on this fingerprint (namely Modes A, B, and C; Fig. 3D - F; Supplementary Fig. 6) that could be distinguished by the orientation of the BnOCPA-unique benzyl group. Having established the possible BnOCPA binding modes, we examined the respective contribution of the orthosteric agonists, the G protein α subunit α5 (C-terminal) helix (GαCT), and the Gα protein subunit45,46 to the empirically-observed G protein selectivity displayed by BnOCPA (Fig. 2A-F, Supplementary Fig. 4).

Simulations in the absence of G protein. Firstly, following Dror et al.,47 we compared the dynamics of the BnOCPA-bound A1R with the corresponding dynamics of the receptor48,49 bound to either HOCPA (Fig. 3B), the A1R antagonist PSB36 (Fig. 3C), or the apo receptor, our hypothesis being that there may be ligand-dependent differences in the way that the intracellular region of the receptor responds in the absence of the G protein. In these simulations the G protein was omitted so that inactivation was possible and so that the results were not G protein-dependent. The BnOCPA binding Modes A-C were interchangeable during MD simulations (Methods Table 1) but were associated with distinctly different dynamics, as monitored by changes in a structural hallmark of GPCR activation, the N7.49PXXY7.53 motif50 (Supplementary Fig. 7). Given the high flexibility shown by the BnOCPA benzyl group during the simulations and its lipophilic character, we hypothesized and simulated a further binding mode (namely Mode D) not explored during MD simulations. This conformation involves a hydrophobic pocket underneath ECL3 (Fig. 3G) which is responsible for the
A1/A2A selectivity. Superimposition of the four BnOCPA binding Modes A-D reveals the highly motile nature of the benzyl group of BnOCPA (Fig. 3H) under the simulated conditions.

Quantification of the N^{7.49}PXXY^{7.53} dynamics revealed that HOCPA, BnOCPA Mode A, BnOCPA Mode C and the apo receptor show a similar distribution of the RMSD of the conserved N^{7.49}PXXY^{7.53} motif (Fig. 3I; Supplementary Fig. 7). In contrast, the non-canonical BnOCPA binding Modes B and D were responsible for a partial transition of the N^{7.49}PXXY^{7.53} backbone from the active conformation to the inactive conformation (Supplementary Fig. 7) in a manner analogous with the antagonist PSB36 (Fig. 3J). Overall, the simulations revealed Mode D as the most stable BnOCPA pose (6.8 µs out 9 µs simulated starting from this configuration – Methods Table 1), while Mode B accounted for 3.6 µs out of 21 µs.

Dynamic Docking of G_αCT. To simulate the agonist-driven interaction between the A₁R and the G protein, the α5 (C-terminal) helix (G_αCT) of the G protein (Gi2, Goa, Gob) was dynamically docked to the HOCPA- and BnOCPA-bound active A₁R structure (again lacking G protein; Supplementary Movie 3). This allowed us to evaluate the effect of different G_αCT on the formation of the complex with A₁R to test the hypothesis that, of Goa, Gob and Gi2, only the G_αCT of Gob would fully engage with the BnOCPA-bound active A₁R, in line with the empirical observations of G protein selectivity summarized in Fig. 2C, D. Fig. 4A shows that the G_αCT of Gob docked to the A₁R via a metastable state (MS1) relative to the canonical state (CS1; Supplementary Movie 3), regardless of whether HOCPA or BnOCPA was bound. Fig. 4B, C show that the CS1 geometry corresponds to the canonical arrangement as found in the cryo-EM A₁R:Gi protein complex, whereas state MS1 resembles the recently reported non-canonical state observed in the neurotensin receptor, believed to be an intermediate on the way to the canonical state⁵¹. In contrast, Fig. 4D-F show that the G_αCT of Goa and Gi2 docks to the A₁R to form metastable states MS2 and MS3. MS2 is similar to the β₂-adrenergic receptor:GsCT fusion complex⁵², proposed to be an intermediate on the activation pathway and a structure relevant to G protein specificity. In this case however, it appears to be on an unproductive pathway.

MD simulations on the full G protein G_α subunit. To test the hypothesis that the non-functional BnOCPA:A₁R:Goa complex showed anomalous dynamics, we increased the complexity of the simulations by considering the G_α subunit of the Goa and Gob protein bound to the A₁R:BnOCPA (Mode B or D) complex.
or the Gob protein bound to A₁R:HOCPA (a functional system). The most visible differences between Goa (Supplementary Movie 4) and Gob (Supplementary Movie 5) comprised the formation of transient hydrogen bonds between the α4-β6 and α3-β5 loops of Goa and helix 8 (H8) of the receptor (Supplementary Table 3).

Similar contacts are present in the non-canonical state of the neurotensin receptor:Gi protein complex⁵¹. Overall, Goa interacted more with TM3 and ICL2 residues (Fig. 4G, H), while TM5 and TM6, along with ICL1, were more engaged by Gob (Fig. 4G, H). Interestingly, R291^{7.56} and I292^{8.47}, which are located under the N^{7.49}PXXY^{7.53} motif, showed a different propensity to interact with Goa or Gob. In this scenario, it is plausible that a particular A₁R conformation stabilized by BnOCPA (as suggested by the simulations in the absence of G protein, Fig. 3I-J) may favor different intermediate states during the activation process of Goa and Gob.

BnOCPA does not depress heart rate, blood pressure or respiration: evidence for in vivo physiological bias at native A₁Rs.

Given BnOCPA’s clear differential effects in a native physiological system (Fig. 1), strong Gα bias (Fig. 2), unique binding characteristics (Fig. 3) and selective Gα interaction (Fig. 4), we hypothesised that these properties might circumvent a key obstacle to the development of A₁R agonists for therapeutic use - their powerful effects in the cardiovascular system (CVS) where their activation markedly reduces both heart rate and blood pressure⁵³. As these cardiovascular effects are likely through Goa, which is expressed at high levels in the heart^{54,55} and plays an important role in regulating cardiac function³⁹, the lack of effect of BnOCPA on Goa (Fig. 2A-F) predicted that BnOCPA would have minimal effects on the CVS. Moreover, given the antagonism of Goa-mediated actions by BnOCPA at native and recombinant A₁Rs (Fig. 1H, I, Supplementary Fig. 2A, C, Fig. 2G-I), we further predicted that the actions of adenosine on the CVS may be attenuated by BnOCPA.

In initial experiments we screened BnOCPA for its effects on heart rate using an isolated frog heart preparation. In contrast to adenosine and CPA, which depress heart rate through hyperpolarisation caused by activation of cardiac sinoatrial K⁺ channels⁵⁶, BnOCPA had no effect on heart rate, but markedly reduced the bradycardia evoked by adenosine (Supplementary Fig. 8A). Thus, BnOCPA appears not to activate A₁Rs in the heart, but instead behaves like an antagonist in preventing the actions of the endogenous agonist. These observations have parallels with BnOCPA’s inability to activate A₁Rs to hyperpolarise neurones, and indeed inhibiting or reversing the postsynaptic hyperpolarisation induced by typical A₁R agonists (Fig. 1G, H;
Supplementary Fig. 2), and in preventing the A₁R/Goa-mediated inhibition of cAMP accumulation by adenosine (Fig. 2G). Such antagonist-like behaviour may be explained by BnOCPA causing unique A₁R conformations unlike those of conventional agonists (Fig. 3I, J), and driving non-canonical interactions with Goa (Fig. 4).

To investigate the effects of BnOCPA in an intact mammalian system, we measured the influence of BnOCPA on heart rate and blood pressure in urethane-anaesthetised, spontaneously breathing adult rats. As expected, both resting heart rate and arterial blood pressure were significantly reduced by adenosine and CPA (Fig. 5A to D). In complete contrast, BnOCPA had no effect on either heart rate (Fig. 5A, C) or blood pressure (Fig. 5B, D). Moreover, when co-applied with adenosine, BnOCPA abolished the bradycardia induced by adenosine, indicating its ability to bind to the A₁R at the dose applied (Fig. 5A, C; Supplementary Fig. 8B). The rapid early effects of adenosine on blood pressure, likely due to bradycardia, were blocked by BnOCPA, but the slower component was unaffected by BnOCPA (Fig. 5B, D; Supplementary Fig. 8B). Volumes of saline equivalent to the drug injections had no effect on either heart rate or blood pressure and there was no waning in the effects of adenosine responses with repeated doses (Supplementary Fig. 8C, D). Thus, BnOCPA does not appear to act as an agonist at CVS A₁Rs, but instead antagonises the bradycardic effects of A₁R activation on the heart.

Since adverse effects on respiration (dyspnea) limit the use of systemic A₁R agonists⁷, we additionally examined the effects of BnOCPA on respiration. In urethane-anaesthetised, spontaneously breathing adult rats, intravenous injection of the selective A₁R agonist CPA caused significant respiratory depression (Fig. 6A to D). In stark contrast, BnOCPA had no appreciable effect on respiration (Fig. 6A to D).

BnOCPA is a potent analgesic

Our observations of a lack of effect of BnOCPA on the CVS and respiration prompted an investigation into a potential application of A₁R agonists that had previously been severely curtailed by adverse cardiorespiratory events⁷,¹⁴, namely the use of A₁R agonists as analgesics. Since sedation or motor impairment can be mistaken for analgesia, we tested BnOCPA in a sensitive assay for balance and motor coordination, the rotarod, in which the ability of a rodent to remain upon a slowly accelerating rotating cylinder is a measure of alertness and motor function. As a positive control for the sensitivity of the test, we showed that the ability of animals treated with morphine to remain on the rotating cylinder was strongly impaired (Fig. 6E). In contrast,
the performance of animals treated with BnOCPA, delivered either intravenously or intraperitoneally, was indistinguishable from vehicle-treated mice (Fig. 6E). Thus, BnOCPA does not induce sedation or locomotor impairment that could confound interpretations of analgesia.

To assess the potential of BnOCPA as an analgesic, we used a rat model of chronic neuropathic pain (spinal nerve ligation)57 a feature of which is mechanical allodynia whereby the affected limb is rendered sensitive to previously innocuous tactile stimuli. Both intravenous (Fig. 6F) and intrathecal (Fig. 6G) BnOCPA potently reversed mechanical allodynia in a dose-dependent manner. Thus, BnOCPA exhibits powerful analgesic properties at doses devoid of sedative or cardiorespiratory effects, and at several orders of magnitude lower than the non-opioid analgesics pregabalin and gabapentin58.
Discussion

Biased agonists at GPCRs offer great potential for the selective activation of desirable intracellular signalling pathways, while avoiding, or indeed blocking those pathways that lead to adverse or unwanted effects\(^3\),\(^2\),\(^1\). While this, and the potential to exploit previously unattractive drug targets such as the A\(_1\)R, have been appreciated, translation of in vitro observations, particularly of G\(\alpha\) bias, to native receptors in vivo has been problematic\(^3\),\(^4\),\(^2\),\(^1\). Here we have shown that translation of in vitro G\(\alpha\) signalling bias to an intact physiological system is possible. Moreover, this has occurred in the context of the A\(_1\)R, an attractive, but notoriously intractable drug target by virtue of the profound cardiorespiratory consequences of its activation.

Having identified BnOCPA as a biased agonist at recombinant A\(_1\)Rs in vitro, we established that this bias can be translated into the selective activation of native A\(_1\)Rs in both the in vitro CNS and in vivo cardiorespiratory and peripheral nervous systems. Moreover, these properties of BnOCPA were observed at A\(_1\)Rs expressed by three different species: amphibian, rat, and human. While BnOCPA bound to and induced A\(_1\)R coupling to G\(\alpha\)i/o subunits recruited by prototypical A\(_1\)R agonists such as adenosine and CPA, BnOCPA selectively activated Gob among the six G\(\alpha\)i/o subtypes. This likely reflects BnOCPA’s non-canonical binding profile at the A\(_1\)R, which had profound implications for the interaction with the G\(\alpha\)CT in terms of different binding pathways and intermediate states, and in the different intra- and intermolecular hydrogen bond patterns and contacts observed in the simulations of the A\(_1\)R in complex with either Goa (inactive) or Gob (active). These molecular differences are likely to underlie the ability of the BnOCPA-bound A\(_1\)R to selectively trigger Gob activation among the six G\(\alpha\)i/o subtypes.

The unique and unprecedented G protein bias displayed by BnOPCA has physiological importance since it is able to inhibit excitatory synaptic transmission without causing neuronal membrane hyperpolarisation, sedation, bradycardia, hypotension or dyspnea. BnOCPA thus overcomes cardiovascular and respiratory obstacles to the development of adenosine-based therapeutics that have plagued the field since their first description nine decades ago\(^5\),\(^9\). As a first, but significant, step towards this, we demonstrate that BnOCPA has powerful analgesic properties in an in vivo model of chronic neuropathic pain, a condition for which the current treatments are either severely lacking in efficacy\(^6\),\(^0\) or, in the case of opioids, come with unacceptable harms associated with adverse gastrointestinal effects, respiratory depression, tolerance, dependence and abuse potential\(^6\),\(^1\).
We have thus shown that highly selective G protein biased agonism in vitro can be translated into selective activation of native A1Rs to mediate differential physiological effects, and have identified a novel molecule capable of doing so. We have also explored molecular mechanisms by which this could occur, and demonstrated pain as one potential and wide-reaching therapeutic application. Such discoveries are of importance in both understanding GPCR-mediated signalling, and in the generation of both new research tools and therapeutics based on the untapped potential of biased agonists.
Acknowledgements: We gratefully acknowledge the support of the University of Warwick (URSS Awards to SH and JO; Warwick Ventures Proof of Concept Fund awards to MJW & BGF), the Leverhulme Trust (RPG-2017-255, CAR and GL to fund KB and GD), the BBSRC (BB/M00015X/2, GL and BB/M01116X/1, PhD studentship to EH), the MRC (MR/J003964/1; IW) and The Swiss National Science Foundation (PP00P2_146321, MLo). RH is supported by an MRC Discovery Award (MC_PC_15070). CAR is a Royal Society Industry Fellow. We would like to thank Stephen Hill, Stephen Briddon and Mark Soave (University of Nottingham) for gifting the Nluc-tagged adenosine receptor cell lines, the fluorescent antagonist AV039 and technical advice, and Kathleen Caron and Duncan Mackie (University of North Carolina) for the β-arrestin2-YFP construct. We are grateful to Professor Kevin Moffat and the Biochemistry students of the School of Life Sciences at the University of Warwick for access to their frog heart preparations, and to Professor Nick Dale, Dr Mark Wigglesworth, Dr Jens Kleinjung for discussions and comments on draft manuscripts, and Prof Arthur Christopoulos for a pre-publication copy of the adenosine A₁ cryo-EM structure. In vivo studies on neuropathic pain were funded and undertaken by NeuroSolutions Ltd. Illustrative figures were made in ©BioRender - biorender.com.

Author Contributions: Experiments were designed by MJW, RH, CAR, GL, FYZ, DS, BGF, and were performed by MJW, EH, RH, KB, IW, HFW, WI, ED, CH, JO, SH. Compounds were synthesised by MLe, BP, MLo. Molecular docking simulations were carried out by GD and CAR. Work was originally conceived by MJW and BGF. The manuscript was written by MJW and BGF with comments on drafts from EH, RH, MLo, GL, IW, KB, GD, CAR, IM and DS.

Conflict of Interest: The University of Warwick has filed a patent application for uses of BnOCPA. FYZ, HFW and DS are employees and/or hold shares in NeuroSolutions.

Data Availability: The data and materials that support the findings of this study are available from the corresponding author upon reasonable request.

Supplementary Information:
Materials and Methods
Supplementary Figures 1 – 8
Supplementary Tables 1 – 3
Supplementary Movies 1 – 5
References

Fig. 1. BnOCPA discriminates between pre- and postsynaptic A1Rs in the CNS
Fig. 1. BnOCPA discriminates between pre- and postsynaptic A₁Rs in the CNS

A Chemical structures of adenosine, CPA and its derivative, BnOCPA. **B Left panel:** Schematic of the binding of adenosine, CPA and BnOCPA to the human (h) A₁R was measured via their ability to displace [³²P]DPCPX, a selective antagonist for the A₁R, from membranes prepared from CHO-K1-hA₁R cells, and in their ability to elicit Gi/o-mediated inhibition of forskolin-stimulated production of cAMP. **B Middle panel:** CPA and BnOCPA bind with equal affinity to the A₁R (pKᵢ ~6.6), while adenosine has a reduced affinity (pKᵢ ~5; n = 5 - 19 individual repeats). **B: Right panel** cAMP levels were measured in CHO-K1-hA₁R cells following co-stimulation with 1 μM forskolin and each compound (1 pM - 1 μM) for 30 minutes. This identified that all are full agonists at the hA₁R. Adenosine displayed a 10-fold reduced potency compared to CPA and BnOCPA (n = 4 individual repeats). **C** Diagram illustrating **(Left)** pre- and postsynaptic A₁Rs at hippocampal synapses, their physiological effects upon activation, and the panels in Fig. 1 where these effects can be seen (presynaptic: panels D - G; postsynaptic: panels H – K), and **Right**, hippocampal slice preparation showing position of stimulating and recording electrodes and a representative fEPSP (field excitatory postsynaptic potential), which is a product of the electrical stimulation-induced release of glutamate, and the activation of postsynaptic glutamate receptors (not shown). **D** Increasing concentrations of the A₁R agonist CPA reduced the fEPSP, an effect reversed by the A₁R antagonist 8CPT (2 μM). The graph plots the normalised negative slope of the fEPSP, an index of the strength of synaptic transmission, over time. Inset, superimposed fEPSP averages in control (largest fEPSP) and becoming smaller in increasing concentrations of CPA. Scale bars measure 0.2 mV and 5 ms. **E** Concentration-response curve for the inhibition of synaptic transmission by CPA (IC₅₀ = 11.8 ± 2.7 nM; n = 11 slices). **F** Increasing concentrations of BnOCPA reduced the fEPSP, an effect reversed by 8CPT (2 μM). Inset, superimposed fEPSP averages in control and in increasing concentrations of BnOCPA. Scale bars measure 0.1 mV and 2 ms. **G** Concentration-response curve for the inhibition of synaptic transmission by BnOCPA (IC₅₀ = 65 ± 0.3 nM; n = 11 slices). **H** CPA (300 nM) hyperpolarised the membrane potential while BnOCPA (1 μM) had little effect. Scale bars measure 4 mV and 30 s. **I** Summary data for membrane potential changes. The mean hyperpolarisation produced by CPA (300 nM; 7.26 ± 0.86 mV, n = 7 cells) was significantly different (one-way ANOVA; F(2,23) = 70.46; P = 1.55 x 10⁻¹⁰) from that produced by BnOCPA (300 nM - 1 μM; 0.33 ± 0.14 mV, n = 10 and 5 cells, respectively; P = 8.26 x 10⁻¹¹) and for CPA (300 nM) applied in the presence of BnOCPA (300 nM; 2.75 ± 0.48 mV, n = 4 cells, P = 2.89 x 10⁻⁵; See Supplementary Fig. 2A for an example trace). **J** In an *in vitro* model of seizure activity,
represented as frequent spontaneous spiking from baseline, CPA (300 nM) reversibly blocked activity while BnOCPA (300 nM) had little effect. Scale bars measure 0.5 mV and 200 s. K Summary data for seizure activity expressed in terms of the frequency of spontaneous spiking before, during and after CPA or BnOCPA. CPA abolished seizure activity (n = 4) whereas BnOCPA did not significantly reduce seizure frequency (n = 6). Data represented as mean ± SEM; Two-way RM ANOVA (BnOCPA vs CPA slices): F(1, 3) = 186.11, P = 8.52 x10^{-4} with the following Bonferroni post hoc comparisons: BnOCPA vs Control; P = 1; CPA vs control; P = 0.010; BnOCPA vs CPA; P = 0.027. Averaged data is presented as mean ± SEM. ns, not significant; *, P < 0.05; **, P < 0.02; ****, P < 0.0001.
Fig. 2. BnOCPA selectively activates Gob.
Fig. 2. BnOCPA selectively activates Gob.

A cAMP accumulation was measured in PTX-pre-treated (200 ng/ml) CHO-K1-hA₁R cells expressing PTX-insensitive Goa following co-stimulation with 1 μM forskolin and each compound (1 pM - 1 μM) for 30 minutes (n = 6 individual repeats). The data demonstrates that BnOCPA does not activate Goa. B, as for A, but cells were transfected with PTX-insensitive Gob. Adenosine, CPA and BnOCPA all inhibit cAMP accumulation through coupling to Gob (n = 6 individual repeats). Stimulation of cAMP production in A reflects BnOCPA’s activation of endogenous, PTX-resistant Gαs by the A₁R and is in agreement with previous observations for other A₁R agonists (see Supplementary Fig. 4 and23,62,63). C-D Heatmaps summarising E_max (C; %) and potency (D; pEC₅₀; -log [agonist concentration] required for 50 % inhibition of cAMP accumulation) for individual Gα subunit activation by selective A₁R agonists for the inhibition of forskolin-stimulated cAMP production. Data taken from: Adenosine, CPA, BnOCPA Fig. 1, Supplementary Fig. 4; NECA, Supplementary Fig. 4; HOCPA, Supplementary Fig. 5. E The inhibition of cAMP accumulation via A₁R:Goa or A₁R:Gob by A₁R agonists is plotted at each concentration of agonist. No bias (equal activation of Goa and Gob at each concentration) would fall on the line of identity (broken grey line). HOCPA behaves most like an unbiased agonist, with some bias for Gob shown by CPA, and for Goa by adenosine. NECA displays concentration-dependent bias at both Goa and Gob. BnOCPA is highly biased towards Gob, with no activation of Goa. Data presented as mean ± SEM and is replotted from Supplementary Figs. 4 and 5. F Signalling bias for A₁R-Goa and A₁R-Gob (ΔΔ Log (τ/Kₐ)) was determined relative to the natural agonist adenosine using the change in log (τ/Kₐ) ratio for the data in E where τ is the efficacy of each agonist in activating individual A₁R-Gα/o complexes, and where Kₐ is the agonist equilibrium dissociation constant. Compared to adenosine, and unlike NECA, BnOCPA elicits no measurable response (NR) at Goa. G Adenosine’s ability to inhibit cAMP accumulation via its activation of Goa was inhibited by BnOCPA in a concentration-dependent manner, and with a Kᵣ of 113 nM (pKᵣ ~6.9 (n = 4 individual repeats) similar to the binding affinity to the hA₁R pKᵣ ~6.6; Fig. 1B). H Example current traces produced by adenosine (10 μM) in control conditions or in the presence of intracellular Goa interfering peptide (100 µM), scrambled Goa peptide (100 µM) or Gob interfering peptide (100 µM). Scale bars measure 25 pA and 100 s. I Summary data of adenosine-induced outward current
experiments. The mean amplitude of the outward current induced by adenosine (43.9 ± 3.1 pA, n = 8 cells) was significantly reduced (one-way ANOVA; F(3,27) = 13.31, P = 1.60x 10^-5) to 20.9 ± 3.6 pA (n = 10 cells, P = 5.35 x 10^-5) in 100 µM Goa interfering peptide. Neither the scrambled Goa peptide (Goa-SCR; 43.4 ± 2.4 pA, n = 7 cells, P = 1) nor the Gob interfering peptide (37.4 ± 2.2 pA, n = 6 cells, P = 1) significantly reduced the amplitude of the adenosine-induced outward current.

Averaged data is presented as mean ± SEM. ****, P < 0.0001.
Fig. 3. Molecular dynamics simulations reveal that BnOCPA binding modes can uniquely drive both agonist- and antagonist-like intracellular conformations of the A1R.
Fig. 3. Molecular dynamics simulations reveal that BnOCPA binding modes can uniquely drive both agonist- and antagonist-like intracellular conformations of the A1R.

A Adenosine binding pose: N254^{6.55} (Ballesteros-Weinstein superscript enumeration) is engaged in key hydrogen bonds, while important hydrophobic contacts are shown as cyan transparent surfaces (F171^{ECL2} and I274^{7.39}). **B** On the basis of structural similarities and the dynamic docking (Supplementary Movie 2), HOCPA was predicted to bind with a geometry analogous to adenosine; the cyclopentyl group makes further hydrophobic contacts with L253^{6.54}, as shown by simulation. **C** The xanthine scaffold of the antagonist PSB36 makes hydrogen bonds with N254^{6.55} side chains and hydrophobic contacts with F171^{ECL2} and I274^{7.39}. **D** BnOCPA agonist-like binding Mode A (Supplementary Movie 1): the benzyl group orients towards the ECL2 and makes hydrophobic contacts with I175^{ECL2} (and M177^{5.35}) side chains. **E** BnOCPA antagonist-like binding Mode B: the benzyl group orients towards the top of TM5/TM6 and makes hydrophobic contacts with L258^{6.59} side chain. **F** BnOCPA agonist-like binding Mode C: the benzyl group orients towards the top of TM7 and makes hydrophobic contacts with Y271^{7.36} side chain. **G** Binding orientation of BnOCPA in antagonist Mode D: the benzyl group orients under ECL3 and occupies the hydrophobic pocket defined by L253^{6.54}, T257^{6.58}, T270^{7.35}, and L269^{7.34}. Key hydrogen bonds with N254^{6.55} and T277^{7.42} are shown as dotted lines; main hydrophobic contacts are highlighted as cyan transparent surfaces. **H** Extracellular view of the A1R showing the four BnOCPA binding Modes A (cyan), B (magenta), C (green), and D (red) as randomly extracted from the MD simulations. **I, J** Root-mean-square deviation (RMSD) distributions considering the inactive N^{7.49}PXXY^{7.53} motif on the distal part of TM7 as reference. **I** HOCPA (blue broken line), BnOCPA Mode A (cyan curve), BnOCPA Mode C (green curve) and the apo receptor (dark green broken line) have a common distribution centring around the active confirmation of the A1R (orange broken line; Supplementary Fig. 7) leading to A1R signalling. In contrast, **J** PSB36 (black broken line), BnOCPA Mode B (magenta curve) and BnOCPA Mode D (red curve) RMSD values have the tendency to move closer to the inactive N^{7.49}PXXY^{7.53} geometry (leftward shift of the curves towards broken grey line at x = 0) preventing A1R signalling.
Fig. 4. BnOCPA selectively induces canonical activation states at α_1R:Gob, but non-productive metastable states at other Gai/o subunits.
Fig. 4. BnOCPA selectively induces canonical activation states at A₁R:Gob, but non-productive metastable states at other Gαi/o subunits.

A, B, C Dynamic docking of the Gob GαCT (last 27 residues) performed on the BnOCPA-A₁R (black) and the HOCPA-A₁R (magenta) complex, respectively. BnOCPA and HOCPA make productive couplings with the CT of Gob. **A** Frequency distribution of the RMSD of the last 15 residues of Gob GαCT (alpha carbon atoms) relative to the Gi2 GαCT conformation reported in the A₁R cryo-EM structure 6D9H (the 3.6Å resolution of which is indicated by the dashed grey line): the two most probable RMSD ranges, namely canonical state CS1 and metastable state MS1, can be observed. **B, C** Two side views of representative MD frames of the most populated α5 clusters from the states CS1 and MS1. The last 15 residues of Gob GαCT in the CS1 states of both BnOCPA (black) and HOCPA (magenta) resemble the experimental Gi2 bound state (PDB code 6D9H - cyan). The alternative highly populated MS1 state is characterized by a binding geometry similar to the non-canonical Gi intermediate state reported in the neurotensin receptor structure 6OSA (orange). **D, E, F** Dynamic docking of the Goa (red) and Gi2 (blue) GαCT (last 27 residues) performed on the BnOCPA-A₁R complex. BnOCPA makes non-productive couplings with the CTs of Goa and Gi2. **D** Frequency distribution of the RMSD of the Goa (red) and Gi2 (blue) GαCT last 15 residues (alpha carbon atoms) relative to the Gi2 GαCT conformation reported in the A₁R cryo-EM structure 6D9H (the resolution of which, 3.6Å, is indicated by the dashed grey line): the two most probable RMSD ranges are labelled as MS2 and MS3. **E, F** Two side views of representative MD frames of the most populated GαCT clusters from the states MS2 and MS3; the Goa (red) and Gi2 (blue) last 15 residues in the state MS2 overlap well with the putative Gs intermediate state (PDB code 6E67 - green). In the alternative highly populated state MS3, the GαCT helix orients in unique conformations that differ from those previously described. **G, H** For each residue the interaction plotted on the backbone is the difference between the Goa and Gob occupancies in the presence of orthosteric BnOCPA (% of MD frames in which interaction occurred). BnOCPA/A₁R/Goa (inactive coupling) had the tendency to interact more with ICL2, TM3 TM7, and H8 (red), while BnOCPA/A₁R/Gob (active coupling) formed more contacts with TM5 and TM6 (blue).
Fig. 5. BnOCPA does not affect heart rate or blood pressure
Fig. 5. BnOCPA does not affect heart rate or blood pressure

A Examples of heart rate (HR) and B blood pressure traces from a single urethane-anaesthetised, spontaneously breathing rat showing the effects of adenosine (1 mg·kg⁻¹), BnOCPA (8.3 µg·kg⁻¹) and CPA (6.3 µg·kg⁻¹). Adenosine, BnOCPA and CPA were all given as a 350 µL·kg⁻¹ IV bolus. The intravenous cannula was flushed with 0.9% saline (grey diamonds) to remove compounds in the tubing. The overshoot in HR following adenosine applications is likely the result of the baroreflex. Insets are expanded HR and blood pressure responses to adenosine (black trace, boxed region in A and B) and BnOCPA (blue trace and boxed region in A and B). Scale bars measure: HR, 200 BPM and 6 s; blood pressure, 40 mm Hg and 6 s. C, D Summary data for 4 experiments. Data from each rat is shown as a different symbol. Means (± SEM, light grey bars) are connected to indicate the sequential nature of treatments across the four preparations. One-way RM ANOVA for: C HR, Greenhouse-Geisser corrected F(2.33, 7.00) = 68.27, P = 2.07 x 10⁻⁵; D mean arterial blood pressure (MAP), Greenhouse-Geisser corrected F(1.84, 5.52) = 10.51, P = 0.014; with the following Bonferroni post hoc comparisons: The resting HR of 432 ± 21 BPM was significantly reduced to 147 ± 12 BPM (~66 %, P = 2.76 x10⁻¹¹) by adenosine. BnOCPA had no significant effect on HR (~6%, 442 ± 20 vs 416 ± 21 BPM; P = 1) but prevented the bradycardic effects of adenosine (P = 2.71 x10⁻⁹ vs adenosine) when co-injected (mean change 51 ± 4 BPM; ~12 %; P = 0.67). CPA significantly decreased HR (from 408 ± 17 to 207 ± 29 BPM; ~50 %, P = 1.85 x10⁻⁸), a decrease that was not significantly different to the effect of adenosine (P = 0.12), but was significantly different to the effect of both BnOCPA (P = 9.00 x 10⁻⁹) and adenosine in the presence of BnOCPA (P = 6.69 x10⁻⁷). The resting MAP (86 ± 9 mm Hg) was significantly reduced by adenosine (~47 %, 46 ± 4 mm Hg; P = 0.001). BnOCPA had no significant effect on its own on MAP (88 ± 11 vs 85 ± 13 mm Hg; P = 1) and did not prevent adenosine in lowering MAP to a value similar to adenosine on its own (51 ± 4 mm Hg; P = 1 vs adenosine; P = 0.012 vs BnOCPA alone). CPA significantly decreased MAP (from 83 ± 8 to 51 ± 5 mm Hg; P = 0.017), a decrease that was not significantly different to the effect of adenosine in the absence or presence of BnOCPA (P = 1 for both). ns, not significant; **, P < 0.02; ***, P < 0.001; ****, P < 0.0001.
Fig. 6 BnOCPA is a potent analgesic without causing respiratory depression or sedation.
Fig. 6 BnOCPA is a potent analgesic without causing respiratory depression or sedation

A examples of tracheal airflow, respiratory frequency (f), tidal volume (V_T) and minute ventilation (V_E) from a single urethane-anaesthetised, spontaneously breathing rat showing the lack of effect of BnOCPA on respiration and the respiratory depression caused by CPA. BnOCPA and CPA were given as a 350 μL·kg$^{-1}$ IV bolus at the times indicated by the vertical broken lines (BnOCPA, 8.3 μg/kg, blue; CPA, 6.3 μg·kg$^{-1}$, red). Grey diamonds indicate spontaneous sighs. Scale bars measure: 180 s and: airflow, 0.5 mL; f, 50 breaths per minute (BrPM); V_T, 0.25 mL; V_E, 50 mL/min. B, C, D Summary data for 8 anaesthetised rats. Data from each rat is shown before and after the injection of BnOCPA (blue squares and broken lines) and CPA (red circles and broken lines) together with the mean value for all animals (solid lines) for f, V_T and V_E, respectively. One-way RM ANOVA: For:

B, f, Greenhouse-Geisser corrected $F(1.20, 8.38) = 30.4$, $P = 3.48 \times 10^{-4}$; C, V_T, $F(3, 21) = 15.9$, $P = 1.25 \times 10^{-5}$, and D, V_E, Greenhouse-Geisser corrected $F(1.19, 8.34) = 15.77$, $P = 0.003$, with the following Bonferroni post hoc comparisons: Following BnOCPA, f (149 ± 12 BrPM), V_T (1.0 ± 0.1 mL), and V_E (152 ± 26 ml/min) were not altered ($P = 1$) compared to resting values f (149 ± 12 BPM), V_T (1.0 ± 0.1 mL), and V_E (152 ± 26). In contrast to CPA, which reduced f (108 ± 10 BrPM), V_T (0.8 ± 0.1 mL), and V_E (99 ± 19 ml/min) compared to resting values f (143 ± 11 BrPM; $P = 4.05 \times 10^{-6}$), V_T (1.1 ± 0.1 mL; $P = 2.58 \times 10^{-5}$), and V_E (155 ± 28; $P = 5.52 \times 10^{-5}$). Whilst the control resting values before administration of BnOCPA and CPA were not different to one another ($P = 1$). The effects of CPA were significantly greater than BnOCPA for f ($P = 4.48 \times 10^{-7}$), V_T ($P = 1.15 \times 10^{-4}$), and V_E ($P = 1.16 \times 10^{-4}$). Horizontal significance indicators above the data show differences between resting values and following IV administration of either BnOCPA (blue line) or CPA (red line). Vertical significance indicators show differences between the effects of BnOCPA and CPA. E BnOCPA does not induce sedation or affect motor function. BnOCPA was administered IV ($n = 6$) or intraperitoneally (IP; $n = 6$) at 10 μg/kg as per the maximum dose used in the neuropathic pain study (Fig. 6F). Morphine ($n = 6$) was administered at 15 mg/kg subcutaneously as a positive control for sedation and motor impairment. Saline ($n = 6$) was administered subcutaneously at the same volume as the morphine injection. Rats were tested on the rotarod over a period of 5 hours after injection. BnOCPA did not affect motor function at analgesic doses. Data points are presented as mean ± SEM and are offset for clarity. F, G BnOCPA alleviates mechanical allodynia in a spinal nerve ligation (Chung)
model of neuropathic pain when administered via an IV or intrathecal (IT) route. Prior to surgery (pre-surg) animals had similar sensitivity to tactile stimulation as assessed by Von Frey hair stimulation. Spinal nerve ligation subsequently caused hypersensitivity to touch (mechanical allodynia) as evidenced by the reduction in the tactile pressure necessary to elicit paw withdrawal (paw withdrawal threshold; PWT) at 1 week after surgery. PWT reaches a similar nadir across all groups prior to vehicle or BnOCPA infusion (pre-dose). Administration of BnOCPA significantly increased PWT in the limb ipsilateral to the site of injury, in a dose-dependent manner (one-way ANOVA (pre-dose, 1, 2 and 4 hrs) for IV BnOCPA: F(3,80) = 37.3, P = 3.44 x 10^-15; for IT BnOCPA (3,76) = 47.0, P = 0). Fisher LSD post-hoc comparisons showed significant differences at: IV 3 ug/kg at 1, 2 and 4 hrs, P = 0.044, 0.008 and 0.019, respectively, and 10 ug/kg at 1, 2 and 4 hrs, P = 1.37 x 10^-8, 6.81 x 10^-14 and 3.23 x 10^-4, respectively; IT 1 nmol at 1 and 2 hrs, P = 0.001 and 4.16 x 10^-5, respectively, and 10 nmol at 1, 2 and 4 hrs, P = 9.52 x 10^-11, 1.42 x 10^-11 and 1.41 x 10^-8, respectively. Averaged data (n = 6 per treatment, except for 1 nmol BnOCPA, n = 5) is presented as mean ± SEM. ns, not significant; *, P < 0.05; **, P < 0.02; ***, P < 0.001; ****, P < 0.0001.
Supplementary Data for:

A biased adenosine A₁R agonist elicits analgesia without cardiorespiratory depression

Mark J. Wall, Emily Hill, Robert Huckstepp, Kerry Barkan, Giuseppe Deganutti, Michele Leuenberger, Barbara Preti, Ian Winfield, Haifeng Wei, Wendy Imlach, Eve Dean, Cherise Hume, Stephanie Hayward, Jess Oliver, Fei-Yue Zhao, David Spanswick, Christopher A. Reynolds, Martin Lochner, Graham Ladds and Bruno G. Frenguelli

Correspondence and requests for materials should be addressed to

Mark.Wall@warwick.ac.uk

Supplementary Figures 1 –8
Supplementary Tables 1 –3
Supplementary Movies 1 –5
Supplementary References 1 - 3
Supplementary Table 1 Human A₁R agonist binding and inhibition of cAMP production

<table>
<thead>
<tr>
<th>Human A₁R</th>
<th>Binding pKᵢᵃ</th>
<th>cAMP inhibition pIC₅₀ᵇ</th>
<th>Rangeᶜ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenosine</td>
<td>5.02 ± 0.10</td>
<td>8.45 ± 0.2</td>
<td>55.7 ± 4.0</td>
</tr>
<tr>
<td>CPA</td>
<td>6.65 ± 0.14***</td>
<td>9.26 ± 0.3***</td>
<td>48.97 ± 0.7</td>
</tr>
<tr>
<td>NECA</td>
<td>6.45 ± 0.06***</td>
<td>9.05 ± 0.2***</td>
<td>34.33 ± 4.0</td>
</tr>
<tr>
<td>HOCPA</td>
<td>5.81 ± 0.16***</td>
<td>9.08 ± 0.1**</td>
<td>60.52 ± 1.5</td>
</tr>
<tr>
<td>BnOCPA</td>
<td>6.47 ± 0.11***</td>
<td>9.17 ± 0.3***</td>
<td>49.0 ± 0.66</td>
</tr>
</tbody>
</table>

Supplementary Table 2 Binding affinities at rat A₁R, A₂AR and A₃R

<table>
<thead>
<tr>
<th>Rat Adenosine Receptors</th>
<th>rA₁R pKᵢᵈ</th>
<th>rA₂AR pKᵢᵈ</th>
<th>rA₃R pKᵢₑ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenosine</td>
<td>5.41 ± 0.18</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>CPA</td>
<td>6.80 ± 0.14***</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>NECA</td>
<td>6.32 ± 0.13***</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>HOCPA</td>
<td>6.27 ± 0.14***</td>
<td>4.86 ± 0.12</td>
<td>6.17 ± 0.02</td>
</tr>
<tr>
<td>BnOCPA</td>
<td>6.25 ± 0.16**</td>
<td>5.03 ± 0.11</td>
<td>5.01 ± 0.12</td>
</tr>
</tbody>
</table>

Average data ± SEM of 4 - 19 individual replicates

ᵃ Negative logarithm of agonist concentration displacing 50% bound [³H]-DPCPX
ᵇ Negative logarithm of agonist concentration producing half-maximal response
ᶜ Range of response observed upon agonist stimulation, as a percentage of response obtained upon stimulation with 10 μM forskolin
ᵈ Negative logarithm of agonist concentration displacing 50% bound CA200645
ᵉ Negative logarithm of agonist concentration displacing 50% bound AV039

Statistical difference between each agonist and adenosine was calculated using a one-way ANOVA with Dunnett’s post-test (** P < 0.01; *** P < 0.001).
Supplementary Fig. 1. A₁R agonists inhibit excitatory synaptic transmission at hippocampal synapses.

A, Increasing concentrations of adenosine reduced fEPSP slope, an effect reversed by the A₁R antagonist 8CPT (2 μM). Inset, superimposed fEPSP averages in control and in increasing concentrations of adenosine. Scale bar measures 5 ms and 0.25 mV.

B, Concentration-response curve for adenosine (IC₅₀ = 20 ± 4.3 μM, n = 11 slices) and for adenosine with 2 μM 8CPT (IC₅₀ = 125 ± 10 μM n = 5 slices).

C, Increasing concentrations of the A₁R agonist NECA reduced fEPSP slope, an effect reversed by 8CPT (2 μM). Inset, superimposed fEPSP averages in control and in increasing concentrations of NECA. Scale
bar measures 5 ms and 0.25 mV. D, Concentration-response curve for NECA (IC$_{50}$ = 8.3 ± 3 nM, n = 11 slices). E, Example of average (5 traces) superimposed paired-pulse fEPSP waveforms (50 ms inter-pulse interval) in control (black trace) and in the presence of BnOCPA (100 nM; blue trace). The fEPSP waveforms have been normalised to the amplitude of the first fEPSP in control. BnOCPA increased paired-pulse facilitation, indicative of a BnOCPA-induced reduction in the probability of glutamate release. F, Data summary. For a paired-pulse interval of 50 ms, the paired-pulse ratio was significantly increased (one-way ANOVA; F(2, 14) = 21.72; P = 5.11 x 10^{-5}) from 1.88 ± 0.07 in control (n = 6 slices) to 2.41 ± 0.07 in BnOCPA (n = 6 slices, P = 5.17 x 10^{-5}) and 2.27 ± 0.03 in CPA (60 nM; n = 5, P = 0.001). Averaged data is presented as mean ± SEM. ***, P < 0.001; ****, P < 0.0001.
Supplementary Fig. 2. Selective action of BnOCPA on membrane hyperpolarisation induced by prototypical A₁R agonists versus that induced by the GABAAβ receptor agonist baclofen.

A, Membrane potential trace recorded from a CA1 pyramidal cell. BnOCPA (300 nM) reduced the effect of CPA (300 nM; quantified in main text Fig. 1H). B, The same solution of BnOCPA (300 nM), which had no effect on membrane potential, abolished synaptic transmission in a sister slice (inhibition fitted with a single exponential; $\tau = 2.2$ mins). C, BnOCPA reversed the hyperpolarising effect of adenosine (100 µM; similar observations were made in 3 other cells), which (lower trace) cannot be accounted for by fatigue of adenosine-mediated hyperpolarisation (similar observations of sustained hyperpolarisations to adenosine were made in 2 other cells). D, Application of baclofen (10 µM) in the presence of BnOCPA (300 nM) hyperpolarised the membrane potential (from -67 to -74 mV). Scale bars measure 5 mV and 50 s (CPA), 200 s (adenosine) or 100 s (baclofen). E, Data summary of baclofen/BnOCPA experiments. The mean hyperpolarisation produced by baclofen in the presence of BnOCPA was not significantly different (unpaired t-test) from that produced by baclofen in control conditions (6.5 ± 0.43 mV vs 6.3 ± 0.76 mV, $P = 0.774$, $n = 5 - 6$ cells for each condition). Bar chart displays individual data points and mean ± SEM.
Supplementary Fig. 3. Prototypical and atypical A₁R agonists display differing Gαi/o activation profiles.

The ability of adenosine, BnOCPA, CPA and NECA to activate each individual Gαi/o/z subtype was determined in CHO-K1-hA₁R cells, transfected with PTX-insensitive G proteins. cAMP levels were measured following 30 minute co-stimulation with 100 nM forskolin and each agonist. Adenosine displayed an ability to inhibit cAMP production via activation of Gα2, Gαo, Gob, and Gz; CPA and NECA via Gα2, Gαo and Gob, and BnOCPA exclusively via Gob. Data represented as the average level of cAMP production relative to that observed upon stimulation with 100 nM forskolin, ± SEM, of n = 4 - 6 individual replicates. Stimulation of cAMP production reflects activation of endogenous Gs by the A₁R and is in agreement with previous observations¹,²,³.
Supplementary Fig. 4. HOCPA does not show Gα signalling bias and does not discriminate between pre- and postsynaptic A1Rs.

A. Chemical structure of HOCPA. B, Binding of HOCPA was measured via its ability to displace [3H]DPCPX from CHO-K1-hA1R cells membranes. C, The ability of HOCPA to inhibit forskolin-stimulated (100 nM) cAMP production in PTX pre-treated (200 ng/ml) CHO-K1-hA1R cells, transfected with PTX-insensitive Gi1, Gi2, Gi3, Goa, Gob or Gz. In contrast to BnOCPA, HOCPA shows no bias between Goa and Gob. All data are presented as mean ± SEM, of n = 4 - 5 individual replicates. D, Example membrane potential trace. HOCPA (300 nM) induced hyperpolarisation (mean hyperpolarisation 5.3 ± 0.5 mV, n = 6 cells). Scale bars measure 5 mV and 50 s. E, Graph plotting normalised fEPSP slope against time for a single experiment. HOCPA caused a ~80 % reduction in fEPSP slope, which was reversed by the A1R antagonist 8CPT (4 µM). Similar results were observed in 4 slices.
Supplementary Fig. 5. β-arrestin2 recruitment to the A₁R or A₃R.

Interaction was detected using BRET between a C-terminally tagged Nluc GPCR (A₁R or A₃R) and β-arrestin2 C-terminal tagged with Venus-YFP. Note lack of β-arrestin2 recruitment to the A₁R either by adenosine, CPA or BnOCPA, which yields BRET signals comparable to the vector control experiments (pcDNA3.1). A₃R recruitment of β-arrestin2 is provided as a positive control for the BRET assay.
Supplementary Fig. 6. Energy surfaces obtained from metadynamics simulations of BnOCPA.

Energy surface obtained by integrating the Gaussian terms deposited during three well-tempered metadynamics replicas (panels A, B and C). X axes report the distance between the E172ECL2 carboxyl carbon and the positively charged K265ECL3 nitrogen atom; Y axes indicate the dihedral angle formed by the 4 atoms linking BnOCPA cyclopentyl ring to the phenyl moiety. The three energy minima (A, B and C) correspond to the three binding modes proposed for BnOCPA (Modes A, B, C in Fig. 3D to F, respectively).
Supplementary Fig. 7. The conserved NPXXY motif (N^{7.49} PIV Y^{7.53}) in the A_1R.

The root mean square deviation (RMSD) was computed with respect to the A_1R inactive conformation. Compared to the inactive conformation (grey), in the active state (orange) the distal portion of TM7 is moved towards the TM bundle core (which is responsible for G protein binding). Starting from the active conformation (orange) and in absence of bound G protein, simulations should allow the structure to partially relax towards the inactive state (grey) with a dynamic influenced by the orthosteric ligand.
Supplementary Table 3

Transient hydrogen bonds between α4-β6 loop residue 317 (N317 in Goa, H317 in Gob), the α3-β5 loop residue D263, and the residue on H8 of the A1R (Ballesteros Weinstein enumeration in superscript).

<table>
<thead>
<tr>
<th>A1R - Gα Interactions</th>
<th>Coupling Systems</th>
<th>Non-coupling Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Occupancy (%frames)</td>
<td>Occupancy (%frames)</td>
</tr>
<tr>
<td>A1R - Gα hydrogen bond</td>
<td>BnOCPA mode D:Gob</td>
<td>BnOCPA mode B:Gob</td>
</tr>
<tr>
<td>H317-Q293³.48</td>
<td>1.7</td>
<td>0.5</td>
</tr>
<tr>
<td>D263-Q293³.48</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>K296³.48-D263</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>R296³.51-D263</td>
<td>0.1</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Supplementary Fig. 8. Actions of BnOCPA on frog heart rate and controls for anesthetised rat experiments.
Supplementary Fig. 8. Actions of BnOCPA on frog heart rate and controls for anesthetised rat experiments.

A, Data summary for 3 - 4 isolated frog heart preparations. Application of adenosine (30 µM) reduced heart rate (HR) from 41.8 ± 1.3 BPM to 35.5 ± 1.3 BPM. BnOCPA (300 nM) had no effect on HR (42.8 ± 1.2 BPM vs 42.1 ± 1.2 BPM; change 0.6 ± 0.2 BPM), an effect that was significantly different from that of adenosine (blue line; P = 2.22 x 10^{-5}). BnOCPA significantly (cyan line; P = 1.31 x 10^{-5}) reduced the effects of subsequent adenosine applications (from a reduction of 6.3 ± 0.6 BPM to 0.3 ± 0.2 BPM). CPA (300 nM) reduced HR by 6.1 ± 0.1 BPM, a value similar to that of adenosine. One way ANOVA on the difference in HR across the 4 conditions (F(3,9) = 64.64; P = 2.070 x 10^{-6}), with the reported Bonferroni-corrected P values. **B**, Representative traces from a urethane-anaesthetised, spontaneously breathing rat. BnOCPA blocks the effect of adenosine on heart rate (left traces), but only prevents the early phase of adenosine-induced hypotension (right trace). Data taken from the trace in Fig. 5. Scale bars measure 100 BPM or 20 mm Hg and 6 s. **C**, Data summary for 3 urethane-anaesthetised, spontaneously breathing rats. Bar charts showing that injection of 0.9 % saline (equivalent volume to drug experiments) had no effect (paired t-test) on either HR (P = 1) or mean arterial blood pressure (MAP; P = 0.422). **D**, Data summary for 3 urethane-anaesthetised, spontaneously breathing rats. Repeated adenosine injections have the same significant effect on HR (P = 1.40 x 10^{-4} and 1.02 x 10^{-4}, respectively) and MAP (P = 0.012 and 0.008, respectively) and thus show no run down. One-way RM ANOVA for both HR (Greenhouse-Geisser corrected F(1.97,3.94) = 96.79, P = 4.48 x 10^{-4}, and MAP (F(1.10,2.20) = 19.46, P = 0.040) from 3 animals. In **C** and **D**, each symbol represents data from a single rat. ns, not significant; **, P < 0.02; $$$, P < 0.001; $$$$, P < 0.0001.
Supplementary Movies 1 - 5

Supplementary Movie 1

Molecular dynamics dynamic docking simulation of BnOCPA binding to the apo A1R
Extracellular (left) and orthogonal (right) views of BnOCPA (stick and transparent sphere representation) simulation of binding to the apo A1R (white ribbon). Protein residues within 4 Å from the ligand atoms are shown (stick representation). Hydrogen bonds are highlighted as red dotted lines. Soon after it reached the orthosteric site, BnOCPA engaged N254 in a bi-dentate hydrogen bond. The ribose moiety, initially involved in an intramolecular hydrogen bond with the purine ring, interacts with side chains of internal residues, such as the key residue for receptor activation, T277. The benzyl moiety initially explores binding mode A, then moves to mode B (after about 720 ns).

Supplementary Movie 2

Molecular dynamics dynamic docking simulation of HOCPA binding to the apo A1R
Extracellular (left) and orthogonal (right) views of HOCPA (stick and transparent sphere representation) simulated binding to the apo A1R (white ribbon). Protein residues within 4 Å from the ligand atoms are shown (stick representation). Hydrogen bonds are highlighted as red dotted lines. Soon after it entered into the orthosteric site, HOCPA engaged N254 in a bi-dentate hydrogen bond. In analogy to BnOCPA (Extended Data Movie 2) the ribose moiety, initially involved in an intramolecular hydrogen bond with the purine ring, interacts with side chains of inner located residues, such as the key residue for receptor activation T277. Further hydrogen bonds are formed between the cyclopentyl hydroxyl group and the ionic bridge between E172ECL2 and K265ECL3.

Supplementary Movie 3

Molecular dynamics dynamic docking simulation of the Gob GαCT to the BnOCPA:A1R complex. Intracellular view of the A1R (white ribbon and transparent surface) during the binding simulations of Gob GαCT (also denoted as H5 – black ribbon). The transparent ribbon shows the position of the Gi2 GαCT as reported in the cryo-EM A1R structure 6D9H. The supervision algorithm is switched off after about 43 ns of productive simulation.
Supplementary Movie 4

Molecular dynamics simulation of the BnOCPA:A₁R:Goa(α subunit) complex. Intracellular view of the A₁R (white ribbon and cyan stick representation) bound to the Goa α subunit (orange ribbon and green stick representation) during one MD replica. After about 300 ns of simulation the system undergo a conformational transition characterized by transient hydrogen bonds between the receptor H8 (Q293 and R296) and the Goa residues located on the α3-β5 (D263) and α4-β6 (N317) loops.

Supplementary Movie 5

Molecular dynamics simulation of the BnOCPA:A₁R:Gob(α subunit) complex. Intracellular view of the A₁R (white ribbon and cyan stick representation) bound to the Gob α subunit (orange ribbon and green stick representation) during one MD replica. The system shows lower flexibility than BnOCPA:A₁R:Goa. Stable interactions between the Gob α3-β5 loop and the α5 (GaCT) positively charged K347 and R350 occurs.

Supplementary Figures References

Methods for:

A biased adenosine A₁R agonist elicits analgesia without cardiorespiratory depression

Mark J. Wall, Emily Hill, Robert Huckstepp, Kerry Barkan, Giuseppe Deganutti, Michele Leuenberger, Barbara Preti, Ian Winfield, Haifeng Wei, Wendy Imlach, Eve Dean, Cherise Hume, Stephanie Hayward, Jess Oliver, Fei-Yue Zhao, David Spanswick, Christopher A. Reynolds, Martin Lochner, Graham Ladds and Bruno G. Frenguelli

Correspondence and requests for materials should be addressed to

Mark.Wall@warwick.ac.uk

Materials and Methods
Materials and Methods

Approvals. All experiments involving animals were conducted with the knowledge and approval of the University of Warwick Animal Welfare and Ethical Review Board, and in accordance with the U.K. Animals (Scientific Procedures) Act (1986) and the EU Directive 2010/63/EU. In vivo cardiorespiratory studies were conducted under the auspices of UK PPL 70/8936 and the chronic neuropathic pain studies under the auspices of P9D9428A9.

Preparation of hippocampal slices. Sagittal slices of hippocampus (300-400 µm) were prepared from male Sprague Dawley rats, at postnatal days 12-20. Rats were kept on a 12-hour light-dark cycle with slices made 90 minutes after entering the light cycle. In accordance with the U.K. Animals (Scientific Procedures) Act (1986), rats were killed by cervical dislocation and then decapitated. The brain was removed, cut down the midline and the two sides of the brain stuck down to a metal base plate using cyanoacrylate glue. Slices were cut along the midline with a Microm HM 650V microslicer in cold (2-4°C) high Mg2+, low Ca2+ aCSF, composed of (mM): 127 NaCl, 1.9 KCl, 8 MgCl\textsubscript{2}, 0.5 CaCl\textsubscript{2}, 1.2 KH\textsubscript{2}PO\textsubscript{4}, 26 NaHCO\textsubscript{3}, 10 D-glucose (pH 7.4 when bubbled with 95% O\textsubscript{2} and 5% CO\textsubscript{2}, 300 mOsm). Slices were stored at 34°C for 1-6 hours in aCSF (1 mM MgCl\textsubscript{2}, 2 mM CaCl\textsubscript{2}) before use.

Extracellular recording. A slice was transferred to the recording chamber, submerged in aCSF and perfused at 4-6 ml·min-1 (32 ± 0.5°C). The slice was placed on a grid allowing perfusion above and below the tissue and all tubing was gas tight (to prevent loss of oxygen). An aCSF-filled glass microelectrode was placed within stratum radiatum in area CA1 and recordings were made using either a differential model 3000 amplifier (AM systems, WA USA) or a DP-301 differential amplifier (Warner Instruments, Hampden, CT USA). Field excitatory postsynaptic potentials (fEPSPs) were evoked with either an isolated pulse stimulator model 2100 (AM Systems, WA) or ISO-Flex (AMPI, Jerusalem, Israel). For fEPSPs a 10-20 minute baseline was recorded at a stimulus intensity that gave 40-50% of the maximal response. Signals were acquired at 10 kHz, filtered at 3 kHz and digitised on line (10 kHz) with a Micro CED (Mark 2) interface controlled by Spike software (Vs 6.1, Cambridge Electronic Design, Cambridge UK) or with WinLTP2. For fEPSP slope, a 1 ms linear region after the fibre volley was measured. Extracellular recordings were made independently on
two electrophysiology rigs. As the data obtained from each rig was comparable both sets of data have been pooled.

Seizure model. Seizure activity was induced in hippocampal slices using nominally Mg$^{2+}$-free aCSF that contained no added Mg$^{2+}$ and with the total K$^+$ concentration increased to 6 mM with KCl. Removal of extracellular Mg$^{2+}$ facilitates depolarisation via glutamate N-methyl-D-aspartate (NMDA) receptor activation. Increasing the extracellular concentration of K$^+$ depolarises neurons leading to firing and release of glutamate to sustain activity. Both the increase in K$^+$ concentration and removal of Mg$^{2+}$ are required to produce spontaneous activity in hippocampal slices3. Spontaneous activity was measured with an aCSF-filled microelectrode placed within stratum radiatum in area CA1.

Whole-cell patch clamp recording from hippocampal pyramidal cells. A slice was transferred to the recording chamber and perfused at 3 ml·min$^{-1}$ with aCSF at 32 ± 0.5°C. Slices were visualized using IR-DIC optics with an Olympus BX151W microscope (Scientifica) and a CCD camera (Hitachi). Whole-cell current- and voltage-clamp recordings were made from pyramidal cells in area CA1 of the hippocampus using patch pipettes (5–10 MΩ) manufactured from thick walled glass (Harvard Apparatus, Edenbridge UK) and containing (mM): potassium gluconate 135, NaCl 7, HEPES 10, EGTA 0.5, phosphocreatine 10, MgATP 2, NaGTP 0.3 and biocytin 1 mg ml$^{-1}$ (290 mOsm, pH 7.2). Voltage and current recordings were obtained using an Axon Multiclamp 700B amplifier (Molecular Devices, USA) and digitised at 20 KHz. Data acquisition and analysis was performed using Pclamp 10 (Molecular Devices, USA). For voltage clamp experiments, CA1 pyramidal cells were held at -60 mV. Peptides to interfere with G protein signalling were introduced via the patch pipette into the recorded cell. The cell was held for at least 10 minutes before adenosine (10 µM) was added to induce an outward current.

Frog heart preparation. Young adult male *Xenopus leavis* frogs were obtained from Portsmouth Xenopus Resource Centre. Frogs were euthanized with MS222 (0.2 % at a pH of 7), decapitated and pithed. The animals were dissected to reveal the heart and the pericardium was carefully removed. Heart contractions were measured with a force transducer (AD instruments). Heart rate
was acquired via a PowerLab 26T (AD instruments) controlled by LabChart 7 (AD instruments). The heart was regularly washed with Ringer solution and drugs were applied directly to the heart.

In vivo anaesthetised rat preparation for cardiorespiratory recordings: Anaesthesia was induced in adult male Sprague Dawley rats (230-330 g) with isofluorane (2-4%; Piramal Healthcare). The femoral vein was catheterised for drug delivery. Anaesthesia was maintained with urethane (1.2-1.7 g·kg\(^{-1}\); Sigma) in sterile saline delivered via the femoral vein catheter. Body temperature was maintained at 36.7°C via a thermocoupled heating pad (TCAT 2-LV; Physitemp). The trachea was cannulated and the femoral artery catheterised, and both were connected to pressure transducers (Digitimer) to record respiratory airflow and arterial blood pressure, respectively. Blood pressure and airflow signals were amplified using the NeuroLog system (Digitimer) connected to a micro1401 interface and acquired on a computer using Spike2 software (Cambridge Electronic Design). Arterial blood pressure recordings were used to derive heart rate (HR: beats·minute\(^{-1}\); BPM), and to calculate mean arterial blood pressure (MAP: Diastolic pressure + ⅓[(Systolic Pressure - Diastolic pressure)]. Airflow measurements were used to calculate: tidal volume (V\(_T\); mL; pressure sensors were calibrated with a 3 mL syringe), and respiratory frequency (f; breaths·min\(^{-1}\); BrPM). Minute ventilation (V\(_E\); mL·min\(^{-1}\)) was calculated as f x V\(_T\).

Cardiovascular and respiratory parameters were allowed to stabilise before experiments began. A\(_1\)R agonists were administered by intravenous (IV) injection and the changes in HR, MAP, f, V\(_T\), and V\(_E\) were measured. In pilot studies, the optimal dose of adenosine was determined by increasing the dose until robust and reliable changes in HR and MAP were produced (1 mg·kg\(^{-1}\)). The dose of CPA was adjusted until equivalent effects to adenosine were produced on HR and MAP (6.3 µg·kg\(^{-1}\)). For BnOCPA we initially used 5 µg·kg\(^{-1}\), but saw no agonist effect on HR and MAP. To ensure this was not a false negative we increased the dose of BnOCPA (8.3 µg·kg\(^{-1}\)), which still gave no agonist effect on HR and MAP. However, as BnOCPA produced an antagonistic effect when co-administered with adenosine (Fig. 5; Supplementary Fig. 8B), it must have reached A\(_1\)Rs at a high enough concentration to be physiologically active. These observations confirmed that the lack of agonistic effects on HR and MAP were not due to a type II error. 8.3 µg·kg\(^{-1}\) BnOCPA was used for all further experiments. All injections were administered IV as a 350 µl·kg\(^{-1}\) bolus.
In the experimental study, rats received an injection of adenosine. After cardiorespiratory parameters returned to baseline (5-10 minutes) rats were given BnOCPA. After allowing sufficient time for any effect of BnOCPA to be observed, rats received adenosine with BnOCPA co-administered in a single injection. After cardiorespiratory parameters returned to baseline, rats were injected with CPA.

To check that the volume of solution injected with each drug did not itself induce a baroreflex response leading to spurious changes in cardiorespiratory responses, equivalent volumes of saline (0.9 %) were injected. These had no effect on either heart rate or MAP (Supplementary Fig. 8C). To confirm that repeated doses of adenosine produced the same response and that the responses did not run-down, rats were given two injections of adenosine (1 mg·kg⁻¹). There was no significant difference in the changes in cardiovascular parameters produced by each adenosine injection (Supplementary Fig. 8D).

An additional series of experiments (n = 4) were undertaken to directly compare BnOCPA and CPA on respiration. Adult male Sprague Dawley rats (400-500 g) were anaesthetised with urethane and instrumented as described above, with the exception that the arterial cannulation was not performed.

After allowing the animal to stabilise following surgery, BnOCPA (8.3 µg·kg⁻¹) was administered. After a 20 minutes recovery period CPA (6.3 µg·kg⁻¹) was administered. All injections were administered IV as a 350 µl·kg⁻¹ bolus. Changes in f, V_T, and V_E were measured. If the dosing occurred close to a respiratory event such as a sigh a second IV dose was administered, with 20 minute recovery periods either side of the injection. Measurements for the effect of BnOCPA were time-matched to when CPA induced a change in respiration in the same preparation. As no difference was observed between the respiratory responses to BnOCPA in these rats (n = 4) and those instrumented for both cardiovascular and respiratory recordings (n = 4), the data were pooled (n = 8; Fig. 6A to D).

Spinal nerve ligation (Chung model): Adult male Sprague-Dawley rats, 7-8 weeks old, weighing around 250 g at the time of Chung model surgery, were purchased from Charles River UK Ltd. The animals were housed in groups of 4 in an air-conditioned room on a 12-hour light/dark cycle. Food and water were available *ad libitum*. They were allowed to acclimatise to the experimental
environment for three days by leaving them on a raised metal mesh for at least 40 min. The baseline paw withdrawal threshold (PWT) was examined using a series of graduated von Frey hairs (see below) for 3 consecutive days before surgery and re-assessed on the 6th to 8th day after surgery and on the 13th to 17th day after surgery before drug dosing.

Prior to surgery each rat was anaesthetized with 3% isoflurane mixed with oxygen (2 L·min⁻¹) followed by an i.m. injection of ketamine (60 mg·kg⁻¹) plus xylazine (10 mg·kg⁻¹). The back was shaved and sterilized with povidone-iodine. The animal was placed in a prone position and a paramedial incision was made on the skin covering the L4-6 level. The L5 spinal nerve was carefully isolated and tightly ligated with 6/0 silk suture. The wound was then closed in layers after a complete hemostasis. A single dose of antibiotics (Amoxipen, 15 mg/rat, i.p.) was routinely given for prevention of infection after surgery. The animals were placed in a temperature-controlled recovery chamber until fully awake before being returned to their home cages. The vehicle (normal saline) was administered via the intravenous (IV) route at 1 ml·kg⁻¹ and via the intrathecal (IT) route at 10 µl for each injection. The rats with validated neuropathic pain state were randomly divided into 8 groups: vehicle IV, BnOCPA at 1, 3, 10 µg·kg⁻¹ g IV; vehicle IT, BnOCPA at 0.3, 1, and 3 nmol IT groups.

To test for mechanical allodynia the animals were placed in individual Perspex boxes on a raised metal mesh for at least 40 minutes before the test. Starting from the filament of lower force, each filament was applied perpendicularly to the centre of the ventral surface of the paw until slightly bent for 6 seconds. If the animal withdrew or lifted the paw upon stimulation, then a hair with force immediately lower than that tested was used. If no response was observed, then a hair with force immediately higher was tested. The highest value was set at 15 g. The lowest amount of force required to induce reliable responses (positive in 3 out of 5 trials) was recorded as the value of PWT. On the testing day, PWT were assessed before and 1, 2 and 4 hours following BnOCPA or vehicle administration. The animals were returned to their home cages to rest (about 30 min) between two neighbouring testing time points. At the end of each experiment, the animals were deeply anaesthetised with isoflurane and killed by decapitation.
Rotarod test for motor function. A rotarod test was used to assess motor coordination following intravenous and intraperitoneal administration of BnOCPA. An accelerating rotarod (Ugo Basile) was set so speed increased from 6 to 80 rpm over 170 seconds. Male Sprague Dawley rats (n = 24), 7 weeks of age (212-258g) were trained on the rotarod twice daily for two days (≥2 trials per session) until performance times were stable. On the day of the experiment, three baseline trials were recorded. The compound was administered IP or intravenously via tail vein injection (10 µg/kg, n = 6 per group). The control group received subcutaneous saline and the positive control group received subcutaneous morphine (15 mg/kg). Latency to fall (seconds) was measured in triplicate at 1, 2, 3 and 5 hours post drug administration.

Cell signaling assays. CHO-K1-hA1R cells were routinely cultured in Hams F12 nutrient mix supplemented with 10% Foetal bovine serum (FBS), at 37°C with 5% CO2, in a humidified atmosphere. For cAMP inhibition experiments, cells were seeded at a density of 2000 cells per well of a white 384-well optiplate and co-stimulated, for 30 minutes, with 1 µM forskolin and a range of agonist concentrations (1 µM – 1 pM). cAMP levels were then determined using a LANCE® cAMP kit as described previously6,6.

For determination of individual Gαi/o/z couplings, CHO-K1-hA1R cells were transfected with pcDNA3.1-GNAZ or, pcDNA3.1 containing pertussis toxin (PTX) insensitive Gαi/o protein mutants (C351I, C352I, C351I, C351I, C351I, C351I, for Gαi1, Gαi2, Gαi3, Gαo, Gαob, respectively, obtained from cDNA Resource Center; www.cdna.org), using 500 ng plasmid and Fugene HD at a 3:1 (Fugene:Plasmid) ratio. Cells were then incubated for 24 hours before addition of 100 ng/ml PTX, to inhibit activity of endogenous Gαi/o, and then incubated for a further 16-18 hours. Transfected cells were then assayed as per cAMP inhibition experiments, but co-stimulated with agonist and 100 nM forskolin.

β-arrestin recruitment assays. HEK 293 cells were routinely grown in DMEM/F-12 GlutaMAX™ (Thermo Fisher Scientific) supplemented with 10% foetal bovine serum (FBS) (F9665, Sigma-Aldrich) and 1x antibiotic-antimycotic (Thermo Fisher Scientific) (DMEM complete). For analysis of β-arrestin2 recruitment following ligand stimulation at the human A1R or A3R, HEK 293 cells in a
Wall et al Methods

single well of 6-well plate (confluency ≥80%) were transiently co-transfected with either \(A_1R-Nluc\) or \(A_3R-Nluc\) and \(\beta\)-arrestin2-YFP (total 2 μg, at a 1:6 ratio) using polyethyleneimine (PEI, 1 mg/ml, MW = 25,000 g/mol) (Polysciences Inc) at a DNA:PEI ratio of 1:6 (w/v). Briefly, in sterile tubes containing 150 mM sodium chloride (NaCl), DNA or PEI was added (final volume 50 μl), allowed to incubate at room temperature for 5 minutes, mixing together and incubating for a further 10 minutes prior to adding the combined mix dropwise to the cells. 24 hours post-transfection, HEK 293 cell were harvested, resuspended in reduced serum media (MEM, NEAA (Thermo Fisher Scientific) supplemented with 1% L-glutamine (2 mM final) (Thermo Fisher Scientific), 2% FBS and 1x antibiotic-antimycotic) and seeded (50,000 cells/well) in a poly-L-lysine-coated (MW 150,000-300,000, Sigma-Aldrich) white 96-well plate (PerkinElmer Life Sciences). 24 hours post seeding, media was removed, cells gently washed in PBS and 90 μl of furimazine (4 μM) containing solution added (PBS supplemented with 0.49 mM MgCl\(_2\), 0.9 mM CaCl\(_2\) and 0.1% BSA) to each well before incubating in the dark for 10 minutes. After incubation, 10 μl of ligand (NECA/CPA, adenosine, BnOCPA) was added in the range of 10 μM to 0.01 μM and filtered light emission measured at 450 nm and 530 nm every minute for 1 hour using a Mithras LB 940 (Berthold technology). Here, Nluc on the C-terminus of \(A_1R\) or \(A_3R\) acted as the BRET donor (luciferase oxidizing its substrate) and YFP acted as the fluorescent acceptor. Vehicle control (DMSO) was added to determine background emission.

Radioligand binding. Radioligand displacement assays were conducted using crude membrane preparations (100 μg protein per tube) acquired from homogenisation of CHO-K1-hA\(_1\)R cells in ice-cold buffer (2 mM MgCl\(_2\), 20 mM HEPES, pH 7.4). The ability to displace binding of the \(A_1R\) selective antagonist radioligand, 1,3-[\(^3\)H]-dipropyl-8-cyclopentylxanthine ([\(^3\)H]-DPCPX) at a concentration (1 nM) around the Kd value (1.23 nM, as determined by saturation binding experiments) by increasing concentrations of NECA, adenosine, CPA, BnOCPA or HOCPA (10 μM – 0.1 nM) allowed the binding affinities (K\(i\)) to be determined. Non-specific binding was determined in the presence of 10 μM DPCPX. Membrane incubations were conducted in Sterilin™ scintillation vials (Thermo Fisher Scientific; Wilmington, Massachusetts, USA) for 60 minutes at room temperature. Free radioligand was separated from bound radioligand by filtration through Whatman® glass microfiber GF/B 25 mm
filters (Sigma-Aldrich). Each filter was then placed in a Sterilin™ scintillation vial and radioactivity determined by: addition of 4 mL of Ultima Gold XR liquid scintillant (PerkinElmer), overnight incubation at room temperature and the retained radioactivity determined using a Beckman Coulter LS 6500 Multi-purpose scintillation counter (Beckman Coulter Inc.; Indiana, USA).

NanoBRET ligand-binding studies. Real-time pharmacological interactions between ligands and receptors was quantitated using NanoBRET as described previously. In brief, using N-terminally NanoLuc (Nluc)-tagged rat A₁R, A₂Aᵣ and A₃ᵣ expressing HEK-293 cell lines, competition binding assays were conducted. The data was fitted with the ‘one-site – Ki model’ derived from the Cheng and Prusoff correction, built into Prism to determine affinity (pKᵢ) values for all unlabelled agonists at all adenosine receptor subtypes assayed. In all cases CA200645, which acts as a fluorescent antagonist with a slow off-rate was used with the exception of the rat A₃ᵣ where the fluorescent compound was AV039. For all adenosine receptors filtered light emission at 450 nm and > 610 nm (640-685 nm band pass filter) was measured using a Mithras LB 940 and the raw BRET ratio calculated by dividing the 610 nm emission with the 450 nm emission. The Nluc acts as the BRET donor (luciferase oxidizing its substrate) and CA200645/AV039 acted as the fluorescent acceptor. CA200645 was used at 25 nM, as previously reported and AV039 was used at 100 nM (Barkan et al. 2019). BRET was measured following the addition of the Nluc substrate, furimazine (0.1 μM). Nonspecific binding was determined using a high concentration of unlabelled antagonist, DPCPX for rat A₁R, ZM241385 for the rat A₂Aᵣ and MRS 1220 for rat A₃ᵣ.

Data Analysis. Concentration-response curves for the effects of A₁R agonists on synaptic transmission were constructed in OriginPro 2018 (OriginLab; Northampton, MA, USA) and fitted with a logistic curve using the Levenberg Marquadt iteration algorithm. OriginPro 2018 was also used for statistical analysis. Statistical significance was tested as indicated in the text using paired or unpaired t-tests or one-way or two-way ANOVAs with repeated measures (RM) as appropriate. Bonferroni corrections for multiple comparisons were performed. All in vitro cell signalling assay data was analysed using Prism 8.4 (Graphpad software, San Diego, CA), with all concentration-response curves being fitted using a 3 parameter logistic equation to calculate response range and IC₅₀. All cAMP data was normalised to a forskolin concentration-response curve ran in parallel to each assay.
Where appropriate the operational model of receptor agonism\(^6,12\) was used to obtain efficacy (log \(\tau\)) and equilibrium disassociation constant (log \(K_A\)) values. Calculation of bias factors (\(\Delta \log(Tau/K_A)\)) relative to adenosine was performed as described in Weston \textit{et al.} (2016)\(^6\). Error for this composite measure was propagated by applying the following equation.

\[
Pooled \text{ SEM} = \sqrt{\left(\frac{SEM_A}{\bar{x}_A}\right)^2 + \left(\frac{SEM_B}{\bar{x}_B}\right)^2} \times \bar{x}_{AB}
\]

Where, \(\sigma_A\) and \(\sigma_B\) are the standard deviations of measurement A and B with mean of \(\bar{x}_A\) and \(\bar{x}_B\), \(\bar{x}_{AB}\) is the composite mean and \(n\) is the number of repeats.

Statistical significance relative to adenosine was calculated using a one-way ANOVA with a Dunnett’s post-test for multiple comparisons. Radioligand displacement curves were fitted to the one-site competition binding equation yielding logKi values. One-way ANOVA (Dunnett’s post-test) was used to determine significance by comparing the logKi value for each compound when compared to adenosine. To determine the extent of ligand-induced recruitment of \(\beta\)-arrestin2-YFP to either the \(A_1R\) or \(A_3R\), the BRET signal was calculated by subtracting the 530 nm/450 nm emission for vehicle-treated cells from ligand-treated cells (ligand-induced \(\Delta\text{BRET}\)). \(\Delta\text{BRET}\) for each concentration at 5 minutes (maximum response) was used to produce concentration-response curves.

All \textit{in vivo} cardiovascular and respiratory data were analysed using OriginPro 2018. One-way ANOVAs, with repeated measures as appropriate, and with Bonferroni correction for multiple comparisons were used. Statistical significance for the effects of IV saline was tested using paired t-tests. Data are reported throughout as mean ± SEM and \(n\) values are reported for each experiment. For the neuropathic pain studies, one-way ANOVAs with Fisher’s Least Significant Difference (LSD) post-hoc test was used to compare drug treatment groups to the vehicle group (OriginPro 2018). The significance level was set at \(P < 0.05\), with actual \(P\) values reported in the figure legends and summaries, by way of abbreviations and asterisks, on the graphs: ns, not significant; * \(P < 0.05\); **, \(P < 0.02\); ***, \(P < 0.001\); ****, \(P < 0.0001\).
Methods

Drugs and substances. Drugs were made up as stock solutions (1-10 mM) and then diluted in aCSF or saline on the day of use.

BnOCPA\(^{13}\) \(((2R,3R,4S,5R)-2-(6-\{[(1R,2R)-2-benzyloxycyclopentyl]amino\}-9H-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol)\) and HOCPA\(^{14}\) \(((2R,3R,4S,5R)-2-(6-\{[(1R,2R)-2-hydroxycyclopentyl]amino\}-9H-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol)\), the \([(1R,2R)-2-hydroxycyclopentyl]amino\) bis-epimer of known A\(_1\)R agonist GR79236\(^{15}\), were synthesised as described previously\(^5\) and dissolved in dimethyl-sulphoxide (DMSO, 0.01% final concentration).

Adenosine, 8-CPT (8-cyclopentyltheophylline), NECA (5′-(N-Ethylcarboxamido) adenosine) and CPA (N\(^6\)-Cyclopentyladenosine) were purchased from Sigma-Aldrich (Poole, Dorset, UK). 1,3-[\(^3\)H]-dipropyl-8-cyclopentylxanthine ([\(^3\)H]-DPCPX) was purchased from PerkinElmer (Life and Analytical Sciences, Waltham, MA). Peptides for interfering with G protein signalling were obtained from Hello Bio (Bristol, UK) and were based on published sequences\(^{16}\). For G\(_{oa}\) the peptide had a sequence of MGIANNLRGCGLY. The scrambled version was LNRGNAYLCIGMG. For G\(_{ob}\) the peptide had a sequence of MGIQNNLKYIGIC. Peptides were made up as stock solutions (2 mM) and stored at -20°C. The stock solutions were dissolved in filtered intracellular solution just before use.

Molecular Dynamics Simulations

Ligand parameterization. The CHARMM36\(^{17,18}\)/CGenFF\(^{19,20,21}\) force field combination was employed in all the molecular dynamic (MD) simulations performed. Initial topology and parameter files of BnOCPA, HOCPA, and PSB36 were obtained from the Paramchem webserver\(^{19}\). Higher penalties were associated with a few BnOCPA dihedral terms, which were therefore optimized at the HF/6-31G* level of theory using both the high throughput molecular dynamics (HTMD)\(^{22}\) parameterize functionality and the Visual Molecular Dynamics (VMD)\(^{23}\) Force Field Toolkit (ffTK)\(^{24}\), after fragmentation of the molecule. Short MD simulations of BnOCPA in water were performed to visually inspect the behavior of the optimized rotatable bonds.

Systems preparation for fully dynamic docking of BnOCPA and HOCPA. Coordinates of the A\(_1\)R in the active, adenosine- and G protein-bound state were retrieved from the Protein Data Bank\(^{25,26}\) database (PDB ID 6D9H\(^{27}\)). Intracellular loop 3 (ICL3) which is missing from PDB ID 6D9H...
was rebuilt using Modeller 9.1928,29. The G protein, with the exception of the C-terminal helix (helix 5) of the G protein alpha subunit (the key region responsible for the receptor TM6 active-like conformation) was removed from the system as in previous work30,31. BnOCPA and HOCPA were placed in the extracellular bulk, in two different systems, at least 20 Å from the receptor vestibule. The resulting systems were prepared for simulations using in-house scripts able to exploit both python HTMD22 and Tool Command Language (TCL) scripts. Briefly, this multistep procedure performs the preliminary hydrogen atoms addition by means of the pdb2pqr32 and propka33 software, considering a simulated pH of 7.0 (the proposed protonation of titratable side chains was checked by visual inspection). Receptors were then embedded in a square 80 Å x 80 Å 1-palmitoyl-2-oleyl-sn-glycerol-3-phosphocholine (POPC) bilayer (previously built by using the VMD Membrane Builder plugin 1.1, Membrane Plugin, Version 1.1.; http://www.ks.uiuc.edu/Research/vmd/plugins/membrane/) through an insertion method34, considering the A\textsubscript{1}R coordinates retrieved from the OPM database35 to gain the correct orientation within the membrane. Lipids overlapping the receptor transmembrane bundle were removed and TIP3P water molecules36 were added to the simulation box (final dimensions 80 Å x 80 Å x 125 Å) using the VMD Solvate plugin 1.5 (Solvate Plugin, Version 1.5; http://www.ks.uiuc.edu/Research/vmd/plugins/solvate/). Finally, overall charge neutrality was achieved by adding Na+/Cl− counter ions (concentration of 0.150 M) using the VMD Autoionize plugin 1.3 (Autoionize Plugin, Version 1.3; http://www.ks.uiuc.edu/Research/vmd/plugins/autoionize/). All histidine side chains were considered in the delta tautomeric state, with the exception of H251 (epsilon tautomer) and H278 (protonated).

The MD engine ACEMD37 was employed for both the equilibration and productive simulations. Systems were equilibrated in isothermal-isobaric conditions (NPT) using the Berendsen barostat38 (target pressure 1 atm), the Langevin thermostat39 (target temperature 300 K) with a low damping factor of 1 ps-1 and with an integration time step of 2 fs. Clashes between protein and lipid atoms were reduced through 2000 conjugate-gradient minimization steps before a 2 ns long MD simulation was run with a positional constraint of 1 kcal mol-1 Å-2 on protein and lipid phosphorus atoms. Twenty
nanoseconds of MD simulation were then performed constraining only the protein atoms. Lastly, positional constraints were applied only to the protein backbone alpha carbons for a further 5 ns.

Dynamic docking of BnOCPA and HOCPA. The supervised MD (SuMD) approach is an adaptive sampling method\(^4^0\) for simulating binding events in a timescale one or two orders of magnitudes faster than the corresponding classical (unsupervised) MD simulations\(^4^1\). SuMD has been successfully applied to small molecules and peptides\(^4^2,4^3,4^4,4^5,4^6,4^7,4^8\). In the present work, the distances between the centers of mass of the adenine scaffold of the A1R agonist and N254\(^6^,5^5\), F171\(^\text{ECL2}\), T277\(^7^,4^2\) and H278\(^7^,4^3\) of the receptor were considered for the supervision during the MD simulations. The dynamic docking of BnOCPA was hindered by the ionic bridge formed between the E172\(^\text{ECL2}\) and K265\(^\text{ECL3}\) side chains. A metadynamics\(^4^9,5^0,5^1\) energetic bias was therefore introduced in order to facilitate the rupture of this ionic interaction, thus favoring the formation of a bound complex. More precisely, Gaussian terms (height = 0.01 kcal mol\(^-1\) and widths = 0.1 Å) were deposited every 1 ps along the distance between the E172\(^\text{ECL2}\) carboxyl carbon and the positively charged K265\(^\text{ECL3}\) nitrogen atom using PLUMED 2.3\(^5^2\). A similar SuMD-metadynamics hybrid approach was previously employed to study binding/unbinding kinetics\(^5^3\) on the A2A\(_R\) subtype. For each replica (Methods Table 1), when the ligands reached a bound pose (i.e. a distance between the adenine and the receptor residues centers of mass < 3 Å), a classic (unsupervised and without energetic bias) MD simulation was performed for at least a further 100 ns.

BnOCPA bound state metadynamics. We decided to perform a detailed analysis of the role played by the E172\(^\text{ECL2}\) - K265\(^\text{ECL3}\) ionic interaction in the dynamic docking of BnOCPA. Three 250 ns long well-tempered\(^5^4\) metadynamics simulations were performed using the bound state obtained from a previous dynamic docking simulation, which resulted in binding mode A, as a starting point. The collective variables (CVs) considered were: i) the distance between the E172\(^\text{ECL2}\) carboxyl carbon and the positively charged K265\(^\text{ECL3}\) nitrogen atom and ii) the dihedral angle formed by the 4 atoms linking the cyclopentyl ring to the phenyl moiety (which was the most flexible ligand torsion during the previous SuMD simulations). Gaussian widths were set at 0.1 Å and 0.01 radians respectively, heights at 0.01 kcal/mol\(^-1\), and the deposition was performed every 1 ps (bias-factor = 5). Although complete convergence was probably not reached, three replicas (Methods Table 1) allowed
sampling of three main energetic minima on the energy surface (Supplementary Fig. 6); these
correspond to the representative binding poses shown in Fig. 3D to F.

Classic MD simulations of BnOCPA binding modes A, B, C and D. To test the hypothesis that
BnOCPA and HOCPA may differently affect TM6 and/or TM7 mobility when bound to A1R (and to
further sample the stability of each BnOCPA binding mode), putative binding conformations A, B and
C (Fig. 3) were superposed to the experimental A1R active state coordinates with the modelled ICL3.
This should have removed any A1R structural artefacts, possibly introduced by metadynamics. As
reference and control, two further systems were considered: i) the pseudo-apo A1R and ii) the
selective A1R antagonist PSB36 superposed in the same receptor active conformation (Methods
Table 1). The BnOCPA binding mode D was modelled from mode B by rotating the dihedral angle
connecting the cyclopentyl ring and the N6 nitrogen atom in order to point the benzyl of the agonist
toward the hydrophobic pocket underneath ECL3 (Fig. 3G) delimited by L253, T257, K265 ECL3,
T270, and L269. The G protein atoms were removed, and the resulting systems prepared for
MD as reported above. A similar comparison was performed in a milestone study on the β2
adrenergic receptor which sought to describe the putative deactivation mechanism of the receptor.

Dynamic docking of the Goa, Gob and Gi2 GaCT helix. A randomly extracted frame from the
classic MD performed on the BnOCPA:A1R complex was prepared for three sets of simulations
placing the GaCT helix 5 (last 27 residues) of the Ga proteins Goa, Gob and Gi2 in the intracellular
solvent bulk side of the simulation boxes. As a further control, a frame from the classic MD performed
on the unbiased ligand HOCPA:A1R complex was randomly extracted and prepared along with the
Gob GaCT. The resulting four systems were embedded in a POPC membrane and prepared as
reported above.

The different structural effects putatively triggered by BnOCPA and HOCPA on the recognition
mechanism of Goa, Gob and Gi2 GaCT were studied by performing 10 SuMD replicas (Methods
Table 1). During each replica (Video S3), the distance between the centroid of the GaCT residues
348-352 and the centroid of the A1R residues D42, I232, and Q293 was supervised until it
reached a value lower than 8 Å. A classic MD simulation was then run for a further 300 ns.
Classic MD simulations on the A1R:Goa and Gob complexes. The A1R cryo-EM structure (PDB ID 6D9H) was used as template for all the five systems simulated (Methods Table 1). The endogenous agonist adenosine was removed and HOCPA and BnOCPA (modes B and D) were inserted in the orthosteric site superimposing 6D9H to the systems prepared for the classic MD simulations in the absence of G protein. ICL3 was not modelled, nor were the missing part of the G protein α subunit. As subunits β and γ were removed, the Gα NT helix was truncated to residue 27 to avoid unnatural movements (NT is constrained by Gβ in 6D9H). The Gα subunit was mutated according to the Goa and Gob primary sequences using in-house scripts. The resulting five systems (Methods Table 1) were embedded in a POPC membrane and prepared as reported above.

Analysis of the classic MD simulations. During the classic MD simulations that started from Modes A-C (Fig. 3D to F), BnOCPA had the tendency to explore the three conformations by rapidly interchanging between the three binding modes. In order to determine the effect exerted on the TM domain by each conformation, 21 μs of MD simulations (Methods Table 1 - BnOCPA mode A, BnOCPA mode B, BnOCPA mode C) were subjected to a geometric clustering. More precisely, a simulation frame was considered in pose A if the distance between the phenyl ring of BnOCPA and the I175ECL2 alpha carbon was less than 5 Å; in pose B if the distance between the phenyl ring of BnOCPA and the L258 alpha carbon was less than 6 Å, and in pose C if the distance between the phenyl ring of BnOCPA and the Y271 alpha carbon was less than 6 Å. During the MD simulations started from mode D (Fig. 3G), a frame was still considered in mode D if the root mean square deviation (RMSD) of the benzyl ring to the starting equilibrated conformation was less than 3 Å. For each of the resulting four clusters, the RMSD of the GPCR conserved motif NPXXY (NPIVY in the A1R; Supplementary Fig. 7) was computed using Plumed 2.3 considering the inactive receptor state as reference, plotting the obtained values as frequency distributions (Fig. 3I, J). Rearrangement of the NPXXY motif, which is located at the intracellular half of TM7, is considered one of the structural hallmarks of GPCR activation. Upon G protein binding, it moves towards the center of the receptor TM bundle (Supplementary Fig. 7). Unlike other activation micro-switches (e.g. the break/formation of the salt bridge between R350 and E330), this conformational transition is believed to occur in timescales accessible to MD simulations.
Hydrogen bonds and atomic contacts were computed using the GetContacts analysis tool (https://github.com/getcontacts/getcontacts) and expressed in terms of occupancy (the percentage of MD frames in which the interaction occurred).

Analysis of the Goa, Gob and Gi2 GaCT classic MD simulations after SuMD. For each system, only the classic MD simulations performed after the GoCT reached the A1R intracellular binding site were considered for the analysis.

The RMSD values to the last 15 residues of the Gi2 GaCT reported in the A1R cryo-EM PDB structure 6D9H were computed using VMD\(^{23}\). The MD frames associated with the peaks in the RMSD plots (states CS1, MS1, MS2 and MS3 in Fig. 4A, D) were clustered employing the VMD Clustering plugin (https://github.com/luisico/clustering) by selecting the whole GaCT helixes alpha carbon atoms and a cutoff of 3 Å.
Methods Table 1. Summary of the simulations performed.

<table>
<thead>
<tr>
<th>Ligand</th>
<th>MD approach</th>
<th># Replicas</th>
<th>Total simulated time(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BnOCPA</td>
<td>SuMD</td>
<td>6</td>
<td>1.9 µs</td>
</tr>
<tr>
<td>BnOCPA</td>
<td>SuMD-Metadynamics</td>
<td>5</td>
<td>4.3 µs</td>
</tr>
<tr>
<td>HOCPA</td>
<td>SuMD</td>
<td>5</td>
<td>3.4 µs</td>
</tr>
<tr>
<td>BnOCPA (bound state after dynamic docking)</td>
<td>Metadynamics</td>
<td>3</td>
<td>0.75 µs</td>
</tr>
<tr>
<td>BnOCPA(A)</td>
<td>Classic MD</td>
<td>6</td>
<td>9.0 µs</td>
</tr>
<tr>
<td>BnOCPA(B)</td>
<td>Classic MD</td>
<td>6</td>
<td>9.0 µs</td>
</tr>
<tr>
<td>BnOCPA(C)</td>
<td>Classic MD</td>
<td>3</td>
<td>3.0 µs</td>
</tr>
<tr>
<td>HOCPA</td>
<td>Classic MD</td>
<td>4</td>
<td>8.0 µs</td>
</tr>
<tr>
<td>PSB36</td>
<td>Classic MD</td>
<td>4</td>
<td>6.0 µs</td>
</tr>
<tr>
<td>Apo A(_1)</td>
<td>Classic MD</td>
<td>4</td>
<td>8.0 µs</td>
</tr>
<tr>
<td>GaCT Goa (BnOCPA)</td>
<td>SuMD + Classic MD</td>
<td>10</td>
<td>0.36 µs + 3.0 µs</td>
</tr>
<tr>
<td>GaCT Gob (BnOCPA)</td>
<td>SuMD + Classic MD</td>
<td>10</td>
<td>0.33 µs + 3.0 µs</td>
</tr>
<tr>
<td>GaCT Gi2 (BnOCPA)</td>
<td>SuMD + Classic MD</td>
<td>10</td>
<td>0.37 µs + 3.0 µs</td>
</tr>
<tr>
<td>GaCT Gob (HOCPA)</td>
<td>SuMD + Classic MD</td>
<td>10</td>
<td>0.29 µs + 3.0 µs</td>
</tr>
<tr>
<td>BnOCPA(D):Gob</td>
<td>Classic MD</td>
<td>4</td>
<td>4.0 µs</td>
</tr>
<tr>
<td>BnOCPA(B):Gob</td>
<td>Classic MD</td>
<td>3</td>
<td>3.0 µs</td>
</tr>
<tr>
<td>HOCPA:Gob</td>
<td>Classic MD</td>
<td>4</td>
<td>4.0 µs</td>
</tr>
<tr>
<td>BnOCPA(D):Goa</td>
<td>Classic MD</td>
<td>5</td>
<td>5.0 µs</td>
</tr>
<tr>
<td>BnOCPA(B):Goa</td>
<td>Classic MD</td>
<td>4</td>
<td>4.0 µs</td>
</tr>
</tbody>
</table>

\(^a\) For SuMD and SuMD-metadynamics simulations the time is the sum of productive SuMD time windows.

(A), (B), (C) and (D) indicate the respective BnOCPA binding modes.
Methods References

8. Cheng Y, Prusoff WH. Relationship between the inhibition constant (K_i) and the concentration of inhibitor which causes 50 per cent inhibition (I₅₀) of an enzymatic reaction. *Biochem Pharmacol* **22**, 3099-3108 (1973).

