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Supplementary Text

Here we describe in more detail the derivations of our results, and specifics of the simulations presented in the main text. Of note, we
sometimes use x|y ∼ p(y) to specify the conditional density p(x|y). Furthermore, N

(
µ, σ2

)
denotes a Gaussian with mean µ and

variance σ2.

1 Task setup

We assume two latent states zj , j ∈ {1, 2}, (here, the true item values) that are before each choice trial drawn from their Gaussian
prior, zj ∼ N (z̄jσ

2
z), with mean z̄j and variance σ2

z . Throughout the text, we will assume z̄1 = z̄2, to indicate that there is no a-priori
preference of one item over the other. The decision maker doesn’t observe the latent states, but instead, in each time step of size δt,
observes noisy evidence about both zj ’s. Let us assume that, in the nth such time step, the decision maker attends to item yn ∈ {1, 2}.
Then, they simultaneously observe δx1 and δx2, distributed as

δxj,n|yn, zj ∼ N
(
zjδt,

1

γ|j−yn|
σ2δt

)
, (1)

where we have defined the attention modulation parameter γ, bounded by 0 ≤ γ ≤ 1. For the attended item j = yn, we have
|j − yn| = 0, such that the momentary evidence δxj,n has variance σ2δt, independent of γ. For the unattended item, in contrast,
|j − yn| = 1, such that the momentary evidence δxj,n has a potentially increased variance σ2δt/γ, which, for γ < 1, lowers
the information about the underlying latent state. Below we will derive the posterior zj ’s, given the stream of momentary evidences
[δx1,1, δx2,1], [δx1,2, δx2,2], . . . , and the attention sequence y1, y2, . . . . The mean and variance of the posterior distributions represent
the decision maker’s belief of the items’ true values given all available evidence.

While the posterior estimates provide information about value, it does not tell the decision maker when to stop accumulating
information, or when to switch their attention. To address these questions, we need to specify the costs and rewards associated with
these behaviors. For value-based decisions, we assume that the reward for choosing item j is the latent state zj (i.e., the true value)
associated with the item. Furthermore, we assume that accumulating evidence comes at cost c per second, or cost cδt per time
step. The decision maker can only ever attend to one item, and switching attention to the other item comes at cost cs which may be
composed of a pure attention switch cost, as well as a loss of time that might introduce an additional cost. As each attention switch
introduces both costs, we only consider them in combination without loss of generality.

The overall aim of the decision maker is to maximize the total expected return, which consists of the expected value of the chosen
item minus the total cost of accumulating evidence and attention switches. We address this maximization problem by finding the
optimal policy that, based on the observed evidence, determines when to switch attention, when to accumulate more evidence, and
when to commit to a choice. We initially focus on maximizing the expected return in a single, isolated choice, and will later show that
this yields qualitatively similar policies as when embedding this choice into a longer sequence of comparable choices.
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2 Bayes-optimal evidence accumulation

2.1 Deriving the posterior z1 and z2

To find the posterior over z1 after having accumulated evidence x1,1:N ≡ x1,1, . . . , x1,N for some fixed amount of time t = Nδt while
paying attention to items y1:N ≡ y1, . . . yN , we employ Bayes’ rule,

p (z1|δx1,1:N , y1:N ) ∝z1 p(z1)

N∏
n=1

p (δx1,n|z1, yn)

= N
(
z1|z̄1, σ2

z

) N∏
n=1

N
(
δx1,n|zδt,

σ2

γ|1−yn|
δt

)
∝z1 N

(
z1|

z̄1σ
2σ−2z +X1(t)

σ2σ−2z + t1 + γt2
,

σ2

σ2σ−2z + t1 + γt2

)
,

(2)

where we have defined X1(t) =
∑N
n=1 γ

|1−yn|δx1,n as the sum of all attention-weighted momentary evidence up to time t, and
tj = t − δt

∑N
n=1 |j − yn| as the total time that item j has been attended. Note that, for time periods in which item 2 is attended to,

(i.e., when yn = 2), the momentary evidence is down-weighted by γ. With δt→ 0, the process becomes continuous in time, such that
X1(t) becomes the integrated momentary evidence, but the above posterior still holds.

Following a similar derivation, the posterior belief about z2 results in

p (z2|δx2,1:N , y1:N ) = N
(
z2|

z̄2σ
2σ−2z +X2(t)

σ2σ−2z + γt1 + t2
,

σ2

σ2σ−2z + γt1 + t2

)
(3)

where X2(t) =
∑N
n=1 γ

|2−yn|δx2,n. As the decision maker acquires momentary evidence independently for both items, the two
posteriors are independent of each other, that is p (z1, z2|δx1,1:N , δx2,1:N , y1:N ) = p (z1|δx1,1:N , y1:N ) p (z2|δx2,1:N , y1:N ).

2.2 The expected reward process

At each point in time, the decision maker must decide whether it’s worth accumulating more evidence versus choosing an item. To
do so, they need to predict how the mean estimated reward for each option might evolve if they accumulated more evidence. In this
section we derive the stochastic process that describes this evolution for item 1. The same principles will apply for item 2.

Assume that having accumulated evidence until time t = Nδt, the current expected reward for item 1 is given by r̂1(t), where
r̂1(t) = 〈z1|δx1,1:N , y1:N 〉 is the mean of the above posterior, Eq. (2). The decision-maker’s prediction of how the expected reward
might evolve after accumulating additional evidence for δt is found by the marginalization,

p (r̂1(t+ δt)|r̂1(t), t1, t2, yN+1)

=

∫∫
p (r̂1(t+ δt)|r̂1(t), δx1,N+1, t1, t2, yN+1) p (δx1,N+1|z1, yN+1) p (z1|r̂1(t), t1, t2) dδx1,N+1dz1. (4)

As the last term in the above integral shows, r̂(t), t1 and t2 fully determine the posterior z1 at time t. We can use this posterior to predict
the value of the next momentary evidence δx1,N+1|z1. This, in turn, allows us to predict r̂1(t+ δt). As all involved densities are either
deterministic or Gaussian, the resulting posterior will be Gaussian as well. Thus, rather than performing the integrals explicitly, we will
find the final posterior by tracking the involved means and variances, which in turn completely determine the posterior parameters.

We first marginalize over δx1,N+1, by expressing r̂1(t + δt) in terms of r̂(t) and δx1,N+1. To do so, we use Eq. (2) to express
r̂1(t+ δt) by

r̂1(t+ δt) =
z̄1σ

2σ−2z +X1(t) + γ|yN+1−1|δx1,N+1

σ2σ−2z + t1 + γt2 + γ|1−yN+1|δt
, (5)

where we have used X1(t+ δt) = X1(t) + γ|yN+1−1|δx1,N+1.
Note that, for a given δx1,N+1, r̂(t+δt) is uniquely determined by r̂(t). r̂(t+δt) becomes a random variable once we acknowledge

that, for any z1, δx1,N+1 is given by Eq. (1), which we can write as δx1,N+1 = z1δt +
√
σ2γ−|1−yN+1|δtηx, where ηx ∼ N (0, 1).

Substituting this expression into r̂1(t + δt), and using Eq. (2) to re-express X1(t) as X1(t) = r̂1(t)
(
σ2σ−2z + t1 + γt2

)
− z̄1σ2σ−2z ,

results in

r̂1(t+ δt) =
r̂1(t)

(
σ2σ−2z + t1 + γt2

)
+ γ|1−yN+1|z1δt+

√
σ2γ|1−yN+1|δtηx

σ2σ−2z + t1 + γt2 + γ|1−yN+1|δt
. (6)

The second marginalization over z1 is found by noting the distribution of z1 is given by Eq. (2), which can be written as

z1 = r̂1(t) +

√
σ2

σ2σ−2z + t1 + γt2
ηz, (7)
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with ηz ∼ N (0, 1). Substituting this z1 into the above expression for r̂(t+ δt) results in

r̂1(t+ δt) = r̂1(t) +

√
σ2γ|1−yN+1|δt

σ2σ−2z + t1 + γt2 + γ|1−yn+1|δt
ηx, (8)

where we have dropped the ηz-dependent term which had a δt pre-factor, and thus vanishes with δt→ 0. Therefore, r̂1(t) evolves as
a martingale,

r̂1(t+ δt)|r̂1(t), t1, t2, yN+1 ∼ N
(
r̂1(t),

σ2γ|1−yn+1|

(σ2σ−2z + t1 + γt2 + γ|1−yN+1|δt)2
δt

)
. (9)

Using the same approach, the expected future reward for item 2 is given by

r̂2(t+ δt)|r̂2(t), t1, t2, yN+1 ∼ N
(
r̂2(t),

σ2γ|2−yN+1|

(σ2σ−2z + γt1 + t2 + γ|2−yn+1|δt)2
δt

)
. (10)

2.3 The expected reward difference process

In a later section, we will reduce the dimensionality of the optimal policy space by using the expected reward difference rather than
each of the of the expected rewards separately. To do so, we define this difference by

∆(t) =
r̂1(t)− r̂2(t)

2
. (11)

As for r̂1(t) and r̂2(t), we are interested in how ∆(t) evolves over time.
To find ∆(t+ δt)|∆(t), t1, t2, yN+1 we can use

p (∆(t+ δt)|∆(t), t1, t2, yN+1) = p

(
∆(t+ δt) =

r̂1(t+ δt)− r̂2(t+ δt)

2
|∆(t) =

r̂1(t)− r̂2(t)

2
, t1, t2, yN+1

)
. (12)

As the decision-maker receives independent momentary evidence for each item, r̂1(t) and r̂2(t) are independent when conditioned
on t1, t2 and y1:N . Thus, so are their time-evolutions, r̂1(t+ δt)|r̂1(t), . . . and r̂2(t+ δt)|r̂2(t), . . . . With this, we can show that

∆(t+ δt)|∆(t), t1, t2, yN+1 ∼ N

(
∆(t),

σ2δt

4

(
γ|1−yN+1|(

σ2σ−2z + t1 + γt2 + γ|1−yN+1|δt
)2 +

γ|2−yN+1|(
σ2σ−2z + γt1 + t2 + γ|2−yN+1|δt

)2
))

.

(13)
Unsurprisingly, ∆(t) is again a martingale.

3 Optimal decision policy

We find the optimal decision policy by dynamic programming [1, 3]. A central concept in dynamic programming is the value function
V (·), which, at any point in time during a decision, returns the expected return, which encompasses all expected rewards and costs
from that point onwards into the future when following the optimal decision policy. Bellman’s equation links value functions across
consecutive times, and allows finding this optimal decision policy recursively. In what follows, we first focus on Bellman’s equation
for single, isolated choices. After that, we show how to extend the same approach to find the optimal policy for long sequences of
consecutive choices.

3.1 Single, isolated choice

For a single, isolated choice, accumulating evidence comes at cost c per second. Switching attention comes at cost cs. The expected
reward for choosing item j is r̂j(t), and is given by the mean of Eqs. (2) and (3) for j = 1 and j = 2, respectively.

To find the value function, let us assume that we have accumulated evidence for some time t = t1 + t2, expect rewards r̂1(t)
and r̂2(t), and are paying attention to item y ∈ {1, 2}. These statistics fully describe the evidence accumulation state, and thus fully
parameterize the value function Vy (r̂1, r̂2, t1, t2). Here we use y as a subscript rather than an argument to V (·) to indicate that y can
only take one of two values, y ∈ {1, 2}. At this point, we can choose among four actions. We can either immediately choose item 1,
immediately choose item 2, accumulate more evidence without switching attention, or switch attention to the other item, 3 − y. The
expected return for choosing immediately is either r̂1(t) or r̂2(t), depending on the choice. Accumulating more evidence for some
time δt results in cost cδt, and changes in the expected rewards according to r̂j(t + δt)|r̂j(t), t1, t2, y, as given by Eqs. (9) and (10).
Therefore, the expected return for accumulating more evidence is given by

−cδt+ 〈Vy (r̂1(t+ δt), r̂2(t+ δt), t1 + |2− y|δt, t2 + |1− y|δt) |r̂1, r̂2, t1, t2, y〉 , (14)
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where the expectation is over the time-evolution of r̂1 and r̂2, and t1 + |2− y|δt and t2 + |1− y|δt ensures that only the ty associated
with the currently attended item is increased by δt. Lastly, switching attention comes at cost cs, but does not otherwise impact reward
expectations, such that the expected return associated with this action is

−cs + V3−y (r̂1, r̂2, t1, t2) , (15)

where the use of V3−y(·) implements that, after an attention switch, item 3− y will be the attended item.
By the Bellman optimality principle [1], the best action at any point in time is the one that maximizes the expected return. Combining

the expected returns associated with each possible action results in Bellman’s equation

Vy (r̂1, r̂2, t1, t2) = max

 r̂1, r̂2,
〈Vy (r̂1(t+ δt), r̂2(t+ δt), t1 + |2− y|δt, t2 + |1− y|δt) |r̂1, r̂2, t1, t2, y〉 − cδt,

V3−y (r̂1, r̂2, t1, t2)− cs

 . (16)

Solving this equation yields the optimal policy for any combination of r̂1, r̂2, t1, t2 and y by picking the action that maximizes the
associated expected return, that is, the term that maximizes the left-hand side of the above equation. The optimal decision boundaries
that separate the (r̂1, r̂2, t1, t2, y)-space into regions where different actions are optimal lie at manifolds in which two actions yield the
same expected return. For example, the decision boundary at which it becomes best to choose item 1 after having accumulated more
evidence is the manifold at which

Vy (r̂1, r̂2, t1, t2) = r̂1 = 〈Vy (r̂1(t+ δt), r̂2(t+ δt), t1 + |2− y|δt, t2 + |1− y|δt) |r̂1, r̂2, t1, t2, y〉 − cδt. (17)

In Section 6 we describe how we found these boundaries numerically.
Formulated so far, the value function is five-dimensional, with four continuous (r̂1, r̂2, t1, and t2) and one discrete (y) dimension.

It turns out that it is possible to remove one of the dimensions without changing the associated policy by focusing on the expected
reward difference ∆(t), Eq. (11), rather than the individual expected rewards. To show this, we jump ahead and use the value function
property Vy (r̂1, r̂2, t1, t2) + C = Vy (r̂1 + C, r̂2 + C, t1, t2) for any scalar C, that we will confirm in Sec. 5. Next, we define the value
function on expected reward differences by

V̄y(∆, t1, t2) = Vy(r̂1, r̂2, t1, t2)− r̂1 + r̂2
2

= Vy(∆,−∆, t1, t2). (18)

Applying this mapping to Eq. (16) leads to Bellman’s equation

V̄y (∆, t1, t2) = max

 ∆,−∆,〈
V̄y (∆(t+ δt), t1 + |2− y|δt, t2 + |1− y|δt) |∆, t1, t2, y

〉
− cδt,

V̄3−y (∆, t1, t2)− cs

 , (19)

which is now defined over a four-dimensional rather than a five-dimensional space while yielding the same optimal policy. This also
confirms that optimal decision-making doesn’t require tracking individual expected rewards, but only their difference.

3.2 Sequence of consecutive choices

So far we have focused on the optimal policy for a single isolated choice. Let us now demonstrate that this policy does not qualitatively
change if we move to a long sequence of consecutive choices. To do so, we assume that each choice is followed by an inter-trial
interval ti after which the latent z1 and z2 are re-drawn from the prior, and evidence accumulation starts anew. As the expected return
considers all expected future rewards, it would grow without bounds for a possibly infinite sequence of choices. Thus, rather than using
the value function, we move to using the average-adjusted value function, Ṽ , which, for each passed time δt, subtracts ρδt, where ρ is
the average reward rate [6]. This way, the value tells us if we are performing better or worse than on average, and is thus bounded.

Introducing the reward rate as an additional time cost requires the following changes. First, the average-adjusted expected return
for immediate choices becomes r̂j(t) − tiρ + Ṽy (z̄1, z̄2, 0, 0), where −tiρ accounts for the inter-trial interval, and Ṽy (z̄1, z̄2, 0, 0) is
the average-adjusted value at the beginning of the next choice, where r̂j = z̄j , and t1 = t2 = 0. Due to the symmetry, Ṽy (z̄1, z̄2, 0, 0)
will be the same for both y = 1 and y = 2, such that we do not need to specify y. Second, accumulating evidence for some duration
δt now comes at cost (c+ ρ)δt. The expected return for switching attention remains unchanged, as we assume attention switches to
be instantaneous. If attention switches take time, we would need to additionally penalize this time by ρ.

With these changes, Bellman’s equation becomes

Ṽy (r̂1, r̂2, t1, t2) = max


r̂1 − ρti + Ṽy (z̄1, z̄2, 0, 0) , r̂2 − ρti + Ṽy (z̄1, z̄2, 0, 0) ,〈

Ṽy (r̂1(t+ δt), r̂2(t+ δt), t1 + |2− y|δt, t2 + |1− y|δt) |r̂1, r̂2, t1, t2, y
〉
− (c+ ρ)δt,

Ṽ3−y (r̂1, r̂2, t1, t2)− cs

 . (20)

The resulting average-adjusted value function is shift-invariant, that is, adding a scalar to this value function for all states does not
change the underlying policy [6]. This property allows us to fix the average-adjusted value for one particular state, such that all other
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average-adjusted values are relative to this state. For mathematical convenience we choose Ṽy (z̄1, z̄2, 0, 0) = ρti, resulting in the
new Bellman’s equation

Ṽy (r̂1, r̂2, t1, t2) = max


r̂1, r̂2,〈

Ṽy (r̂1(t+ δt), r̂2(t+ δt), t1 + |2− y|δt, t2 + |1− y|δt) |r̂1, r̂2, t1, t2, y
〉
− (c+ ρ)δt,

Ṽ3−y (r̂1, r̂2, t1, t2)− cs

 . (21)

Comparing this to Bellman’s equation for single, isolated choices, Eq. (16), reveals an increase in the accumulation cost from c to c+ρ.
Therefore, we can find a set of task parameters for which the optimal policy for single, isolated choices will mimic that for a sequence
of consecutive choices. For this reason, we will focus on single, isolate choices, as they will also capture all policy properties that we
expect to see for sequences of consecutive choices.

4 Optimal decision policy for perceptual decisions

To apply the same principles to perceptual decision-making, we need to re-visit the interpretation of the latent states, z1 and z2. Those
could, for example, be the brightness of two dots on a screen, and the decision-maker needs to identify the brighter dot. Anternatively,
they might reflect the length of two lines, and the decision maker needs to identify which of the two lines is longer. Either way, the
reward is a function of z1, z2, and the decision maker’s choice. Therefore, the expected reward for choosing either option can be
computed from the posterior z’s, Eqs. (2) and (3). Furthermore, these posteriors are fully determined by their means, r̂1, r̂2, and
the attention times, t1 and t2. As a consequence, we can formulate the expected reward for choosing item j by the expected reward
function Rj (r̂1, r̂2, t1, t2).

What are the consequences for this change in expected reward for the optimal policy? If we assume the attention-modulated
evidence accumulation process to remain unchanged, the only change is that the expected return for choosing item j changes from r̂j
to Rj (r̂1, r̂2, t1, t2). Therefore, Bellman’s equations changes to

Vy (r̂1, r̂2, t1, t2) = max

 R1 (r̂1, r̂2, t1, t2) , R2 (r̂1, r̂2, t1, t2) ,
〈Vy (r̂1(t+ δt), r̂2(t+ δt), t1 + |2− y|δt, t2 + |1− y|δt) |r̂1, r̂2, t1, t2, y〉 − cδt,

V3−y (r̂1, r̂2, t1, t2)− cs

 . (22)

The optimal policy follows from Bellman’s equation as before.
The above value function can only be turned into one over expected reward differences under certain regularities of R1 and R2,

which we will not discuss further at this point. Furthermore, for the above example, we have assumed two sources of perceptual
evidence that need to be compared. Alternative tasks (e.g., the random dot motion task) might provide a single source of evidence that
needs to be categorized. In this case, the formulation changes slightly (see, for example, [4]), but the principles remain unchanged.

5 Properties of the optimal policy

Here, we will demonstrate some interesting properties of the optimal policy, and the associated value function and decision boundaries.
To do so, we re-write the value function in its non-recursive form. To do so, let us first define the switch set T = {T1, . . . , TM}, which
determines the switch times from the current time t onwards. Here, t + T1 is the time of the first switch after time t, t + T1 + T2 is
the second switch, and so on. A final decision is made at t + T̄ , where T̄ =

∑M
m=1 Tm, after M − 1 switches with associated cost

(M − 1)cs. As the optimal policy is the one that optimizes across choices and switch times, the associated value function can be
written as

Vy (r̂1, r̂2, t1, t2) = max
T

〈
max{r̂1(t+ T̄ ), r̂2(t+ T̄ )} − cT̄ − (M − 1)cs|r̂1, r̂2, t1, t2, y

〉
, (23)

where time expectation is over the time-evolution of r̂1(t) and r̂2(t), that also depends on T . In what follows, we first derive the
shift-invarance of this time-evolution, and then consider its consequences for the value function, as well as the decision boundaries.

5.1 Shift-invariance and symmetry of the expected reward process

Let us fix some T , some time t, and assume that we are currently attending item 1, y(t) = 1. Then, by Eq. (9), r̂1(t + T̄ ) can be
written as

r̂1
(
t+ T̄

)
= r̂1(t) +

∫ T1

0

σ

σ2σ−2z + (t1 + s1) + γt2
dB1,s1 +

∫ T2

0

σ
√
γ

σ2σ−2z + (t1 + T1) + γ(t2 + s2)
dB1,s2

+

∫ T3

0

σ

σ2σ−2z + (t1 + T1 + s3) + γ(t2 + T2)
dB1,s3 + . . . , (24)
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where the B1,sj ’s are white noise processes associated with item 1. This shows that, for any T , the change in r̂1, that is, r̂1
(
t+ T̄

)
−

r̂1(t), is independent of r̂1(t). Therefore, we can shift r̂1(t) by any scalar C, and cause an associated shift in r̂1
(
t+ T̄

)
, that is

p
(
r̂
(
t+ T̄

)
= R+ C|r̂1(t) = r + C, t1, t2, y

)
= p

(
r̂(t+ T̄ ) = R|r̂1(t) = r, t1, t2, y

)
, (25)

As this holds for any choice of T , it holds for all T . A similar argument establishes this property for r̂2.
The above decomposition of the time-evolution of r̂1 furthermore reveals a symmetry between r̂1(t+T̄ )−r̂1(t) and r̂2(t+T̄ )−r̂2(t).

In particular, the same decomposition shows that r̂1(t+ T̄ )− r̂1(t) equals r̂2(t+ T̄ )− r̂2(t) if we flip t1, t2 and y(t). Therefore,

p
(
r̂1
(
t+ T̄

)
= R|r̂1(t) = r, t1 = a, t2 = b, y = j

)
= p

(
r̂2
(
t+ T̄

)
= R|r̂2(t) = r, t1 = b, t2 = a, y = 3− j

)
. (26)

5.2 Shift-invariance of the value function

The shift-invariance of r̂1 and r̂2 implies a shift-invariance of the value function. To see this, fix some T and some final choice j, in
which case the value function according to Eq. (23) becomes

Vy (r̂1, r̂2, t1, t2) =
〈
r̂j(t+ T̄ )|r̂1, r̂2

〉
− cT̄ + (M − 1)cs, (27)

where the expectation is implicitly conditional on t1, t2, y and T . Due to the shift-invariance of the time-evolution of r̂1 and r̂2, adding
a scalar C to both r̂1 and r̂2 increases the above expectation by the same amount,

〈
r̂j(t+ T̄ )|r̂1, r̂2

〉
+ C. As a consequence,

Vy (r̂1 + C, r̂2 + C, t1, t2) = Vy (r̂1, r̂2, t1, t2) + C. (28)

As this holds for any choice of T and j, it also holds for the maximum over T and j, and thus for the value function in general.
A similar argument shows that the value function is increasing in both r̂1 and r̂2. To see this, fix T and j and note that increasing

either r̂1 or r̂2 causes the expectation in Eq. (27) to either remain unchanged or to increase to
〈
r̂j(t+ T̄ )|r̂1, r̂2

〉
+ C. Therefore, for

any non-negative C,

Vy (r̂1, r̂2, t1, t2) ≤ Vy (r̂1 + C, r̂2, t1, t2) ≤ Vy (r̂1, r̂2, t1, t2) + C, (29)

Vy (r̂1, r̂2, t1, t2) ≤ Vy (r̂1, r̂2 + C, t1, t2) ≤ Vy (r̂1, r̂2, t1, t2) + C. (30)

This again holds for any choice of T and j, such that it holds for the value function in general.
For the value function on expected reward differences, V̄y(∆, t1, t2), changing both r̂1 and r̂2 by the same amount leaves ∆, and

therefore the associated value V̄y (∆, t1, t2), unchanged. In contrast, increasing only r̂1 or r̂2 by 2C increases or decreases ∆ by C.
Thus, we can use Vy (r̂1, r̂2, t1, t2) = V̄y (∆, t1, t2) + (r̂1 + r̂2) /2 from Eq. (18) and substitute it into the two above inequalities to find

V̄y (∆, t1, t2)− C ≤ V̄y (∆± C, t1, t2) ≤ V̄y (∆, t1, t2) + C, (31)

for some non-negative C ≥ 0. This shows that V̄y (∆, t1, t2) changes sublinearly with ∆. However, we cannot anymore guarantee an
increase or decrease in V̄y(·), as an increase in ∆ could arise from both an increase in r̂1 or a decrease in r̂2.

5.3 Symmetry of the value function

The symmetry in time-evolution across r̂1 and r̂2 results in a symmetry in the value function. To show this, let us again fix T and j,
such that the value function is given by Eq. (27). Then, by Eq. (26), the expectation in the value function becomes

〈
r̂3−j(t+ T̄ )|r̂2, r̂1

〉
if we flip t1, t2, and j, while leaving the remaining terms of Eq. (27) unchanged. Therefore,

Vy (r̂1, r̂2, t1, t2) = V3−y (r̂2, r̂1, t2, t2) . (32)

For the value function on expected reward differences, a flip of r̂1 and r̂2 corresponds to a sign change of ∆, such that we have

V̄y (∆, t1, t2) = V̄3−y (−∆, t2, t1) . (33)

Both cases show that we are not required to find the value function for both y = 1 and y = 2 separately, as knowing one reveals the
other by the above symmetry.

5.4 Maximum |V1(·)− V2(·)| difference

By Bellman’s equation, Eq. (16), it is best to switch attention if the expected return of accumulating evidence equals that of switching
attention, that is, if

Vy (r̂1, r̂2, t1, t2) = 〈Vy (r̂1(t+ δt), r̂2(t+ δt), t1 + |2− y|δt, t2 + |1− y|δt) |r̂1, r̂2, t1, t2, y〉− cδt = V3−y (r̂1, r̂2, t1, t2)− cs. (34)
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Before that, V3−y (r̂1, r̂2, t1, t2) < Vy (r̂1, r̂2, t1, t2) + cs, as otherwise, an attention switch would have already occurred. When it
does, we have V3−y (r̂1, r̂2, t1, t2) = Vy (r̂1, r̂2, t1, t2) + cs. That is, the attention switch happens if the value of doing so exceeds that
for accumulating evidence by the switch cost cs. Therefore, the difference between the value functions V1 and V2 can never be larger
than the switch cost, that is

|V1 (r̂1, r̂2, t1, t2)− V2 (r̂1, r̂2, t1, t2)| ≤ cs. (35)

Once their difference equals the switch cost, a switch occurs. It is easy to see that the same property holds for the value function on
expected reward differences, leading to ∣∣V̄1 (∆, t1, t2)− V̄2 (∆, t1, t2)

∣∣ ≤ cs. (36)

5.5 The decision boundaries are parallel to the diagonal r̂1 = r̂2

Following the optimal policy, the decision-maker accumulates evidence until Vy (r̂1, r̂2, t1, t2) = max {r̂1, r̂2}. For all times before
that, Vy (r̂1, r̂2, t1, t2) > max {r̂1, r̂2}, as otherwise, a decision is made. Let us first find an expression for the decision boundaries,
and then show that these boundaries are parallel to r̂1 = r̂2. To do so, we will in most of this section fix t1, t2 and y, and drop them for
notational convenience, that is V (r̂1, r̂2) ≡ Vy (r̂1, r̂2, t1, t2).

First, let us assume r̂1 > r̂2, such that max{r̂1, r̂2} = r̂1, and item 1 would be chosen if an immediate choice is required.
Therefore V (r̂1, r̂2) ≥ r̂1 always, and V (r̂1, r̂2) = r̂1 once a decision is made. For a fixed r̂1, the value function is increasing in r̂2,
such that reducing r̂2 if V (r̂1, r̂2) > r̂1 will at some point lead to V (r̂1, r̂2) = r̂1. The optimal decision boundary is the largest r̂2 for
which this occurs. Expressed as a function of r̂1, this boundary on r̂2 is thus given by

θ1y (r̂1, t1, t2) = max {r̂2 ≤ r̂1 : Vy (r̂1, r̂2, t1, t2) = r̂1} (37)

A similar argument leads to the optimal decision boundary for item 2. In this case, we assume r̂2 > r̂1, such that V (r̂1, r̂2) ≥ r̂2
always, and V (r̂1, r̂2) = r̂2 once a decision is made. The sublinear growth of the value function in both r̂1 and r̂2 implies that
V (r̂1, r̂2) grows at most as fast as r̂2, such that there will be some r̂2 at which V (r̂1, r̂2) > r̂2 turns into V (r̂1, r̂2) = r̂2. The optimal
decision boundary is the smallest r̂2 for which this occurs, that is

θ2y (r̂1, t1, t2) = min {r̂2 ≥ r̂1 : Vy (r̂1, r̂2, t1, t2) = r̂2} (38)

Note that both boundaries are on r̂2 as a function of r̂1, t1, t2, and y.
To show that these boundaries are parallel to the diagonal, we will use the shift-invariance of the value function, leading, for some

scalar C, to

θ1y (r̂1, t1, t2) + C = max {r̂2 + C ≤ r̂1 + C : Vy (r̂1, r̂2, t1, t2) = r̂1}
= max {r̃2 ≤ r̃1 : Vy (r̃1 − C, r̃2 − C, t1, t2) = r̃1 − C}
= max {r̃2 ≤ r̃1 : Vy (r̃1, r̃2, t1, t2) = r̃1}
= θ1y (r̃1, t1, t2)

= θ1y (r̂1 + C, t1, t2) ,

(39)

where we have used r̃j = r̂j + C. This shows that increasing r̂1 by some scalar C shifts the boundary on r̂2 by the same amount.
Therefore, the decision boundary for choosing item 1 is parallel to r̂1 = r̂2.

An analogous argument for θ2y(·) results in

θ2y (r̂1, t1, t2) + C = θ2y (r̂1 + C, t1, t2) , (40)

which showing that the same property holds for the decision boundary for choosing item 2. Overall, this confirms that the decision
boundaries only depend on the expected reward difference (that is, the direction orthogonal to r̂1 = r̂2), confirming that it is sufficient
to compute V̄ (·) instead of V (·).

6 Simulation details

6.1 Computing the optimal policy

In Section 3, we described the Bellman equation (Eq. (19)) which outputs the expected return given these four parameters: currently
attended item (y), reward difference (∆), expected return for accumulating more evidence, and expected return for switching attention.
Note that the symmetry of the value function (Section 5) allows us to drop−∆ from the original Eq. (19). Solving this Bellman equation
provides us with a 4-dimensional "policy space" which assigns the optimal action to take at any point in this space defined by the four
parameters above.
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The solution to the optimal policy can be found numerically by backwards induction [6]. To do so, first we assume some large
t = t1 + t2, where a decision is guaranteed. In this case, Vy(∆, t1, t2) = max{−∆,∆} = |∆| for both y = 1 and y = 2. We call this
the base case. From this base case, we can move one time step backwards in t1 (y = 1):

V̄1 (∆, t1 − δt, t2) = max

 ∆,〈
V̄1 (∆, t1, t2) |∆, t1, t2

〉
− cδt,

V̄2 (∆, t1 − δt, t2)− cs

 , (41)

The second expression in the maximum can be evaluated, since we assume a decision is made at time t. But V̄2 (∆, t1 − δt, t2)− cs,
which is the value function for switching attention, is unknown. This unknown value function is given by

V̄2 (∆, t1 − δt, t2) = max

 ∆,〈
V̄2 (∆, t1 − δt, t2 + δt) |∆, t1, t2

〉
− cδt,

V̄1 (∆, t1 − δt, t2)− cs

 , (42)

In this expression, the second term can again be found, but V̄1 (∆, t1 − δt, t2)− cs is unknown. Looking at the two expressions above,
we see that under the parameters (∆, t1 − δt, t2), V1 ≥ V2 − cs, and V2 ≥ V1 − cs, which cannot both be true. Therefore, we first
assume that V1 is not determined by V2 − cs, removing the V2 − cs term from the maximum. This allows us to find V̄1 (∆, t1 − δt, t2)
in Eq. (41). Then, we compute Eq. (42) including the V1 − cs term. If we find that V2 = V1 − cs, then V1 6= V2 − cs, which means the
V2 − cs term could not have mattered in Eq. (41), and we are done. If not, we re-compute V1 with the V2 − cs term included, and we
are done. Therefore, we were able to compute V1 and V2 under the parameters (∆, t1 − δt, t2) using information about V̄1 (∆, t1, t2)
and V̄2 (∆, t1 − δt, t2 + δt).

Using the same approach, we can find V1,2 (∆, t1, t2 − δt) based on V̄1 (∆, t1 − δt, t2 + δt) and V̄2 (∆, t1, t2). Thus, given
that we know Vy (∆, t1, t2) above a certain t = t1 + t2, we can move backwards to compute V1 and V2 for (∆, t1 − δt, t2), then
(∆, t1 − 2δt, t2), and so on, until (∆, 0, t2) for all relevant values of ∆. Subsequently, we can do the same moving backwards in t2,
solving for Vy (∆, t1, t2 − δt), Vy (∆, t1, t2 − 2δt), ..., Vy (∆, t1, 0). Following this, we can continue with the same procedure from
Vy (∆, t1 − δt, t2 − δt), until we have found V1,2 for all combinations of t1 and t2.

In practice, the parameters of the optimal policy space were discretized to allow for tractable computation. We set the large time at
which decisions are guaranteed at t = 6s, which we determined empirically. Time was discretized into steps of δt = 0.05s. The item
values, and their difference (∆) were also discretized into steps of 0.05.

Upon completing this exercise, we now have two 3-dimensional optimal policy spaces. The decision-maker’s location in this policy
space is determined by t1, t2, and ∆. Each point in this space is assigned an optimal action to take (choose item, accumulate
more evidence, switch attention) based on which expression was largest in the maximum of the respective Bellman equation. The
decision-maker moves between the two policy spaces depending on which item they are attending to (y ∈ [1, 2]).

In order to find the 3-dimensional boundaries that signify a change in optimal action to take, we took slices of the optimal policy
space in planes of constant ∆’s. We found the boundary between different optimal policies within each of these slices. We in turn
approximated the 3-dimensional contour of the optimal policy boundaries by collating them along the different ∆’s.

6.2 Finding task parameters that best match human behavior

In computing the optimal policy, there were several free parameters that determined the shape of the policy boundaries, thereby
affecting the behavior of the optimal model. These parameters included σ2, σ2

z , c, cs, and γ. Our goal was to find a set of parameters
that qualitatively mimic human behavior as best as possible. To do so, we performed a random search over the following parameter
values: cs ∈ [0.001, 0.05] (steps size 0.001), c ∈ [0.01, 0.4] (steps size 0.01), σ2 ∈ [1, 100] (step size 1), σ2

z ∈ [1, 100] (step size 1),
γ ∈ [0.001, 0.01] (step size 0.001) [2].

To find the best qualitative fit, we simulated behavior from a randomly selected set of parameter values (see next section for
simulation procedure). From this simulated behavior, we evaluated the match between human and model behavior by applying the
same procedure to each of Figs. 3B, C, E. For each bin for each plot, we subtracted the mean values between the model and human
data, then divided this difference by the standard deviation of the human data corresponding to that bin, essentially computing the
effect size of the difference in means. We computed the sum of these effect sizes for every bin, which served as a metric for how
qualitatively similar the curves were between the model and human data. We performed the same procedure for all three figures, and
ranked the sum of the effect sizes for all simulations. We performed simulations for over 2,000,000 random sets of parameter values.
The set of parameters for which our model best replicated human behavior according to the above criteria was cs = 0.0065, c = 0.23,
σ2 = 27, σ2

z = 18, γ = 0.004.

6.3 Simulating decisions with the optimal policy

The optimal policy allowed us to simulate decision making in a task analogous to the one humans performed in Kracjbich et al., 2010
[5]. For a given set of parameters, we first computed the optimal policy. In a simulated trial, two items with values z1 and z2 are
presented. At trial onset, the model attends to an item randomly (y ∈ [1, 2]), and starts accumulating noisy evidence centered around
the true values. At every time step (δt = 0.05), the model evaluates ∆ using the mean of the posteriors between the two items (see
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Eqs. (2) and (3)). Then, the model performs the optimal action associated with its location in the optimal policy space. If the model
makes a decision, then the trial is over. If the model instead accumulates more evidence, then the above procedure is repeated for
the next time step. If the model switches attention, it does not obtain further information about either item, but switches attention to
the other item. Switching attention allows for more reliable evidence from the now-attended item, and also switches the optimal policy
space to the appropriate one (see Figure 2).

To allow for a relatively fair comparison between the model and human data, we simulated the same number of subjects (N = 39)
for the model, but with a larger number of trials. For each simulated subject, trials were created such that all pairwise combinations of
values between 0 and 7 were included, and this was iterated 20 times. This yielded a total of 1280 trials per subject.

6.4 Attention diffusion model

In order compare the decision performance of the optimal model to that of the original attentional drift diffusion model (aDDM) proposed
by Krajbich and co1leagues [5], we needed to ensure that neither model had an advantage by receiving more information. We did
so by making sure that the signal-to-noise ratios of evidence accumulation of both models were identical. In aDDM, the evidence
accumulation evolved according to the following process, in steps of 0.05s (assuming y = 1):

vt = vt−1 + d(z1 − γkz2) + ηt, (43)

where vt is the relative decision value that represents the subjective value difference between the two items at time t, d is a constant
that controls the speed of integration (in ms−1), γk controls the biasing effect of attention, and ηt ∼ N

(
0, σ2

)
is a normally distributed

random variable zero mean and variance σ2. Written differently, the difference in the attention-weighted momentary evidence between
item 1 and item 2 can be expressed as

δ∆ = d (z1 − γkz2) + ηt ∼ N
(
d(z1 − γkz2), σ2

)
∼ N

(
k(z1 − γkz2)δt, σ2

kδt
)
,

(44)

where d and σ2 were replaced by kδt, and σ2
kδt, respectively. Here, the variance term σ2

kδt can be split into two parts, such that the
δ∆ term can be expressed as

δ∆ ∼ N
(
z1kδt,

1

2
σ2
kδt

)
−N

(
γkz2kδt,

1

2
σ2
kδt

)
. (45)

The signal-to-noise ratios (i.e., the ratio of mean over standard deviation) of the two terms in the above equation are z1kδt√
δt
2 σk

and

z2kδt
1
γk
σk
√

δt
2

, respectively.

Continuing to assume y = 1, in the Bayes-optimal model, evidence accumulation evolves according to

δx1 ∼ N
(
z1δt, σ

2
bδt
)
,

δx2 ∼ N
(
z2δt, γ

−1
b σ2

bδt
)
.

(46)

Therefore, the difference in the attention-weighted momentary evidence between item 1 and item 2 can be expressed as:

δ∆ ∼ N
(
z1δt, σ

2
bδt
)
− γbN

(
z2δt, γ

−1
b σ2

bδt
)

∼ N
(
z1δt, σ

2
bδt
)
−N

(
γbz2δt, γbσ

2
bδt
)
.

(47)

The signal-to-noise ratios of the two terms in the above equation are z1δt√
δtσb

and z2δt
1√
γb
σb
√
δt

, respectively.

In order to match the signal-to-noise ratios of the two models, we set equal their corresponding expressions, to find the following
relationship between the parameters of the two models:

k = 1,

σ2
k = 2σ2

b ,

γk =
√
γb.

(48)

Therefore, we simulated the aDDM with model parameters γk =
√
γb and σ2

k = 2σ2
b .

In the original aDDM model, the model parameters were estimated by fitting the model behavior to human behavior after setting a
decision threshold at ±1. Since we adjusted some of the aDDM parameters, we instead iterated through different decision thresholds
(1 through 10, in increments of 1) and found the value that maximizes model performance. To keep it consistent with behavioral data,
we generated 39 simulated participants that each completed 200 trials where the two item values were drawn from the prior distribution
of the optimal policy model, zj ∼ N

(
z̄, σ2

z

)
using both the optimal model and the aDDM model.
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6.5 Adjusting the attention bottleneck

We investigated whether changing the relative amount of attentional resource dedicated to the attended versus unattended item would
influence decision-making performance. To do so, we varied the amount of momentary evidence provided about the attended and
unattended items while keeping the overall evidence constant. We found the overall evidence from the base model by computing the
Fisher information (Ibase) it provides about the respective true item values. This Fisher information is computed as the sum of the
reciprocal of the variance from the attended and unattended items, resulting in

Ibase =
1

σ2
+

1

γ−1σ2
=

1 + γ

σ2
. (49)

Our goal is to use κ (0 ≤ κ ≤ 1) to control the relative attentional resource allocated to the attended versus unattended item, analogous
to the γ term used in the base model. To do so, we set the variance of the two items as σ2

tot/(1− κ) and σ2
tot/κ for the attended and

unattended items, respectively, where σ2
tot = 1

Ibase
represents the total variance associated with evidence accumulation of both items.

This satisfies our requirement of flexibly changing attention allocation while maintaining the Fisher information of the base model,

1− κ
σ2
tot

+
κ

σ2
tot

=
1

σ2
tot

= Ibase. (50)

To implement this adjusted model, for each value of κ, we found the associated σ2
κ and γκ to replace the σ2 and γ terms in the base

model. To do so, we set the variance of the attended item above equal to that from the base model,

1− κ
σ2
tot

=
1

σ2
κ

. (51)

Since σ2
tot = 1

Ibase
= σ2

1+γ , we can rearrange the above and solve for σ2
k and γκ to get,

σ2
κ =

σ2
tot

1− κ
,

γκ =
κ

1− κ
.

(52)

Using the above σ2
κ and γκ, we computed the optimal policy and simulated behavior using the same approach as for the base model.
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Figure 1: Changes in the optimal policy space and model behavior with adjustments in free model parameters. The optimal policy
space and its associated psychometric curves from the base model is shown in the top row. The policy space and psychometric curves
corresponding to changes in single free parameters are shown in subsequent rows. In rows 2-4, psychometric curves from he base
model on row 1 is shown in red for comparison.
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Figure 2: Replication of human behavior by simulated optimal model behavior in a perceptual decision-making task. This task involves
choosing the item with a greater degree of a certain a perceptual quality (e.g., brightness of a dot, angle of a line). Therefore, the
decision maker is interested in the difference in the perceptual quality between the two items, rather than their difference in value. (A)
Monotonic increase in probability of choosing item 1 as a function of the perceptual difference between item 1 and 2. (B) Monotonic
decrease in response time (RT) as a function of trial difficulty. (C) Decrease in the number of switches as a function of trial difficulty.
(D) Effect of last fixation location on item preference. The item that was fixated on immediately prior to the decision was more likely to
be chosen. (E) Attention’s biasing effect on item choice. The item was more likely to be chosen if it was attended to for a longer period
of time. (F) Replication of fixation pattern during decision making. In the perceptual decision-making task, both model and human
data showed increased duration for every subsequent fixation, a notable difference compared to fixation behavior in the value-based
task. For (A)-(D), the behavioral data has a smaller range of perceptual difference due to insufficient trials with such large perceptual
difference. Error bars indicate SEM across participants for both human and simulated data.
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