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Abstract

Motivation: As antibiotic resistance creates a significant global
health threat, we need not only to accelerate the development of novel
antibiotics but also to develop better treatment strategies using exist-
ing drugs to improve their efficacy and prevent the selection of further
resistance. We require new tools to rationally design dosing regimens
to from data collected in early phases of antibiotic and dosing devel-
opment. Mathematical models such as mechanistic pharmacodynamic
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drug-target binding explain mechanistic details of how the given drug
concentration affects its targeted bacteria. However, there are no avail-
able tools in the literature that allows non-quantitative scientists to de-
velop computational models to simulate antibiotic-target binding and
its effects on bacteria.
Results: In this work, we have devised an extension of a mechanis-
tic binding-kinetic model to incorporate clinical drug concentration
data. Based on the extended model, we develop a novel and inter-
active web-based tool that allows non-quantitative scientists to create
and visualize their own computational models of bacterial antibiotic
target-binding based on their considered drugs and bacteria. We also
demonstrate how Rifampicin affects bacterial populations of Tubercu-
losis (TB) bacteria using our vCOMBAT tool.
Availability: vCOMBAT online tool is publicly available at
https://combat-bacteria.org/.

1 Introduction

As antibiotic resistance poses a substantial worldwide health threat [1], lead-
ing academics have recently declared that we stand at the precipice of the
post-antibiotic era [2]. To circumvent resistence, we need to limit inappro-
priate prescribing of existing drugs and also accelerate the development of
novel antibiotics. Moreover, there is also a clear need to develop better treat-
ment strategies using existing drugs to improve their efficacy and prevent
the selection of further resistance.

Even though antibiotics have been used since 1944, we are not yet able
to predict how antibiotic concentration affects bacteria. That leads to our
inability to design rational treatment strategies using existing drugs. That
is illustrated by the fact that substantial treatment improvements have been
made solely based on expert opinion even after decades of clinical practice
[3, 4, 5, 6, 7].

Currently, most dosing recommendations are based on the selection of
the best regiments during a series of trial-and-error experiments. Many
candidate drug regimens fail during this testing process, and for those can-
didates that do succeed, the best regimen may be missed. This costly and
long trial-and-error approach may also slow down the development of new
antibiotics and limits the opportunities for dosing improvement of existing
drugs [8]. The design of rationale dosing of new combination regimens using
multiple drugs is even more complex. The nature of the drug-drug inter-
action may change depending on drug concentration and therefore, antibi-
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otic synergy and antagonism cannot usually be predicted [9]. Furthermore,
differences in the pharmacokinetic and pharmacodynamic profiles of drugs
used in combination regimens can promote the selection of resistance during
multi-drug treatment [10, 11].

We require new tools to rationally design dosing regimens that maximize
the efficacy of existing antibiotics and to shorten the development process for
new antibiotics [12]. The development of models that can guide the selection
of optimal dosing strategies from data collected in early phases of antibiotic
development (e.g. drug-target binding and transmembrane permeability,
bacteriostatic and bactericidal action of living bacteria) could accelerate the
drug development process and dosing design process [13]. Computational
models and tools that predict relapse from pre-clinical and early clinical
data would be immensely demanded [14, 15].

Mathematical models such as mechanistic pharmacodynamic drug-target
binding [16] explain mechanistic details of how the given drug concentra-
tion affects its targeted bacteria. In the mechanistic models, each living
bacterium has n target molecules. The models classify living bacteria into
different compartments based on the number of bound target molecules [17].
They also incorporate both bacteriostatic and bactericidal action of living
bacteria into their simulations. While such models have gained traction in
the last years, there are no available tools to implement those models for
scientists who are not experts in mathematical modelling. Developing these
computational models to simulate the mechanism of drug-target binding re-
quires both complex modeling and programming process. For healthcare
providers and scientists with a non-quantitative background, creating such
mathematical models for their considered drugs and bacteria is a challenging
and time-consuming task.

In this work, we have devised an extension of the mechanistic binding-
kinetic model that simulates the process of bacterial antibiotic target-binding.
The extended model allows the incorporation of clinical drug concentra-
tion data to the original mechanistic model [17] in order to understand the
effect of drug-target binding in vivo. Based on the extended model, we
have developed an interactive web-based tool, namely vCOMBAT, to allow
non-quantitative scientists to create and visualize their own computational
models of bacterial antibiotic target-binding. In contrast to our previously
developed COMBAT modeling framework [18], this tool allows to incorpo-
rate antibiotic time-concentration profiles measured in patients. The tool
can inform optimal dosing strategies based on antibiotic and bacteria data
provided by the users. We also demonstrate how Rifampicin affects bacterial
populations of Tuberculosis (TB) bacteria using our vCOMBAT tool.
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2 Method and implementation

2.1 Mathematical models of drug binding kinetics

The web-based tool is built as an extension of the classic reaction kinetics
model [17], where a bacterium has n target molecules binding to the an-
tibiotic molecules. Depending on the number of bound target molecules x
out of n target molecules in a bacterium, bacteria are classified into n + 1
compartments Bx( where x is from 0 to n). Living bacteria also replicate
and die at a rate as functions of the bound targets x. When a bacterium
duplicates, it results in two bacteria with two times of the number of tar-
get molecules in two daughter cells. However, the number of bound target
molecules x in the mother cell remains constant and is distributed into the
two daughter cells. The distributions are calculated based on a hypergeo-
metric distribution function.

The model is implemented as a system of ordinary differential equations
as Equation 1:

dBx

dt
=

kf
V nA

(n− x+ 1)ABx−1 − krxBx −
kf
V nA

(n− x)ABx

+ kr(x+ 1)Bx+1 + ρx − rxBx

C −
∑n

j=0Bj

C
− dxBx

dA

dt
= −

kf
V nA

n−1∑
x=0

(n− x)ABx + kr

n∑
x=1

xBx

ρx = 2
n∑

i=x

fi,xriBi

C −
∑n

j=0Bj

C

(1)

where Bx is the bacteria population with x bound targets; n is the number
of targets per bacterium; kf is the binding rate; kr is the unbinding rate;
V = e−15[L/bacterialcell] is the average intracellular volume; and nA =
6×e23 is the Avogadro number; C is the carrying capacity of total bacterial
population; A is the drug concentration; ρx is the total rate with which
replication creates new bacteria with x bound target; rx and dx are the
replication and death rate of bacteria with x bound targets, respectively;
fi,x is the hyper-geometric distribution function.

We develop vCOMBAT as an extension of the classic reaction kinetics
model [17]. In our extension of the model, instead of calculating antibiotic
concentration A from Equation 1, users can supply their own measured
concentration data to the model. Antibiotic concentrations are measured
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in different time points separated by a time interval (e.g., every hour or
every day). In order to incorporate the external concentration data in to
the original model, the concentration values A(t) at time t are calculated by
a linear function of the two measured concentration data points A(t1) and
A(t2), where t1 < t < t2.

2.2 Rifampicin test case

TB is currently the bacterial infection with the highest number of infec-
tions in the world. Even though antibiotics drugs to treat TB are used
for many decades, the treatment success rate is low. Understanding how
anti-tuberculosis drugs affect the total bacterial population in TB patients
helps to guide the design of dosing strategies. Rifampicin is one of the most
effective antibiotics to treat TB due to its safety and tolerability of its high-
dose treatment and its low production cost [19]. There are currently several
clinical trials on assessing increasing the doses on rifampicin and, therefore,
it is a huge interest to model Rifampicin actions on TB [20].

The pharmacokinetic-pharmacodynamic model is intended to capture
and simulate the decrease in the number of bacteria in the cavity walls in
the lungs of the tuberculosis patients in response to rifampicin exposure.
Table 1 summarizes the parameter values of Rifampicin and TB bacteria
used in Equations 1.

Table 1: Model-parameter values when using Rifampicin in TB patients.
These values are identified from the literature.
Parameter Description Unit Value References

A Antibiotic concentration mg/L e.g., 5 mg/L measured/external source
B0 Starting population Number of bacteria 1e6 assumption
n Target molecules molecules 100 assumption
D0 Maximum death rate s−1 1.6e−5 [21]
R0 Maximum replication rate s−1 9.25833e−6 [21]
kT Killing threshold 99 from fc of Eq (3) [22]

MIC = KDfc
1−fc

rT Replication threshold 98 from fc of Eq (3) [22]

MIC = KDfc
1−fc

kf Binding rate M−1s−1 1.2e6 [23]
kr Unbinding rate s−1 0.001284 [23]
W Drug molecular weight g/mol 822.94 [24]
C Carrying capacity bacteria/ml 1e9 [22]
V Intracellular volume L/bacterial cell 1e−15 [22]

MIC Minimum inhibitory concentration mg/L 0.4 [21]
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2.3 Model implementations

In order to make the vCOMBAT tool accessible to on-line users, it is im-
portant to have a response time (i.e., computation runtime of the model
to produce results) as fast as possible. Choosing a high-performance math
library for numerical computation to solve our ODE system is one of the
solutions to enhance its time performance. The original model was built in
R environment because R provides a vast amount of supported statistical
tools and packages which makes it straightforward to program mathematical
models [25]. However, R is also known for its low performance compared to
other programming languages [26]. To provide high performance and short
computational time, GNU Scientific Library (GSL) [27] is chosen as a nu-
meric software package to solve our large ODE system described in Section
2.1.

We implement our original model and vCOMBAT - the extended model
in C environment using GSL library and evaluate the results by comparing
the simulated outputs of the original model and vCOMBAT model. Then,
we conduct experiments to analyze the performance of the models.

3 Results

3.1 Model estimation of Rifampicin

In this section, we demonstrate the use of the vCOMBAT tool for antibiotic
Rifampicin treatment in TB patients. We have the vCOMBAT model pa-
rameters from Table 1 and the antibiotic concentration over time from the
published compartmental pharmacokinetic model from Strydom et al. [28].
The compartmental pharmacokinetic model can be used to simulate antibi-
otic levels in different kinds of infected tissue in the lungs of TB patients.
Open cavities in the lungs are considered to be the source of the sputum
which is often measured in tuberculosis clinical trials [29, 13]. Therefore,
we have chosen to model the antibiotic concentrations in the tissue of cavity
walls. We simplify the compartmental model to our requirement by using
only absorption, plasma, and tissue compartments without using a compart-
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ment chain for the absorption as equations 2:

dAabs

dt
= input(t) − kaAabs

dAplasma

dt
= kaAabs −

CL

V s
Aplasma

dAtissue

dt
= kpl−tissue(R

Aplasma

V s
−Atissue)

(2)

The parameters of Equation 2 are published by Strydom et al. [6],
where input(t) is the input function, to be able to implement daily doses of
drugs into the absorption compartment; Aabs, Atissue, and Aplasma are an-
tibiotic concentrations in the absorption, plasma and tissue compartments,
respectively; ka = 1.55[h−1] is the absorption rate of the drug from ab-
sorption compartment; CL = 5.72[L/h] is the clearance rate of the drug
from the plasma compartment; V s = 52.3[L] is the volume of distribution
in liters; R = 0.614 is the penetration coefficient into the tissue (cavity
wall); kpl−tissue = 1.98[h−1] rate of drug moving from plasma to tissue. For
the estimates, we simulated doses of Rifampicin as 10mg/kg bodyweight
(standard dose) for a 60kg person [30].

We use the antibiotic concentration over time generated from the com-
partmental pharmacokinetic model as concentration input for the vCOM-
BAT model. The simulated bacteria population over time by the vCOMBAT
model is presented in Figure 1. The results show that the bacteria popula-
tion reduces but then relapses approximately after day two when a patient
is treated with only a single dose of Rifampicin (600 mg). The results also
show that with repeated doses of Rifampicin daily (i.e., 600mg every day in
4 days), the bacteria population keeps being reduced through 4 days until
0.6% of the original population.

3.2 Validation with the pharmacodynamic model based on
clinical data

In this section, we compare the output of our vCOMBAT model - a mecha-
nistic pharmacodynamic model with the traditional pharmacodynamic model
by Aljayyoussi et al. [31]. Mechanistic models provide a deep understanding
of drug action and capture various pharmacodynamic effects [16]. Tradi-
tional models, on the other hand, are simpler but limited due to several as-
sumptions that are likely invalid in reality. E.g., There is no cellular growth
or death meaning that the total number of target molecules is constant.
Traditional models are, therefore, not able to capture the pharmacodynamic
effects such as post-antibiotic and inoculum effect [16].
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The traditional model by Aljayyoussi et al.[31] develops the relationships
of the antibiotic concentration and the net growth (elimination) rate of My-
cobacterium tuberculosis bacteria exposure to Rifampicin as in Equation 3,
where A is the antibiotic concentration in [mg/ml], B(t) represents of bac-
terial density over time in [ml−1], r is growth rate of bacteria in [day−1],
ECmax is the maximum elimination rate in [day−1], and EC50 is the half-
maximal effective concentration in [mg/L]. Aljayyoussi et al. [31] found the
values of ECmax = 1.82, EC50 = 0.51, and r = 0.8 by fitting their clinical
data into their model. With concentration A provided by the compart-
mental pharmacokinetic model [28] described in Section 3.1 and the known
parameters, the bacteria population over time B(t) by the traditional model
[31] is computed as Equation 3.

δ(A) = −r +
ECmaxA

EC50 +A

dB(t)

dt
= −δ(A)B(t)

(3)

Figure 2 displays the bacteria population after treating TB patients with
Rifampicin over 4 days by our mechanistic vCOMBAT model and the tra-
ditional model [31]. We notice that for a single-dose treatment (600 mg of
Rifampicin) with the vCOMBAT model, the total bacteria population re-
duces for two days before bacteria regrow while with the traditional model,
the population decreases and then increases after approximately 18 hours.
This can be explained by the post-antibiotic effect [16] which the mechanistic
models can capture. The post-antibiotic effect is the delay of the bacterial
regrowth after bacteria are exposed to antibiotics. The bound drug-target
molecules require a certain time to unbind and free the targets, as well as
the drug molecules need time to leave the cell. Therefore, the vCOMBAT
model in Figure 2 has the bacteria regrown later than the bacteria in the
traditional model.

3.3 Model performance analysis

In this section, we analyze the performance of the original and extended
vCOMBAT models. We design the three test cases for three scenarios with
model parameters from Table 2. Test case 1 has no bacterial growth and
death; test case 2 is a normal scenario where there is bacterial growth and
death while test case 3 has a high initial antibiotic concentration which
shows the effect on the bacteria subpopulations from different percentages
of bound targets. To validate the results from the extended model, we
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compare the output of the original and the extended model for the three
designed test cases. The antibiotic concentration input for the extended
model is generated by the original model. In this way, we expect that the
outputs of the two models are similar. Figure 3 demonstrates the effect of
model parameters on the total bacteria population and bacteria population
with different percentages of bound targets.

Table 2: Model-parameter values of the three test cases used for model
validation and performance analysis.

Parameter Testcase 1 Testcase 2 Testcase 3

Starting population 1e6 1e6 1e6

Initial antibiotic level (mol/cell) 1e3 1e3 1e6

Simulated treatment length (seconds) 86400 86400 86400
Target molecules 100 100 100

Maximum kill rate 0 0.001 0.001
Killing threshold 50 60 60

Replication threshold 50 50 50
Maximum replication rate 0 0.00025 0.00025

Binding rate 1 1 1
Unbinding rate 0.01 0.01 0.01

Drug Molecular Weight 555.5 555.5 555.5
Carrying capacity 1e9 1e9 1e9

Intracellular volume 1e−15 1e−15 1e−15

We analyze the performance of our extended model together with the
original model in two environments: R and C. We conduct the experiments
to measure computation runtime of the original model and the extended
model in different environments. The original model is implemented in
both R programming language and C programming language. The extended
model is implemented in C environment.

Environmental set-up In R environment, we used library deSolve to
solve our ODE system and tictoc to measure the runtime of simulations.
In C environment, we used GNU Scientific Library GSL 2.5 to solve ODE
systems. The parameters of the experiments are from Test case 2 of Table
2. Test case 2 was chosen as a typical scenario where there are growth and
death of bacteria. Each experiment was run at least three times to measure
the mean runtime and its variability. All experiments were conducted on an
Intel platform with one Intel Core i7 processor (4 cores, 2GHz speed, and 8
GB DDR3).
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Time performance The performance of the original model and the ex-
tended model are illustrated in Figure 4. The experimental results show that
the computational model requires significant processing time in R environ-
ment as compared to C environment. E.g., to simulate 24-hours treatment
length, the computation time needs a maximum of 4252 seconds in R and a
maximum 150 seconds in C. Since the computation time (runtime) is propor-
tional to the simulated treatment length, the longer the simulated treatment
length is, the longer computational time is required. The performance of
the model computation is approximately 28 times faster with the conducted
experiments for the extended model. By improving the performance, the
model results are accessible to users in a short time. Moreover, the timely
model is also beneficial in the scenario where processing algorithms require
running the models with several iterations.

3.4 Implementation of vCOMBAT model into a scientific
web-based tool

We develop a web-based tool to provide a user-friendly, scientific platform
to create pharmacodynamic models and simulate them using our simulation
software. This online tool also provides data visualization of the simulation
results based on input parameter-values of the chosen drug compounds,
bacteria type, and treatment length. The tool illustrates critical information
such as bacteria population, drug concentration and complex bound target
over treatment length to assist the design of dosing regimens. Figure 5
and Figure 6 are the sample pages visualizing the effect of a single dose of
Rifampicin on a typical Tuberculosis patient over 4 days. The web tool can
be freely accessed at https://combat-bacteria.org/. The tutorial providing
step-by-step instructions for using the features of the interactive vCOMBAT
web-based tool is in the supplementary document.The tool source code is
uploaded to the git repository: https://github.com/vitrannn/vCOMBAT.

4 Discussion

In the real scenario using Rifampicin to treat TB, the output of the vCOM-
BAT model and tool are compared with the output of the traditional phar-
macodynamic model. Both models can predict the relapse from a single-dose
Rifampicin at different time points. The difference is accounted for by the
post-antibiotic effect. The vCOMBAT model is a mechanistic pharmaco-
dynamic model that can capture the post-antibiotic effect where bacterial
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regrowth is delayed. The result from the vCOMBAT tool can aid the se-
lection of an optimal drug dosing by informing which dosing regimens can
terminate the bacterial population and clear an infection. It can also predict
relapse from pre-clinical and early clinical data and therefore, shorten the
development process for new antibiotics.

The vCOMBAT tool run time varies by the values of the model param-
eters. For the model of using Rifampicin to treat TB patients, the runtime
is longer (e.g., 15 minutes of simulation for 4 days of simulated treatment
length) than the sample test cases due to the values of killing and replication
threshold. The combination of Rifampicin drug and TB has extreme values
of killing and replication threshold (i.e., TB bacterium are killed when 99
of its 100 free target molecules are bound). That means at every time step,
the ODE solver has to compute 99 sub-populations of compartments Bx

and assure their precision at the same time. However, the tool runtime (i.e.,
15 minutes) is still considerably quick given the long simulated treatment
length (i.e., 4 days).

The vCOMBAT tool provides a user-friendly and scientific platform for
non-quantitative scientists and healthcare providers to create and visualize
their own binding kinetic models for their considered drugs and bacteria.
Moreover, with a timely and interactive tool, it also opens a wide range of
opportunities to further use the vCOMBAT model in practices. The model
can predict the drug efficacy for a large selection of dosing regimens and
guide the choice of optimal doses. It can also be integrated with machine
learning techniques to automatize the process of selecting optimal dosing.

5 Conclusions

This work developed an extension of the mechanistic binding-kinetic model
that simulates the process of bacterial antibiotic target-binding and presents
the effect of drug actions on bacterial population over time. Based on the
vCOMBAT model, we developed an interactive online tool that allows sci-
entists and healthcare providers to create and visualize their own binding-
kinetic models in a quick response time. We also demonstrated how the
vCOMBAT tool simulates and visualizes the effect by different dosing strate-
gies of Rifampicin on TB bacterial populations.

In the future, this work will be developed further to devise a framework
to assist the process of chosing the optimal dosings. In the case where there
is a wide range of possible dosings to be considered, modeling and selecting
the optimal dosing from all the dosing possibilities are significantly more
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complex. Our ultimate aim is to make the process of selecting optimal
dosing less time-consuming which is critical in improving patient well-being.
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Figure 1: Bacteria population predicted by the extended vCOMBAT model
over time. The three diagrams display the bacterial population with differ-
ent simulated treatment length and dosing strategies when using Rifampicin
in TB patients. The model-parameter values are taken from Table 1. The
resulting graphs show that a) with a single dose of Rifampicin (600 mg),
the bacteria population decreases and then regrows approximately after day
two and b) with repeated doses of Rifampicin daily, the bacteria population
keeps being decreased through 4 days and c) the bacteria population over the
first 30 minutes of the simulated treatment for both dosing strategies in (a)
and (b). The x-axis shows the simulated treatment length in hours or min-
utes. The y-axis shows the resulting bacteria population over the treatment
time. The percent.bound legends representing the sub-populations which
have from 0 to 100 percents of bound targets are depicted by different colors
displayed in (d).
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Figure 2: The comparison of vCOMBAT model and pharmacokinetic model
regarding the bacteria population after treating TB patients with Rifampicin
over 4 days. In this diagram, the x-axis shows the simulated treatment
length (days). The y-axis depicts the total bacteria population throughout
the treatment duration. The green and blue lines are the total bacteria pop-
ulation simulated by the vCOMBAT model with repeated doses and a single
dose, respectively. The orange and yellow lines are the total bacteria popula-
tion simulated by the pharmacokinetic model [28] with repeated doses and a
single dose, respectively. The bacteria population by the vCOMBAT model
has a relapse that occurred later than the population by the traditional
model due to the post-antibiotic effect.
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Figure 3: Model validation by comparing the result from the original model
implemented in R and the extended model implemented in C. The three
test cases were designed with different model-parameter values from Table
2 and scenarios. Test case 1 has no growth and death of bacteria. Test case
2 has the growth and death of bacteria. In test case 3, the initial dose of
antibiotic is kept as the one in test case 2, but the initial number of bacteria
is 1e6 instead of 1e4 as in test case 2. In (a), the x-axis shows the simulated
treatment length in 60 minutes. The y-axis shows the bacteria population
over the treatment length. There are 101 stacked areas representing the
bacteria population which has 0 to 100 percents of bound targets. The
percent.bound legends are depicted by a range of different colors. Since the
external concentration input for the extended model is from the output of
the original model, we expect that the two models provide similar outputs.
The results show that for all three test cases, model behaviors of the original
model and the extended model are similar in terms of the bacteria population
and percentage bound target. In both models, the results also demonstrate
the effect of model parameters such as death/growth rate, initial antibiotic
level, and initial population on the final population. In test case 3, the
extended model predicts an initial peak for some subpopulations due to
the difference of drug-concentration profiles. I.e., the extended model is
supplied with concrete values of drug concentration while the original model
calculated the continuous drug concentration values at every time step. The
plot (b) shows the killing curve assumed for the models, where R0, rT are
the maximum replication rate and replication threshold, respectively; D0,
kT are the death rate and killing threshold, respectively. In (b), the y-axis is
the replication/death rate while the x-axis is the percentage of bound target.
The more targets in the bacteria are bound, the slower rate that bacteria
replicates with until replication threshold kT . When the percentage of bound
target reaches killing threshold kT , the death rate becomes D0.
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Figure 4: Performance comparison of the original model implemented in
programming language R, the original model in C, and the extended model
implemented in C. The x-axis shows the simulated treatment length in hours.
The y-axis shows the runtime in seconds to complete the simulation. Each
experiment (i.e., test case 2 with different simulated treatment lengths (i.e.,
15 minutes, 1 hour, 12 hours, and 24 hours)) is run at least three times
and their error bars represent runtime variability. The model-parameter
values of experiments are from Table 2. The resulting graph shows that
the computational performance of the model is improved significantly in the
C environment. The extended model in C environment has the shortest
computation time.
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Figure 5: Interactive web-based tool vCOMBAT for visualizing bacteria
population, antibiotic concentration, and complex bound target over sim-
ulated treatment length. This figure shows a result page of vCOMBAT
displaying the bacteria population when using Rifampicin to treat TB with
a single dose. The input parameters are from Table 1. The results (the graph
in the right) are displayed in the logarithm scale based on model-parameter
values provided by users (the panel in the left). Users can provide the de-
sired parameter values by entering their data to the panel on the left. Users
also provide measured/external antibiotic concentrations by entering data
to the field ”Drug Concentration over Time”. In the resulting graph, the
x-axis shows the simulated treatment length in hours. The y-axis shows
the resulting bacteria population in the logarithm scale over the treatment
time. There are 101 stacked area in this graph representing the bacteria
population Lx (x represents the percentage of bound targets varies from 0
to 100). The darker color depicts the higher value of x. The web-based tool
also provides the output data (Lx values for each hour during the simulated
treatment length).
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Figure 6: Visualizing antibiotic concentration (An) and complex bound tar-
get (AT) and the total bacteria population (BP) over simulated treatment
length using the vCOMBAT web-tool. The figure shows a page of the web-
based tool displaying antibiotic concentration and complex bound target
when using Rifampicin to treat TB with repeated doses daily over 4 days.
The results (the graph on the right) are displayed based on model-parameter
values provided by users (the panel on the left). In the graph, the x-axis
shows the simulated treatment length in hours. The y-axis shows the result-
ing complex bound target AT (the red area), the total bacteria population
BP (the white area), and antibiotic concentration An (the black area, in this
case, is covered by AT and BP area) over the treatment time. The user can
also choose to display solely AT, BP, or An by adjusting the ”Series” link
in the upper-left corner of the graph.

20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.236711doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.05.236711

	Introduction
	Method and implementation
	Mathematical models of drug binding kinetics
	Rifampicin test case
	Model implementations

	Results 
	Model estimation of Rifampicin
	Validation with the pharmacodynamic model based on clinical data
	Model performance analysis
	Implementation of vCOMBAT model into a scientific web-based tool

	Discussion
	Conclusions

