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Abstract 

MicroRNAs (miRNAs) are small non-coding RNAs that are key players in the 

regulation of gene expression. In the last decade, with the increasing 

accessibility of high-throughput sequencing technologies, different methods 

have been developed to identify miRNAs, most of which rely on pre-existing 

reference genomes. However, when a reference genome is absent or is not of 
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high quality, such identification becomes more difficult. In this context, we 

developed BrumiR, an algorithm that is able to discover miRNAs directly and 

exclusively from sRNA-seq data. We benchmarked BrumiR with datasets 

encompassing animal and plant species using real and simulated sRNA-seq 

experiments. The results demonstrate that BrumiR reaches the highest recall 

for miRNA discovery, while at the same time being much faster and more 

efficient than the state-of-the-art tools evaluated. The latter allows BrumiR to 

analyze a large number of sRNA-seq experiments, from plants or animals 

species. Moreover, BrumiR detects additional information regarding other 

expressed sequences (sRNAs, isomiRs, etc.), thus maximizing the biological 

insight gained from sRNA-seq experiments. Finally, when a reference genome 

is available, BrumiR provides a new mapping tool (BrumiR2ref) that performs 

an a posteriori exhaustive search to identify the precursor sequences. The 

code of BrumiR is freely available at https://github.com/camoragaq/BrumiR. 

Introduction 

MicroRNAs (henceforth denoted by miRNAs) are small RNA molecules usually 

shorter than 25 nucleotides (nt), which have been identified as crucial 

regulators of gene expression mostly at the post-transcriptional level (1). 

miRNAs are involved in a wide range of biological processes including cell 

cycle, differentiation, apoptosis and disease (2). They have been the target 

molecules for a large number of important applications, more particularly in 

cancer where miRNAs have been shown to play important roles in driving or 
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suppressing tumor spread (3,4). In plant species, unravelling host-pathogen 

interactions mediated by miRNAs may shed light on plant development and 

its relation with the environment, both essential knowledge that can lead to 

the discovery of new biotechnological products for the agricultural industry 

(5,6). 

Since the first classification and annotation of miRNAs (7,8), accurately 

identifying them as well as the regulatory networks in which they are involved 

has proven difficult (9,10).  Accurate prediction of known and novel miRNAs 

along with their targets is however essential for increasing our understanding 

of the miRNA biology (3).   

Nowadays, a common experimental practice is to identify miRNAs and their 

expression patterns using next generation sequencing technologies (NGS) 

(11). Commonly, NGS experiments are able to generate more than 20 million 

sRNA-seq reads, thus promoting the development of algorithms to transform 

and process such data into biological information (12).  

Currently, there are two computational strategies for the discovery of miRNAs: 

1) genome-based approaches that rely on the mapping of the sRNA-seq 

reads to a reference genome and subsequent evaluation of the sequences 

generating the characteristic hairpin structure of miRNA precursors (9); 2) 

machine-learning approaches which rely on the biogenesis features extracted 

from the knowledge on miRNA sequences available in databases such as 

miRBase (13) and on the analysis of the duplex structure of miRNAs (14). 

Genome-based methods, that have been updated at the pace of the evolving 

NGS technologies, are the most widely used tools in this field, and their 
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results have populated the public miRNA repositories (12). Such methods are 

the natural choice for the study of model species with high quality reference 

genomes available. However, it has been shown that most of the genome-

based tools struggle with a high rate of false positive predictions (9). 

Additionally, a critical step of such tools is the use of genome aligners (15,16) 

to map the sRNA-seq reads to the reference genome. Mapping short (< 30 nt) 

and very similar sequences to a large, complex, and repetitive reference 

genome is however a difficult and error-prone task (17). Genome-based 

methods are thus highly sensitive to the aligner selected as well as to the 

parameters employed and the thresholds chosen (e.g. number of mismatches 

allowed) in order to discard mapping artefacts generated from sequencing 

errors (18). Furthermore, despite all the advancements in the sequencing 

technologies and de novo assembly methods, few complete genomes are 

available today, which is a recurring problem that researchers working on 

non-model species face (19). The lack of a high quality reference genome 

thus reduces the possibilities for discovering novel miRNAs (14).  Genome-

based methods such as miRDeep (20), miRDeep2 (21), and miR-PREFeR (22) 

are included in this group. 

On the other hand, new methods such as miReader (23), MirPlex (24), and 

mirnovo (14), in particular using machine-learning approaches, were 

specifically developed as an alternative to discover miRNAs in species 

without a reference genome. In the case of mirnovo, the initial step involves 

the clustering of the sRNA-seq reads performing an all-vs-all read comparison 

that is followed by a subsequent classification of the clusters into putative 
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miRNAs using pre-trained models. The performance obtained by such 

methods on well-annotated species is comparable to those achieved by 

genome-based methods (9). However, relying exclusively on annotated 

miRNAs for training machine learning models may introduce a bias towards 

the identification of well-characterized miRNAs over species-specific ones 

(12). Nonetheless, machine learning methods have demonstrated that it is 

possible to discover miRNAs using only the sequence information present in 

the sRNA-seq experiment (14). 

There remains however a need to go further in the development of algorithms 

for finding novel miRNAs in non-model species using only the sequence 

information. With this purpose in mind, the adoption of a special type of 

graphs called de Bruijn graphs may be considered. This is a widely used 

approach for the de novo reconstruction of genome or transcriptome 

sequences (25). It therefore appears to be a plausible option for organizing, 

clustering and assembling the sequence information present in sRNA-seq 

experiments. However, accommodating the de Bruijn graph approach for the 

discovery of miRNAs involves the development of new methods to address 

the specific characteristics of sRNA-seq data. Indeed, mature miRNA 

sequences are short (18-24 nt), thus limiting the overlap length for building a 

de Bruijn graph which in turn impacts the global topology by inducing tangled 

graph structures. Moreover, miRNAs captured in a sRNA-seq experiment 

have variable expression, from low (few reads) to highly expressed (thousands 

of reads), which may induce spurious graph connections that should be 

removed in order to isolate and detect both types of miRNAs. Finally, the 
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sequencing errors present in sRNA-seq data further induce spurious 

connections and are harder to detect as compared to genomic data due to 

the variable expression and the shorter lengths of the miRNAs. Overall, using 

a de Bruijn graph to analyze sRNA-seq data and extract information from 

such data seems thus counterintuitive as mature miRNAs are captured full-

length by the current NGS technologies. However, a de Bruijn graph has 

several interesting properties for the discovery of miRNAs, mainly due to the 

fact that it encodes all the sRNA-seq sequence information at once in a 

compact and connected representation (graph), without the need to perform 

an all-vs-all read comparison or mapping to a reference.  

In this paper, we present BrumiR, a de novo algorithm based on a de Bruijn 

graph approach that is able to identify miRNAs directly and exclusively from 

sRNA-seq data. Unlike other state-of-the-art algorithms, BrumiR does not rely 

on a reference genome, on the availability of close phylogenetic species, or 

on conserved sequence information. Instead, BrumiR starts from a de Bruijn 

graph encoding all the reads and is able to directly identify putative miRNAs 

on the generated graph. BrumiR also removes sequencing errors and 

navigates inside the graph detecting putative miRNAs by considering several 

miRNA biogenesis properties (such as expression, length, topology in the 

graph). Along with miRNA discovery, BrumiR can also assemble and identify 

other types of small and long non-coding RNAs expressed within the 

sequencing data. Finally, when a reference genome is available, BrumiR 

provides a new mapping tool (BrumiR2ref) that performs an exhaustive search 

to identify and validate the precursor sequences.  
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We extensively benchmarked BrumiR on animal and plant species using 

simulated and real datasets. The benchmark results demonstrate that BrumiR 

is very sensitive, besides being the fastest tool, and its predictions were 

supported by the characteristic hairpin structure of miRNAs. Finally, we also 

applied BrumiR to the discovery of miRNAs of Arabidopsis thaliana and 

identified three novel high-confidence miRNAs involved in root development. 

These putative miRNAs were not discovered before by any other software, 

thereby showing the potential of using different approaches even in the case 

where high quality genomes are available. The code of BrumiR is freely 

available at https://github.com/camoragaq/BrumiR. 

 

RESULTS 

BrumiR discovers mature miRNAs directly from the 

sRNA-seq reads. 

The main idea behind BrumiR is that mature miRNAs can be discovered 

directly from the information contained in the sequenced sRNA-seq reads. To 

achieve this, BrumiR starts by building a de Bruijn graph (using k-mers of size 

18) from the sRNA-seq reads, then compacting all the simple nodes thus 

leading to the unipath graph (27) (Figure 1.1, Methods section). The unipath 

graph encodes all the sequence information of the sRNA-seq experiment, 

including sequencing errors, adapters, and other types of sequences (Figure 

1.1). The construction of the unipath graph allows to avoid entirely the 
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alignment of the sRNA-seq reads to a reference genome. Following the 

unipath graph construction, BrumiR cleans the graph by removing tips (dead-

end nodes) with low expression/abundance (KM < 5), which are usually 

generated from sequencing errors (Figure 1.2). One feature of the miRNA 

biogenesis is that after Dicer cleavage, the mature miRNA is the most 

abundant of the three by-products and when it is sequenced, it has a uniform 

expression along its sequence (20). Therefore, BrumiR expects that the 

neighbor elements within a particular putative miRNA will have similar 

expression. BrumiR checks all neighbor connections (arcs), and deletes any 

connection with a relative expression difference larger than 3 fold (Figure 1.3, 

Methods section), and the new graph is cleaned again by removing tips 

(Figure 1.4). Clusters of unipaths (connected components) with topologies 

related to sequencing errors are also removed (Figure 1.5, Methods section).  

BrumiR attempts to re-assemble all unipaths within a connected component 

(CC) of the graph, and those with between 18 and 24 nt are classified as 

putative miRNAs, while longer re-assembled unipaths (>24 nt) are classified 

as other longer sequences (Figure 1.6). BrumiR then restores missing 

connections by re-clustering the putative miRNAs performing an all-vs-all 

comparison. The most expressed miRNA is selected as the representative of 

the cluster (Figure 1.7) and the remaining members are classified as potential 

isomiRs (Figure 1.7). The final BrumiR step uses the RFAM database to 

discard predicted miRNAs matching to other classes of RNA (e.g. Ribosomal 

genes, Figure 1.8). As an example, BrumiR reduces the input sRNA-seq data 

by five orders of magnitude generating less than 1,000 putative mature 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.08.07.240689doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.07.240689
http://creativecommons.org/licenses/by-nd/4.0/
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miRNAs (24 million input reads to 966 miRNA candidates, see Figure 1.10). 

Finally, BrumiR outputs several FASTA files with all predicted mature miRNAs, 

all longer RNAs, putative isomiRs, other sRNAs (RFAM comparison), and a 

table with expression values for each predicted miRNA. Additionally, BrumiR 

outputs the final graph in GFA format, which can be explored using 

Bandage (43) (Figure S7). 

 

Figure 1. BrumiR algorithm. Different steps of BrumiR to discover miRNAs from 
sRNA-seq data. 1.1 De Bruijn graph step, 1.2 Tips removal iterative step, 1.3 Delete 
neigbor connection step, 1.4 Tips removal step repetition, 1.5 Topology analysis step, 
1.6 Re-assembling unipaths by CC step, 1.7 Re-clustering by overlap step, 1.8  
Filtering other sRNAs by RFAM step, 1.9 BrumiR candidates catalog. 
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BrumiR achieves the highest accuracy on simulated 

data. 

To evaluate the performance of BrumiR, we applied it to discover mature 

miRNAs on simulated sRNA-seq reads from 10 animal and 10 plant species 

(Figure 2A). We compared BrumiR to the state-of-the-art genome-based 

miRNA discovery tools miRDeep2 (21) and miR-PREFeR (22), which were 

developed specifically for animal (miRDeep2) and plant (miR-PREFeR) 

species. For each tested species, we generated two synthetic datasets with 

different error-rates (0.01 and 0.02) using the miRsim tool implemented and 

provided by the BrumiR toolkit (https://github.com/camoragaq/miRsim), and 

the high-confidence miRNAs annotated in the miRBase database (see 

Methods section). A total of 20 datasets with an average of 11.5 million reads 

were simulated. The list of simulated miRNAs was considered as the ground 

truth, and benchmark metrics (Figure 2C) were computed to assess the 

performance of BrumiR and of the other software (See Methods section) 

(Supplementary Table S2). 

BrumiR recovered more mature miRNAs than the others, on average 92% 

(opposed to 41% and 64% for miRDeep2 and miR-PREFeR, respectively), 

and presented the highest average recall across all the simulated datasets 

(Figure 2B). BrumiR recovered more than 90% of the simulated mature 

miRNAs in 17 of the 20 simulated datasets (Figure 2B). In particular in the H. 

sapiens, M. musculus and D. melanogaster datasets, BrumiR recovered three 

times more candidates than MiRDeep2 (Figure 2B). As concerns precision, 
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BrumiR tended to generate more putative candidates than MiR-PREFeR 

(median 316 vs 264) and miRDeep2 (median 445 vs 308). The slightly higher 

number of BrumiR candidates resulted in lower average precision than 

miRDeep2 (0.59 vs 0.69) and MiR-PREFeR (0.63 vs 0.87). This is due to the 

fact that BrumiR does not use the hairpin structure filter employed by the 

other software. If we consider both precision and recall (F-Score), BrumiR was 

the top performer in 16 of the 20 datasets evaluated (Figure 2C). With animal 

species, BrumiR always reached a higher F-score than miRDeep2. With plant 

species, BrumiR was better or comparable to miR-PREFeR on most datasets, 

except for Z. mays and P. pattens where miR-PREFeR reached a higher F-

Score (Figure 2C).  

In terms of computational time, BrumiR was the fastest method. In particular, 

BrumiR core was on average 30X faster than miRDeep2 and 10X times faster 

than MiR-PREFeR (see Table S3). The speed of BrumiR relies on efficient 

alignment-free and graph-based approaches.  

Overall, we demonstrated with simulated data that BrumiR discovers putative 

mature miRNAs without a reference genome across different eukaryotic 

species achieving the highest accuracy and computational efficiency. 
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Figure 2. Synthetic benchmarking between BrumiR and miRDeep2. A) Workflow 
and species selected, B) miRBase input vs miRNA true positive predictions for each 
tool (2 samples), C)  Benchmarking metrics for all datasets tested. 
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(14,21,22). In particular, we included mirnovo that similarly to BrumiR can 

discover mature miRNAs directly from the reads. Before running the tools, 

low-quality reads were removed using fastp (26) (~10%, see Methods 

section). All the predicted miRNAs for each tool were annotated using the 

miRBase database to identify known and novel predictions. On average, 

BrumiR predicted ~1,000 putative mature miRNAs for the animal species, 

which was ~2.7X higher than the miRDeep2 candidates and 1.7X lower than 

the candidates predicted by mirnovo (Figure 3A1). For plant species, BrumiR 

predicted on average ~1,900 putative mature miRNAs, which was lower than 

the candidates predicted by mirR-PREFeR (3,248 on average), and higher 

than the predictions of mirnovo (301 on average) (Figure 3A1). A comparison 

using the miRBase (13) annotated miRNAs revealed that BrumiR shared more 

candidates with miRDeep2 and miR-PREFeR than with mirnovo (Figure 3A2). 

However, an important fraction (on average more than 70%) of the miRBase-

annotated candidates were exclusive to each tool (Figure 3A2), which 

summarizes the complexity of miRNA discovery.  

Considering miRBase-annotated candidates as the ground-truth, we 

computed precision, recall and F-Score for all the evaluated tools (Figure 3B, 

Method section). BrumiR achieved an accuracy (F-Score) better (animals) or 

comparable (plants) to the one obtained by the other software (Figure 3B3). 

Moreover, BrumiR consistently reached the highest recall for most of the 

datasets evaluated (Figure 3B2). The precision values of BrumiR were slightly 

lower for some datasets (Figure 3B1), however, none of the methods 

performed well on this metric (Figure 3B3). In particular, miRdeep2 reached 
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the highest precision (~0.7) on animal species and all methods performed 

poorly on the evaluated plant species (average precision <0.3). The low 

precision with plant species may be the product of a low number of entries 

annotated in miRBase for plants (10.414 vs 38.471 animals) as well as of a 

higher complexity of plant miRNAs (38).  

The BrumiR toolkit also provides a tool to determine the hairpin loop of 

miRNA precursor sequences, which is the main structural feature of miRNAs 

(40). BrumiR2reference maps the BrumiR predicted mature miRNA to the 

reference genome using an exhaustive alignment (See Methods section), 

generates precursor sequences, computes its secondary structure, and 

checks the hairpin structure using a variety of criteria inferred from analyzing 

more than 30,000 miRBase precursor sequences from animal and plant 

species (see Methods section). We used BrumiR2reference as a double 

validation for all the predicted mature miRNAs generated by BrumiR for the 

animal and plant datasets (Figure 3C). On average, BrumiR2reference 

identified a valid precursor sequence having the characteristic hairpin 

structure for over 70% of the BrumiR candidates (Figure 3C).  

In terms of speed, BrumiR core was the fastest tool. BrumiR was on average 

120X and 220X times faster than miRDeep2 and miR-PREFeR, respectively 

(See Table S4).  

Overall, we demonstrated that BrumiR is a competitive tool for discovering 

mature miRNAs without a reference genome. We showed that it was the most 

sensitive on most of the datasets tested. The performance of our method was 
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not only faster, but also better or comparable to the state-of-the-art tools. 

Moreover, we also provide a new mapper approach to be used when a 

reference genome is available, to further verify if a precursor sequence of the 

predicted mature miRNA is present in the genome. BrumiR therefore 

represents a reliable alternative for the discovery of mature miRNAs in model 

and non-model species with or without a reference genome.  

 

Figure 3. Real dataset benchmark of BrumiR and state-of-the-art tools. A) 
Number of predictions by tool for all the datasets and the overlap between them for 2 
datasets (1 for animal and 1 for plant); B) Benchmarking metrics computed using 
miRBase annotated miRNAs, precision and recall for each dataset; and average 
metrics, including F-score. C) BrumiR candidates validated by Hairpin structure 
(BrumiR2Reference). 
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Discovering novel miRNAs from sRNA-seq data of A. 

thaliana roots using BrumiR.  

A. thaliana is one of the best characterized model organisms, and the first 

plant species in which miRNAs were cloned and sequenced (44). To date, 436 

mature miRNA sequences are included in the miRBase database. Most of 

these miRNAs have been identified by studies addressing the sRNAome of 

different plant organs (45), cell types (46), or responses to biotic or abiotic 

stress using sRNA-seq (47) (48).  

We sequenced sRNA-seq libraries from the roots of A. thaliana after different 

time points during vegetative development (see Methods section) (Figure S8) 

to demonstrate the potential of BrumiR to discover novel mature miRNAs in a 

known biological context. BrumiR was run independently for each condition 

and replicate. The day 5 samples were excluded because of the low number 

of reads when compared to the other samples (Table S5). BrumiR predicted, 

on average, 1,120 mature miRNAs per sample, which were further refined to 

678 using the BrumiR2ref tool. To take advantage of our experimental design, 

we considered as a putative miRNA the ones present in the three replicates 

(core predictions) (49) (Figure 4A). Novel miRNAs were identified using the 

following steps: First, predictions were classified as known miRNAs by 

comparing with miRBase (160 known miRNAs out of a total of 436 miRNAs 

already described for A. thaliana in miRBase). These known miRNAs were put 

aside to explore the sensitivity of BrumiR in detecting novel putative miRNAs. 

We then clustered the remaining putative miRNAs into three stages: early, 
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late, and constitutive (Figure 4B). The days 9, 13 and 17 represent an early 

stage of the plant development (50); days 17, 21 and 25 represent a late stage 

of the plant development (50), and the putative miRNAs expressed in all 

conditions represent the constitutive category. A total of 25 putative novel 

miRNAs were identified, and a manual curation was carried out using all the 

information provided by BrumiR.  

Three curated novel miRNAs fulfilling all the recommended criteria to annotate 

miRNAs in plants (49) were discovered by BrumiR (Figure S9) (Table S6). One 

of the curated miRNAs is located in chr1:29612248-29612361 (from now on 

denoted as miR-8) with a free energy of -40.5 and the characteristic hairpin 

structure of plant miRNAs (Figure 4C). Interestingly, this miRNA locus has not 

been previously discovered because its mature sequence maps to multiple 

chromosomes, and is therefore discarded by genome-based tools (17). 

In an exploratory analysis to shed light on the potential targets of these novel 

miRNAs, we conducted an in silico target transcript prediction using the 

psRNATarget algorithm (42) (Supplementary Table S7). FSD-1 (AT4G25100) 

was found to be one of the top genes regulated by this novel miRNA miR-8 

(Supplementary Table S6). In A. thaliana, FSD-1 encodes a Fe superoxide 

dismutase enzyme which regulates reactive oxygen species (ROS) levels of 

chloroplast and cytosol and participates in salt stress tolerance (51). 

Moreover, knockout mutants of FSD-1 exibit a lower number of lateral roots, 

thereby suggesting an important role in root development (52). FSD-1 is 

developmentally regulated, abundantly expressed from the 3rd day to the 13th 



18 

day but significantly decreased in the following days, and its differential 

accumulation between root zones is related to emerging patterns of lateral 

roots and hair formation from trichomes (53). Another predicted mRNA target 

of miR-8 is PER24 (AT2G39040), which is a peroxidase gene involved in the 

detoxification of ROS in the extracellular and Na+ homeostasis and which 

plays an important role in the resistance to salinity stress as does the FSD-1 

gene (51). It is plausible to say that these novel miRNAs may be involved in 

the fine-tuning of lateral root growth in the early stages of development. 

These results highlight the value of the BrumiR toolkit for discovering novel 

miRNA candidates with functional impact on the organisms studied, even in 

the case where high quality genomes are available.   
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Figure 4. Applying BrumiR on sRNA-seq from Arabidopsis root libraries. A) 
Experimental design implemented; roots from Arabidopsis in a time-scale per day as 
conditions were sequenced in three technical replicates. BrumiR was used to analyze 
all sRNA-seq librairies, and conserved predictions by the three replicates was 
considered as a core by condition. B) Different combinations of root growth per day 
were analyzed together to identify novel putative miRNAs conserved in all conditions. 
C) miR-8 is discovered as a novel miRNA, supported by the hairpin analysis, and is 
conserved in all replicates in all conditions. 
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algorithms: 1) a new discovery miRNA tool (BrumiR-core), 2) a specific 

genome mapper (BrumiR2ref), and 3) an sRNA-seq read simulator (miRsim). 

We demonstrated that BrumiR is capable of identifying mature miRNAs based 

only on the sequence information, and generates results that are better or 

comparable to the state-of-the-art tools on simulated and real datasets. We 

further tested the usefulness of the BrumiR toolkit for discovering novel 

miRNAs potentially involved in the regulation of the root development of the 

extensively annotated A. thaliana genome. 

Unlike the state-of-the-art tools, BrumiR starts by encoding the sRNA-seq 

reads using a de Bruijn graph. This avoids the read mapping stage and the 

dependency on previous miRNA annotations. It also enables the identification 

of sequencing artifacts. A critical step of genome-based miRNA discovery 

tools is to identify the precursor sequence when a reference genome is 

available. BrumiR introduces a new mapping approach, BrumiR2ref, which 

scans every possible hairpin precursor in the genome, when such is available, 

for all the BrumiR predictions. As the hairpin structure is determined using the 

predicted mature miRNA instead of the reads, this alignment can support 

mismatches and indels and handles the case of multi-mapped candidates 

(due to repetitive regions of the genome). Such features distinguish BrumiR 

from the current genome-based methods. 

Discovering miRNAs in non-model species is one of the limitations of the 

current methods. One exception is mirnovo, which similarly to BrumiR can 

predict miRNAs using only the sRNA-seq data, and a specific training set for 

animal and plant species. We thus compared its performance to the one of 
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BrumiR. Our results show that mirnovo is very conservative, generating few 

predictions but with a high accuracy. BrumiR generates a larger number of 

candidates than mirnovo, most of which are annotated in miRBase but also 

others that correspond to new candidates. However, the higher number of 

predictions of BrumiR results in a lower accuracy in some of the datasets 

evaluated, representing a potential weakness of our method. To address this, 

we developed the BrumiR2ref tool to refine the BrumiR predictions, thus 

reducing the number of false-positive putative miRNAs. We plan to further 

reduce the false-positive rate of BrumiR by using a random-forest classifier 

trained on the high confidence mature sequences available in miRBase. The 

latter will improve the accuracy of BrumiR even in the case when a reference 

genome is not available. It is important to observe that the miRNA annotations 

remain incomplete and although miRBase is the main repository for miRNAs, 

it cannot be considered as the gold-standard for most species (many of the 

entries have not been correctly validated, for example) (9). For this reason, the 

predictions of BrumiR are not based on miRBase in any step of the algorithm. 

However, miRBase can be used with all due precaution in a posterior analysis 

to verify the miRNAs inferred in case of not having any reference genome. 

In terms of computational resources and usability, BrumiR is the fastest 

method and provides a stand-alone package for running locally all the 

analyses. It further generates an output that is compatible with the bandage 

software (43), which can be employed to visualize and explore the results of 

BrumiR in a user-friendly way. 
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Moreover, BrumiR reports other sequences expressed in the sRNA-seq data 

among which are putative isomiRs and longer non-coding RNAs, thereby 

providing additional biological insight. 

Finally, we tested the effectiveness of BrumiR on sequenced sRNA-seq 

libraries from the roots of A. thaliana, and were able to annotate 3 novel 

putative miRNAs based on the very conservative criteria proposed in (49), 

showing the potential of it being used alone or in combination with other 

methods. 

In summary, we present a new and versatile method that implements novel 

algorithmic ideas for the study of miRNAs that complements and extends the 

currently existing approaches. 

 

MATERIALS AND METHODS 

Building a de Bruijn graph for sRNA-seq data. 

BrumiR starts by building a compact de Bruijn graph from the sRNA-seq 

reads given as input. De Bruijn graphs are a widely used approach in the 

genome assembly problem (25). BrumiR uses this graph to organize, detect, 

and exploit the sequence information of sRNA-seq experiments. BrumiR 

takes as input sequencing files in FASTA or FASTQ formats. The sequencing 

data can be cleaned, using a fastq pre-processor (26) (i.e. fastp), to remove 

adapter sequences and trim low quality bases. BrumiR employs the BCALM 
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(27) tool to build a de Bruijn graph from the sRNA-seq reads.  BCALM uses a 

node-centric bi-directed de Bruijn graph where the nodes are k-mers, that is 

words of length k, and an arc between two nodes if the k-1 suffix of one node 

is equal to the k-1 prefix of the subsequent node, representing an exact 

overlap of k-1 bases (27). A critical parameter of any de Bruijn graph 

approach is the k-mer size (28). We observed that the length of all mature 

miRNA sequences stored in the miRBase database (v21) (13) have a minimum 

value of 18 nt (Supplementary Figure S1). We thus empirically set the k-mer 

size equal to 18. BCALM compacts the nodes of the de Bruijn graph into 

maximal unipaths by gluing all the nodes of the graph with an in-degree and 

an out-degree equal to one, thus generating the so-called unipath graph (27). 

The unipath graph is the starting point of BrumiR (Figure1A). Notice that the 

unipath graph generated by BCALM does not represent what is expected for 

a set of mature miRNAs (one connected component for each miRNA) and 

therefore further graph operations are needed. BrumiR uses a minimum k-mer 

frequency (KM value) of 5 and all k-mers with lower frequency are ignored, 

without losing most of the information contained in the sequencing reads 

(Supplementary Figure S2).  
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Removing sequencing errors from the unipath sRNA-

seq graph. 

BrumiR deletes from the unipath graph all the nodes that have only one 

connection (degree equal to 1), known as dead-end paths or tips (30). Usually, 

these nodes have a low abundance value associated to them (KM less than or 

equal to 5, the default parameter). Moreover, BrumiR deletes isolated nodes 

(degree equal to 0) having a low abundance; isolated nodes highly expressed 

are however conserved for further analysis. All these nodes are likely artifacts 

generated from sequencing errors because they are not deeply expressed in 

the sRNAs-seq reads (29). BrumiR iterates this step 3 times in order to prune 

and clean the unipath graph (polishing). This operation, called ‘tip removal’, 

edits the original unipath graph, and therefore a new unipath graph with a new 

structure is generated (Figure 1B). 

 

An expressed mature miRNA has uniform coverage. 

The unipath graph of a set of miRNAs from an sRNA-seq experiment has non-

uniform coverage as different miRNAs and other elements may be connected 

in a single big component (Figure 1.1). BrumiR evaluates each connection of 

the unipath graph to identify those that link two nodes with a large expression 

difference. According to the miRNA biogenesis, after a stable miRNA 

precursor is cleaved by Dicer, among its three products, the miRNA mature 

sequence is the most abundant and when it is sequenced, it has a uniform 
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expression along its sequence (20). Thus due to miRNA biogenesis, it is 

possible to capture the complete miRNA mature sequence having a 

homogeneous expression (9) directly from the sRNA-seq experiments. 

BrumiR expects a similar KM value for k-mers originating from the same 

mature miRNA gene. Accordingly, if we observe two connected nodes that 

show a big difference in their abundance values, this connection is deleted 

and we keep the nodes unconnected. In particular, two unipaths U={a,b} 

connected in the graph have a KM value associated to them that represents 

their coverage from the reads information. BrumiR scans all the neighbor 

connections and if the difference between their KMs is larger than three-fold, 

the connection is deleted (Uikm/Ujkm > 3). In this way, BrumiR defines a relative 

threshold that will depend on each unipath neighborhood in the graph. Finally, 

BrumiR repeats the tips removal step to eliminate new low frequency isolated 

nodes (Figure 1C).  

 

miRNAs and other sequences are captured in single 

connected components. 

After the previous steps of BrumiR, a new unipath graph emerges, with a new 

structure. It is thus necessary to identify and classify the new connected 

elements within the graph (Figure 1). A connected component (CC) of a graph 

is a maximal strongly connected subgraph (31). BrumiR computes the CCs of 

the unipath graph, and then each CC is processed independently to identify 
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miRNA candidates as well as to discard other sequences present in the 

unipath graph.  

 

BrumiR classifies low abundance non-linear 

topologies as sequencing artefacts.  

BrumiR detects topologies that are potentially related to sequencing errors 

and thus unlikely to be miRNA candidates. The shapes of these topologies 

were identified by visual inspection of several unipath graphs and are 

described in detail in Figure S3. Usually they have low KM and are composed 

of lowly expressed branching nodes with 3, 4 or 5 connections to the principal 

structures in the graph (Figure S3). Moreover, we observed that the 

sequences contained in these topologies were usually redundant and 

contained in other linear and more expressed CCs. In this way, we are not 

discarding relevant sequence information. BrumiR removes about 10% of the 

CCs in this step. 

 

Re-assembling unipaths within each CC. 

BrumiR re-assembles all unipaths present in the linear CCs by bundling the 

nodes with in and out degree equal to 1 into a new unipath. BrumiR classifies 

them into different types based on their length. The latter is the length of the 

sequence represented by the new unipath. All CCs having a length between 
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18 and 24 are stored as potential miRNA sequences. The CCs corresponding 

to an isolated node that have high KM (KM>50) are included in the latter 

group. CCs with lengths over 24 are classified as longer sequences or other 

types of genomic sequences captured along with the miRNAs. The longer 

sequences are put aside for later analysis. Moreover, BrumiR identifies 

circular CCs and branching CCs. The former are circular unipaths and the 

latter CCs with a high number of branching nodes. Branching CCs are not 

considered in the subsequent steps because they are likely sequencing errors 

(low abundance) or contamination present in the sRNA-seq data (Figure S4).  

 

Re-clustering potential miRNAs. 

After grouping unipaths by CCs, BrumiR builds an overlap graph to rescue the 

missing connections between potential miRNA candidates sharing an overlap 

with another candidate. First, BrumiR adds all the candidates as nodes of the 

overlap graph, then an all-vs-all k-mer comparison is performed using exact 

overlaps of length k=15. Candidates sharing an exact overlap are connected 

in the overlap graph. Then, the connected components are computed to 

identify clusters of miRNA candidates, and the most expressed candidate 

within each component is selected as the representative candidate of the 

cluster. The representative candidates are compared all-vs-all in a second 

overlap step that allows a maximum edit distance of 2, which is implemented 

using the edlib library (32). BrumiR then builds a second overlap graph, 

computes again the connected components, and selects the most expressed 
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candidate as the representative of each cluster. The other members of each 

connected component are classified as putative isomiRs and saved in a file 

for later analysis.  

 

Identifying other expressed RNA sequences. 

In sRNA-seq experiments, different types of RNAs are expressed, some of 

which, such as small non-coding RNA elements, may have similar length with 

miRNAs (33). The RFAM database (34) is a collection of curated RNA families 

including three functional classes of RNAs (non-coding, cis-regulatory 

elements, and self-splicing RNAs), which are classified into families according 

to their secondary structure and sequence information (Covariance Models) 

(34). We downloaded 3,017 RNA families present in RFAM (v14.1) and 

excluded 529 miRNA families (35). The sequences of 2,488 RFAM families 

were concatenated (a total of 2,736,549 sequences) and used to build a 16-

mer database with the KMC3 k-mer counter tool (36) (“-fm  -n100 -k16 -ci5”).  

All distinct 16-mers with a frequency lower than 5 were excluded, leading to a 

total of 6,204,556 distinct 16-mers related to RNA elements. Additionally, we 

downloaded all the mature miRNA sequences from miRBase (v22.1) (13) and 

built a 16-mer database with KMC3 (“-fm -n100 -k16 -ci1 mature.fa.gz”). 

RFAM 16-mers matching 16-mers from the 16-mer mature miRBase database 

were excluded from RFAM, leading to a 16-mer RFAM database with a total 

of 6,204,487 distinct 16-mers. Finally, the BrumiR candidates (18-24 length) 

were matched to the 16-mer RFAM database, and matching candidates were 
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excluded and reported as sequences potentially associated to other RNA 

elements.  The BrumiR candidates passing the aforementioned filter are 

reported as the final list of miRNA candidates.  

 

Identifying precursor sequences for BrumiR 

candidates (BrumiR2Reference). 

Unlike current state-of-the-art tools that perform miRNA discovery by 

mapping the sRNA-seq reads to a reference genome, BrumiR generates 

candidates by operating directly on the sRNA-seq reads.  The reduced list of 

potential BrumiR miRNA candidates permits the computation of a more 

exhaustive alignment than when mapping directly the sRNA-seq reads to the 

reference genome. BrumiR aligns each candidate to the reference genome 

using an exact alignment method that computes the edit distance (38) 

between two strings and thus support mismatches, insertions and deletions. 

The BrumiR2reference tool divides the reference genome in non-overlapping 

windows of 200bp (adjustable parameter), then the window is indexed using 

12-mers and each miRNA candidate is matched in both strands (split at 12-

mers). When a 12-mer match is found, an exhaustive alignment is computed 

between the window and the matching miRNA candidate. The alignment is 

performed using a fast implementation of Myers’ bit-vector algorithm (32).  

A miRNA candidate is stored as hit if the alignment in the current genomic 

window has an edit distance less than or equal to 2. After scanning all the 

genomic windows, the vector of hits is sorted by miRNA-candidate; edit 
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distance (0-2), and alignment sequence coverage. For a single miRNA-

candidate, a maximum of 100 genomic locations (best hits) are selected.  

BrumiR2reference then builds a potential precursor sequence for each 

selected hit using a strategy similar to the ones employed by miRDeep2 (21) 

and Mirinho (37). BrumiR excises the potential precursor hairpin sequence 

from the flanking genomic coordinates of the reported miRNA candidate hits 

(mature sequence) in both strands. Potential precursor hairpin sequences of 

length 110 bp are built for animal species from both strands, while for plant 

species hairpin sequences of lengths 110, 150, 200, 250 and 300 bp are built 

from both strands (38). Secondary structure prediction for all the potential 

precursor sequences is performed using RNAfold (v2.4.9) (39). Secondary 

structures with a minimum free energy in the range of 15-80 kcal/mol are 

checked for a hairpin loop characteristic of miRNAs (40) (Figure S5). 

Structures with a hairpin loop composed of a single segment without pseudo-

knot, multi-loops, external loops and with less than 5 bulges, 3 dangling ends, 

and 10 internal loops are classified as characteristic secondary structures of 

miRNA precursor sequences. The aforementioned filters were derived from 

analyzing the secondary structure of 38,589 precursor sequences stored in 

miRBase (v22.1) (13) using a modified version of the bpRNA program (41) 

(Figure S6). 
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Benchmarking BrumiR using simulated sRNA-seq 

reads. 

We simulated synthetic reads from animal and plant species, and compared 

the results of BrumiR to those obtained with the miRDeep2 (21) and miR-

PREFeR (22) tools. The sRNA-seq reads were simulated using miRsim 

(https://github.com/camoragaq/miRsim), a tool that we developed specifically 

for simulating sRNA-seq reads from a list of known miRNA mature 

sequences. miRsim is based on wgsim (https://github.com/lh3/wgsim), which 

is a widely used tool for simulating short Illumina genomic reads. miRsim 

includes functionalities specific of sRNA-seq reads such as variable 

depth/coverage and shorter read lengths. miRNA mature sequences were 

obtained from miRBase (13) for animal (High Confidence) and plant species. 

The animal species that we considered were: Homo sapiens, Mus 

musculus, Drosophila melanogaster, Danio rerio, and Caenorhabditis elegans, 

while the following plant species were included: A. thaliana, Oryza sativa, 

Physcomitrella patens, Zea mays, and Solanum lycopersicum. Supplementary 

Table S1 provides further details (i.e. number of reads, number of mature 

miRNAs etc.) for each simulated dataset. MiRDeep2 was run on the animal 

datasets with the default parameters providing the respective reference 

genome. Similarly, miR-PREFeR was run with the default parameters on the 

plant datasets. BrumiR was run with the default parameters on both the 

animal and plant datasets. The list of simulated miRNAs was considered as 

the ground truth, and precision, recall and F-Score quality metrics were 
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computed to assess the performance of each discovery tool. The benchmark 

metrics were defined as follows: 

Recall = TP
TP + FN

 

Precision = TP
TP + FP

 

F − score = 2* (Recall *Precision )
(Recall + Precision )

 

where: 

TP= true positive elements predicted as miRNAs present in the miRBase input 

list.  

FP= false positive elements predicted as miRNAs but not present in the 

miRBase input list.  

FN= false negative elements not predicted as miRNAs, but that were present 

in the miRBase input list. 

 

Benchmarking BrumiR using real sRNA-seq reads. 

We downloaded publicly available sRNA-seq data for the plant and animal 

species listed in the synthetic benchmark, and two datasets for each species 

were included (Supplementary Table S2). Additionally, we included mirnovo 

(14), a tool that can discover miRNAs without a reference genome. The 

predictions of BrumiR were benchmarked along with MiRDeep2 (v2.0.1.2) (21) 
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and mirnovo for the animal datasets. Similarly, miR-PREFeR (22) replaced 

MiRDeep2 for the plant datasets (Supplementary Table S2). 

The stand-alone packages of BrumiR, miRDeep2 and miR-PREFeR were used 

to discover miRNAs in all datasets. The software mirnovo was run using its 

web version because the stand-alone package was not available and the 

developer recommends the use of the web version instead. The miRNA 

discovery was performed for each sample independently using default 

parameters for MiRDeep2, miR-PREFeR and mirnovo. In particular, we used 

the scripts provided by miRDeep2 and miR-PREFeR to map the reads to the 

reference genome, and the predictions for these tools were performed on the 

resulting alignment files. The mirnovo predictions were done using the animal 

and plant universal panel respectively, as recommended when the reference 

genome is not available. BrumiR was run using the command line and 

parameters provided in the Supplementary Section 1. Moreover, the 

predictions of BrumiR were refined using the BrumiR2reference tool on the 

available reference genome of the selected species (Supplementary Table 

S2).  Benchmark metrics (precision, recall, and F-Score) were computed as 

before but considering all the annotated mature sequences present in 

miRBase (v22.1) (13) as the ground-truth. 

 

miRNA discovery from Arabidopsis root samples.  

A. thaliana Col-0 seedlings were grown hydroponically on Phytatrays on 0.5X 

Murashige and Skoog medium (Phytotechnology Laboratories, cat. M519) 
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under long-day conditions (16h light and 8h dark) at 22 °C. Total RNA was 

isolated from plant roots after 5, 9, 13, 17, 21, and 25 days post-germination 

using the mirVana miRNA Isolation Kit (Thermo Fisher Scientific, cat. 

AM1560). RNA concentration was determined using the Qubit RNA BR Assay 

Kit (Thermo Fisher Scientific, cat. Q10210), and integrity was verified by 

capillary electrophoresis on a Fragment AnalyzerTM (Advanced Analytical 

Technologies, Inc.). The indexed sRNA libraries were built employing the 

TruSeq small RNA Sample Preparation Kit (Illumina, Inc.) following the 

manufacturer's instructions. Briefly, 3’ and 5’ adaptors were sequentially 

ligated to 1 µg of total RNA prior to reverse transcription and library 

amplification by PCR. Size selection of the sRNA libraries was performed on 

6% Novex TBE PAGE Gels (Thermo Fisher Scientific, cat. EC6265BOX) and 

purified by ethanol precipitation. Both the library size assessment and library 

quantification were carried out in a Fragment AnalyzerTM. Finally, the libraries 

were pooled and sequenced on an Illumina NextSeq 500 platform.  

All samples were analyzed with BrumiR separately with default parameters to 

identify the candidate miRNAs. We further validated the candidates having a 

putative precursor with a hairpin structure analysis using the BrumiR2ref tool 

with the reference genome for A. thaliana 

(GCF_000001735.4_TAIR10.1_genomic.fna). All validated candidate miRNAs 

were compared with known miRNAs described for A. thaliana (437) present in 

miRBase (v21). The putative novel miRNAs were curated manually, 

specifically, we checked the hairpin features, mature sequence alignment 

position, star sequence in the precursor sequence, mismatches in the seed 
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region, and exact overlap in the antisense miRNA sequence (9). Then a target 

analysis was performed using the Araport 11 cDNA library with the plant‐

specific psRNATarget algorithm (based on a best expectation score) (42). 
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CODE AVAILABILITY 

The BrumiR code (v1.0) used in this manuscript is freely available at  

https://github.com/camoragaq/BrumiR, and is open software under the MIT 

license.  
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