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Abstract 

Voluntary movements are usually preceded by a slow, negative-going brain signal over motor areas,              

the so-called readiness potential (RP). To date, the exact nature and causal role of the RP in                 

movement preparation have remained heavily debated. One important open question is whether            

people can exert conscious control over their RP, for example by learning to suppress it. If people                 

were able to initiate spontaneous movements without eliciting an RP, this would challenge the idea               

that the RP is a necessary stage of the causal chain leading up to a voluntary movement. We tested                   

the ability of participants to control the magnitude of their RP in a neurofeedback experiment.               

Participants performed self-initiated movements and after every movement they were provided with            

immediate feedback about the magnitude of their RP. They were asked to find a mental strategy to                 

perform voluntary movements such that the RPs were as small as possible. We found no evidence                

that participants were able to to willfully modulate or suppress their RPs while still eliciting               

voluntary movements. This suggests that the RP might be an involuntary component of voluntary              

action over which people cannot exert conscious control. 
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1. Introduction 

The readiness potential (RP) is a slow scalp negativity observed over motor areas in the               

electroencephalogram (EEG). It can start more than one second before spontaneous, voluntary            

movements ( ​Kornhuber & Deecke, 1965; Shibasaki & Hallett, 2006​). One traditional account of the              

RP is that it is a causal precursor to voluntary action and that it reflects an unconscious decision to                   

act ( ​Libet et al., 1983; Libet 1985​). While recent studies indeed suggest that the RP is involved in                  

the formation of conscious intention ( ​Pares-Pujolras et al., 2019; Schultze-Kraft et al., 2020​) and              

that it is a signal specific to voluntary action ( ​Travers et al., 2020​), other studies have raised                 

questions about its role in movement preparation ( ​Schurger et al., 2012; Schmidt et al., 2016;               

Schurger, 2018​) and its role in human volition has remained unclear ( ​Frith & Haggard, 2018​). 

The precise causal role of the RP in movement preparation notwithstanding, it is frequently              

assumed that it is a necessary part of the causal chain that allows for voluntary action (although this                  

is debated, see e.g. ​Radder & Meynen 2012​). A related and more specific possibility could be that                 

the RP is an “​involuntary component of ​voluntary ​action”. That is, that the RP occurs automatically                

and irreversibly (i.e. involuntarily) once a person has voluntarily decided to move. In contrast, an               

alternative possibility is that people can exert conscious control over their RP, for example by               

learning to suppress or abolish it completely, while still being able to elicit spontaneous              

movements. If this were the case, it is conceivable for people to be able to execute voluntary                 

movements that are not preceded by RPs. This possibility has not yet been tested directly. 

In a recent study, participants executed self-paced movements and were occasionally interrupted by             

stop signals that were triggered by the detection of emerging RPs in the ongoing EEG               

( ​Schultze-Kraft et al., 2016​). In one case they were instructed to try and “move unpredictably” so as                 

to not cause an RP and thus in turn avoid causing stop signals. We found no evidence that                  

participants attenuated their RP, which was the same across all conditions studied, despite the fact               

that people could have in theory increased their performance by suppressing their RP. However, it               

still remains unclear whether participants can decrease their RP when explicitly requested to do so.               

One way would be to provide people with immediate and graded neural feedback about the size of                 

the RP they just produced and ask them to reduce it. This would be akin to an ‘autocerebroscope’                  

( ​Feigl, 1957​, p. 456), a device that allows one to observe one’s own brain signals as one behaves.                  

Such an approach could potentially enable people in a trial-and-error fashion to learn how to               

modulate and suppress their RPs, as with examples of neurofeedback for other cognitive processes              

( ​Papo, 2019​). 
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We distinguish two principles which could enable people to achieve control over their RP. First, the                

readiness potential has been shown to be modulated by various attributes of voluntary movement,              

such as its inertial load and force deployment ( ​Becker & Kristeva 1980; Kristeva et al., 1990;                

Slobounov et al., 2004​), its complexity ( ​Benecke et al., 1985; Simonetta et al., 1991; Kitamura et                

al., 1993​), its purposiveness and selection mode ( ​Masaki et al., 1998; Praamstra et al., 1995​), and by                 

explicit demands on timing ( ​Bortoletto & Cunnington, 2010; Baker et al., 2012; Verleger et al.,               

2016​). Further, compared to RPs observed in classical Libet-style studies ( ​Libet et al., 1983​), RPs               

are considerably smaller when spontaneous movements are executed unconsciously ( ​Keller &           

Heckhausen, 1990​), and almost absent when movements are initiated by deliberate, value-based            

decisions ( ​Maoz et al., 2019​). In all these studies, the modulation of the RP resulted from an                 

experimental manipulation, that is by instructing participants to change specific characteristics of            

voluntary movements. Yet, it seems plausible that, when provided with trial-by-trial feedback of             

their RP, people would be able to identify how changing specific movement features allows them to                

modulate their RPs. 

Second, studies have investigated the self-regulation of slow cortical potentials (SCP), which are             

polarizations of EEG that can last up to several seconds ( ​Birbaumer 1999​), and of which RPs are                 

considered a specific type. Using a training based on visual feedback of SCP shifts and operant                

learning principles ( ​Elbert et al., 1980; Rockstroh et al., 1984​), people can learn to self-regulate               

their SCPs, which has been used in communication systems for paralyzed patients ( ​Kübler et al.,               

1999; Kübler et al., 2001; Neumann et al., 2004​). The mechanisms that allow such self-regulation               

are not well understood but are assumed to be based on a redistribution of attentional resources                

( ​Birbaumer 1999​). This learning of self-regulation could in principle be employed by participants             

when provided with a trial-by-trial feedback of RP magnitude. 

Here, we tested the possibility of a voluntary suppression of readiness potentials in a neurofeedback               

experiment. Our core research question was to test whether people could suppress RPs by purely               

mental efforts, and not by changing physical movement characteristics that are known to modulate              

RPs. Participants performed self-paced pedal presses in single trials. After each pedal press we used               

a machine learning approach to derive a score that reflected the size of the RP that had just been                   

produced and that was shown to participants as feedback. Participants were challenged to find a               

mental strategy to perform movements such that the scores (and therefore their RPs) were as small                

as possible. 
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2. Methods 

2.1. Participants 

Based on the average sample size of previous studies ( ​Schultze-Kraft et al., 2016; Schultze-Kraft et               

al., 2020; Pares-Pujolras et al., 2019; Schurger et al., 2012​), we aimed for a minimum sample size                 

of 15 participants. Considering that some would have to be excluded, we tested a total of 22                 

participants. Following our exclusion criteria (see below), 19 participants were included in the final              

sample. (11 female, mean age 26.9, SD 5.7 years). ​The experiment was approved by the local ethics                 

board and was conducted in accordance with the Declaration of Helsinki. All participants gave their               

informed oral and written consent, and were paid €10 per hour. 

2.2. Experimental setup 

Participants were seated in a chair facing a computer screen at a distance of approximately 1 m.                 

They were asked to place their hands in their lap and to position their right foot to the right of a 10                      

cm x 20 cm floor-mounted switch pedal (Marquardt Mechatronik GmbH, Rietheim-Weilheim,           

Germany). Throughout the experiment, EEG was recorded at 1 kHz with a 64-electrode Ag/AgCl              

cap (EasyCap, Brain Products GmbH, Gilching, Germany) mounted according to the 10-20 system             

and referenced to FCz and re-referenced offline to a common reference. EEG was recorded from the                

following 51 electrodes: AF7, AF3, Fpz, AF4, AF8, FT7, F5, F3, F1, Fz, F2, F4, F6, FT8, FC5,                  

FC3, FC1, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP7,                    

P5, P3, P1, Pz, P2, P4, P6, TP8, PO3, PO1, POz, PO2, PO2, O1, Oz, O2. In order to obtain the                     

earliest measure of movement onset, 3D acceleration of the right leg was recorded with an               

accelerometer (Brain Products GmbH, Gilching, Germany) that was attached with an elastic band to              

the right calf. The amplified signal (analog filters: 0.1, 250 Hz) was converted to digital (BrainAmp                

MR Plus and BrainAmp ExG, Brain Products GmbH, Gilching, Germany), saved for offline             

analysis, and simultaneously processed online by the Berlin Brain-Computer Interface toolbox           

(BBCI, github.com/bbci/bbci_public). The Pythonic Feedback Framework ( ​Venthur et al., 2010​)          

was used to generate visual feedback. 

2.3. Experimental design 

The experiment consisted of two stages (Fig. 1), a ​preparatory stage, and a ​feedback stage. The                

preparatory stage was performed to obtain data for training a classifier in preparation for the               

subsequent feedback stage. During the preparatory stage ​participants performed a simple self-paced            
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movement task. The start of a trial was signaled by a white circle appearing on the screen.                 

Participants were instructed to wait for roughly 2 seconds, after which they could press the pedal at                 

any time. In accordance with standard definitions of the readiness potential they were asked to               

avoid pre-planning the movement, avoid any obvious rhythm, and to press when they felt the               

spontaneous urge to move ( ​Kornhuber & Deecke, 1964; Libet et al., 1983​). When the pedal was                

pressed the white circle turned red for 1 second, after which it disappeared and was replaced by a                  

fixation cross. This constituted the end of a trial. The fixation cross remained onscreen for a 3 s                  

intertrial period. Each participant performed a total of 100 trials in the preparatory stage, with the                

possibility of taking a break after each 25 trials. 

 

Fig. 1. Experiment paradigm ​. In both the preparatory and the feedback stage, trial start was               
signaled by a white circle appearing on the screen. When a pedal press was executed, the circle                 
turned red for 1 s. In the preparatory stage, the trial ended and a fixation cross was shown for an                    
intertrial period of 3 s. In the feedback stage, before the trial ended a number was shown on the                   
screen for 1.5 s, after which the fixation cross was shown. 

 

During the second part of the experiment, the feedback stage, participants again performed             

self-paced pedal presses in single trials, as during the preparatory stage. However, after the              

participants had moved an integer number was displayed on the screen for 1.5 s. Participants were                

informed that “this number reflects a brain signal recorded when you decided to press the pedal.                

Larger numbers mean large signals, small numbers mean small signals”. They were given the              

additional task to develop strategies to achieve preferably low numbers. Participants were (i)             

instructed to move spontaneously and to not execute abnormal (e.g. very slow, interrupted)             

movements, but were otherwise free to find a strategy to achieve the goal, (ii) informed that, based                 
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on noisy measurements, scores might greatly vary from trial to trial and that they might thus need                 

many trials to realize if a strategy works or not, and (iii) instructed to keep using a strategy to                   

further lower the scores if they happen to find one that works. Participants performed 300 trials                

during the feedback stage, with the possibility of taking a break after each 25 trials. 

2.4. Training of classifiers from preparatory stage data 

Before the feedback stage, we performed three consecutive analyses on the data recorded during the               

preparatory stage: (1) We trained an ​accelerometer classifier that detected physical movement onset             

times in realtime from accelerometer data, (2) we selected the most informative EEG channels from               

the independent preparatory data, and (3) we trained a real-time ​EEG classifier ​. Both the real-time               

accelerometer and EEG classifiers were then used during the feedback stage to assess the movement               

and the RP produced in each trial and to derive a score in real-time that was shown to participants                   

as feedback at the end of the trial. 

2.4.1. Detection of movement onsets from accelerometer 

The accelerometer device attached to the right calf recorded acceleration in the direction of three               

orthogonal space axes. We determined the time of movement onset in each trial with a               

variance-based approach. We trained a linear classifier on log-variance features extracted from two             

time windows: (1) a time window from -200 to 0 ms, time-locked to pedal press (“movement”                

class), and (2) a time window from 300 to 500 ms, time-locked to trial start (“idle” class). The                  

former time window was expected to contain the acceleration of the foot during the movement, and                

thus have a large variance, while in the latter the acceleration was expected to be at baseline during                  

the instructed self-paced waiting time of 2 s. In order to determine the movement onsets of each                 

trial, a classifier was trained on the “movement” and “idle” time windows of 99 trials, and then                 

applied with a sliding window on the remaining trial. The analysis worked backward from the               

physical completion of the pedal press, looking for the last time window preceding the pedal press                

where there was no evidence for movement. For this, a first window was time-locked to the pedal                 

press and then it was sample-wise shifted back in time until the classifier output indicated being in                 

the “idle” class. The time of this last idle window before movement was registered as the time of                  

movement onset. This procedure was applied to each of the 100 trials per participant in a                

leave-one-out scheme. Trials with movement onsets times 3 standard deviations below or above the              

individual mean were excluded from further analysis. Finally, a classifier (hereafter referred to as              

“accelerometer classifier”) was trained on the accelerometer data from all remaining trials and             

subsequently used during the feedback stage for real-time detection of movement onset (see below). 
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2.4.2. EEG channel selection 

We preselected a subset of channels that would be used for the assessment of RP magnitude during                 

the feedback stage. This selection was done using the independent data recorded during the              

preparatory stage. By selecting channels near the vertex, we focused on channels where the RP is                

assumed to predominate, and further aimed to minimize the impact of movement or eye artifacts               

that predominantly occur at peripheral electrodes. For each of the selected trials of the preparatory               

stage, we defined two EEG segments: (1) a 1000 ms long segment time-locked to and preceding                

movement onset (“movement” class), and (2) a 1000 ms long segment time-locked to and preceding               

trial start (“idle” class). The former were expected to contain an RP-typical negativation of EEG               

signals at certain channels, while the latter did not contain RPs. For each segment, we subtracted the                 

average signal in the last 200 ms of the segment from the average signal in the first 200 ms of the                     

segment. For each segment, this value thus represented how much the signal had changed in the                

1000 ms preceding either movement onset, or trial start, respectively. For each EEG-channel             

individually, we then performed two one-sided t-tests in order to test (1) if the signal changes                

throughout the segment in the “movement” class were smaller than zero (to reflect the              

negative-going RP), and (2) if the signal in the “movement” class was smaller than that in the “idle”                  

class (to account for potential negative-going signal drifts in the idle condition). The criterion for               

selecting a channel was then that the null hypothesis of both these tests on the preparatory data                 

could be rejected at an alpha level of 0.05. The number of selected channels thus varied between                 

participants. Fig. 2 shows a topographic heatmap of the frequency with which channels were              

selected across participants. Channel Cz was selected for all 22 participants, reflecting the fact that               

readiness potentials preceding foot movements are typically most distinct over that channel ( ​Brunia             

et al., 1985; Schultze-Kraft et al., 2016​). Channels further away from Cz were selected with less                

frequency. On average, 10 (SEM=1) channels were selected per participant. 
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Fig. 2: Topography of selected channels. The scalp topography shows a heat map of the               
number of times each channel was selected across participants. 

 

2.4.3. Training of EEG classifier 

In order to extract RP-related spatio-temporal features from the EEG, we performed the following              

analysis, using data from the preparatory stage: ​For each trial and for each of the selected channels,                 

we defined two EEG segments: (1) a 1000 ms long segment time-locked to and preceding               

movement onset (“movement” class), and (2) a 1000 ms long segment time-locked to and preceding               

trial start (“idle” class). These segments were first baseline corrected in the interval -1000 to -900                

ms and then downsampled by averaging the data in consecutive 100 ms intervals, thus obtaining 10                

temporal features per segment and channel. Finally, these features were concatenated across all             

selected channels to obtain a spatio-temporal feature vector per segment. In order to derive an               

estimate of the distribution of classifier outputs for EEG segments containing RPs, we performed              

the following analysis: ​A regularized Linear Discriminant Analysis (LDA) classifier with automatic            

shrinkage ( ​Blankertz et al., 2011​) was trained on the “movement” and “idle” segments of all but one                 
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trial in the preparatory data, and then applied to the “movement” segment of the left out trial. This                  

procedure was applied to each trial in a leave-one-out scheme, resulting in one classifier output               

value per single-trial RP. The mean μ ​0 and standard deviation σ ​0 of the resulting distribution were                

calculated. These values were used during the feedback stage for transforming the EEG classifier              

outputs into a feedback score (see below). Finally, the same classifier (hereafter referred to as “EEG                

classifier”) was trained on all trials and subsequently used during the feedback stage (see below). 

2.5. Real-time feedback 

During the feedback stage, every 20 ms both previously trained classifiers were applied to the               

real-time data acquired at that moment. That is, the accelerometer data acquired in the last 200 ms                 

was subjected to the accelerometer classifier, and the EEG data acquired in the last 1000 ms was                 

subjected to the EEG classifier. This yielded one output value per classifier at each sample point.                

The logic was as follows. First, we wait until the button is pressed. Then we use the accelerometer                  

classifier to look back in time from the button press and identify the time of movement onset,                 

defined as the classifier switching from “idle” to “movement” class. Then we extract the EEG               

classifier output at that time. Subsequently, the EEG classifier output value at the time of this                

movement onset was identified. Finally, to be easily interpreted by the participants, this value ​x was                

transformed to a score as 

.core (x )/σ ) 5 0s = ( − μ0 0 * 1 + 5  

That is, after being normalized by the parameters obtained from the classifier outputs in the               

preparatory stage, the output was transformed such that an average value would result in a score of                 

50, and a value being one standard deviation above or below the mean would result in a score of 65                    

or 35, respectively. The resulting value was rounded to an integer and then showed to the                

participant as the feedback score after the pedal press. 

2.6. Questionnaire 

After finishing the feedback stage, participants were asked to fill out a questionnaire, which              

consisted of four questions: (1) “Overall, how much did you feel you could influence the scores                

shown on screen? (1 – not at all, 5 – a lot)”, (2) “How hard/easy was it to find a strategy that had an                        

effect on the scores? (1 – very hard, 5 – very easy)”, (3) “Please use the table on the back of this                      

sheet to write down your experience on the strategy/strategies that you used to achieve lower scores.                

On the left, please describe the strategy you used. On the right, please rate the success of the                  

strategy and comment on anything that you find worth mentioning.”, and (4) “Did you have the                
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feeling that one or more of the strategies work better over time, as if they were trainable? If so,                   

which ones? (Please specify in the table)”. 

2.7. Data selection 

Before analysis, we performed a data selection approach based on two criteria. 

2.7.1. Accuracy of real-time movement onsets 

We measured RPs in real-time by time-locking the EEG to the time of movement onset, not the                 

time of the pedal press. As outlined above, our definition of movement onset uses the accelerometer                

classifier and looks backwards from the button press and identifies the latest time point before pedal                

press that is classified as idle (Fig. 3A). However, participants might not always perform smooth               

and continuous movements but instead perform multiphasic movements where they briefly pause or             

move slowly in between. In those cases, the accelerometer classifier at times failed to detect the true                 

time of movement onset (Fig. 3B). Therefore, we had to ensure that movements onsets were not                

simply a later stage of a multiphasic movement with the participant having initiated the movement               

much earlier. Thus, we additionally required that there was no sign of movement in the phase before                 

the detected movement onset. We excluded trials based on the following criterion: From trials in the                

preparatory stage, we defined the baseline variance of the accelerometer signals during rest. A              

feedback stage trial was then excluded if the accelerometer signal variance in the interval from               

-1000 to 0 ms before the real-time assigned movement onset was 3 SD above the baseline, thereby                 

excluding on average 62 (SEM=15) trials per participant. 

2.7.2. Premature movement executions 

We also focused on those trials where participants adhered to the instruction to wait for roughly 2                 

seconds after trial onset before deciding to press the pedal. This was to ensure that the time window                  

used to extract RP features from the EEG (a 1000 ms window time-locked to and preceding                

movement onset) did not fall into the pre-trial start period. If participants did not follow this                

instruction, the extracted EEG features in that trial would be contaminated by the presentation of the                

trial start cue. Thus, we excluded trials where the delay between trial start and movement onset was                 

less than 1000 ms, excluding on average 7 (SEM=5) trials per participant. 

As Fig. 4 shows, the total number of trials excluded by these two criteria varied considerably across                 

participants. Three participants with more than 50% excluded trials were excluded from all further              

analysis. The final sample thus included 19 participants, with an average of 255 (SEM=9) trials. 
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Fig. 3: Exclusion of trials based on invalid movement onsets. Panels A and B show two                
exemplary single-trial traces of acceleration data from participant 20. Participants sometimes           
elicited interrupted, multiphasic movements (bottom) despite being instructed not to. So a            
selection procedure was designed to select trials with a single continuous movement by ruling out               
trials with a clear indication of movement ​before the movement onset detected in real-time. ( ​A ​)               
Example of a valid movement trial. After trial start (green vertical line), the time of detected                
movement onset (purple vertical line, t=0 s) was defined as the last 200 ms window (shaded                
square) before pedal press (blue vertical line) in which the accelerometer classifier indicated the              
acceleration signal being in the idle class. ( ​B ​) Example of an invalid movement trial. The               
backwards-looking algorithm detects an onset (defined here as time t=0 s) but the movement              
clearly started earlier. This is because after initiating the movement (red vertical line, t=-430 ms),               
the participant briefly slowed down the movement before pressing the pedal. The time point              
identified as movement onset by the accelerometer classifier was several 100 ms too late and at a                 
physiologically impossible delay from the pedal press of 40 ms. 
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Fig. 4: Percentage of excluded trials per participant ​. Participants are displayed in descending             
order according to the percent of trials excluded due to invalid online movement onsets or due to                 
premature movement executions. Three participants (IDs 13, 22 and 11) with more than 50%              
excluded trials were excluded from further analysis. 

2.8. Modelling feedback scores 

Four explanatory variables were defined in order to examine the ability of participants to alter their                

RPs. One variable was trial number ( ​TN ​), which was the key focus in this study: If participants were                  

successful in gradually finding and training a strategy to lower their RP feedback scores during the                

feedback stage, this would be reflected in a decrease of RP feedback scores as a function of trial                  

number. In addition, three additional measurements that characterize how participants generated the            

movement in each trial were defined as explanatory variables, despite not being the key focus here:                

Waiting time ( ​WT ​, time from trial start to movement onset), movement duration ( ​MD ​, time from               

movement onset to pedal press), and peak acceleration ( ​PA ​, maximum acceleration measured            

between movement onset and pedal press). All four variables were z-transformed for each             

participant individually. 

To test for an effect of the four variables on the RP, for each participant individually a linear                  

regression was fitted on the trial-wise feedback scores (i.e. the linearly transformed EEG classifier              

outputs), using TN, WT, MD, PA and a constant regressor as predictors. This yielded one estimated                

regression coefficient for each participant and each variable, on which we then performed             

one-sample t-tests as a second-level analysis. Our main variable of interest was trial number: A               

gradual decrease of feedback scores in the course of the feedback stage would be reflected in a                 

negative coefficient for the variable TN. Thus, a one-sided t-test was used to test whether the                
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estimates were smaller than zero. For the movement characteristic variables WT, MD and PA, we               

had no specific assumption about the direction of the effect. Thus, for each of these variables, a                 

two-sided t-test was performed. Finally, given the absence of an effect for all four variables (see                

Results), we validated the evidence for this absence using Bayesian t-tests, implemented in the              

open-source project JASP ( ​Love et al., 2019​). The prior used for the t-tests is described by a Cauchy                  

distribution centred around zero and with a scale parameter of , as suggested in          /2 .707r = √2 ≈ 0     

Morey & Rouder ( ​2011​). Bayesian hypothesis testing aims to quantify the relative plausibility of              

the null and alternative hypotheses, and the Bayes Factor (BF) obtained by a Bayesian t-test is a                 

continuous measure of evidence for either hypothesis (​Keysers et al., 2020​). 

 

3. Results 

3.1. Characteristics of movement execution 

We first characterized the movements performed by participants during the feedback stage. As Fig.              

5 shows, there was considerable between-subject variability in how movements were executed.            

Some participants initiated their movements on average after a couple of seconds after trial start,               

while others waited longer (mean waiting time 4119 ms, SEM 432 ms). Participants also required a                

different amount of time for the completion of the movement (mean movement duration 389 ms,               

SEM 38 ms), and with different peak acceleration (mean 7.79 cm/s², SEM 0.71 cm/s²). 
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Fig. 5: Movement characteristics during feedback stage. Boxplots show, for each participant            
individually, the distribution of waiting time, movement duration and peak acceleration of            
movements executed. 

 

3.2. Validity of feedback scores 

We checked that the feedback scores presented to participants indeed reflected the size of the RP (as                 

would be expected by our method for defining feedback). Fig. 6A shows average RPs for the 5                 

different quintiles of feedback scores (low to high). RPs with high scores had early onsets and high                 

amplitudes, whereas RPs with low scores had late onsets and small amplitudes. While RPs at all                

score levels had their largest amplitudes at the vertex (channel Cz), they were spatially less               

pronounced in more distant electrodes at lower scores. The correlation between feedback score and              

RP amplitude (Fig. 6B) was confirmed with a mixed-effects regression ( ​β ​=-1.434, ​p ​<.001). Thus,             

on average, a decrease in 1.4 units of feedback score was equivalent to a 1 μV decrease in RP                   

amplitude. 
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A B 

 

 

Fig. 6. Waveforms, topographies and amplitudes of readiness potentials for different           
feedback levels. ​For each participant, trials were grouped into five quantiles depending on the              
feedback score that was calculated in real-time, color coded in all panels from low (light) to high                 
(dark). ( ​A ​) The left shows the grand average waveforms of the RPs at channel Cz for the five                  
quintiles, baseline corrected in the interval [-1000 -900] ms. Standard error is shown as a shaded                
area. The right shows the corresponding scalp topographies of the average voltage in the interval               
[-100 0] ms for the five quintiles. ( ​B ​) Amplitudes of single RPs, pooled across all participants                
and plotted against their corresponding real-time feedback score. Amplitudes were calculated as            
the average voltage at channel Cz in the time interval -100 to 0 ms. Please note that the RP is a                     
negative brain signal so larger RPs correspond to “more left” values on the x-axis of the graph                 
and are thus associated with higher feedback scores (hence the negative correlation). Taken             
together this sanity check confirms that the RP amplitudes assessed by the EEG classifier in               
realtime and fed back to the participants indeed reflected changes in RP waveform and              
amplitude. 
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3.3. Manipulation of scores by participants 

We examined whether participants were successful in finding a strategy to execute movements with              

lower scores. If they were, this should be reflected in a gradual decrease of scores over the course of                   

the 300 trials. A visual inspection of scores as a function of trial number showed no indication of                  

such decrease (Fig. 7), and the shape RP waveform did not change over time (Fig. 8). A one-sided                  

t-test on the regression coefficient estimates obtained for each participant (Fig. 9) showed that they               

were not smaller than zero (t​(18)​=0.103, p=0.541), and the Bayes Factor BF ​0-​=4.539 indicates that the               

data are 4.5 times more likely under the null hypothesis which provides moderate evidence for               

absence ( ​Jeffreys, 1961​) of an effect of TN. The lack of a negative (linear) trend of feedback scores                  

during the 300 trials of the feedback stage suggests that participants were not successful in finding a                 

strategy to willfully reduce their RPs. 

 

Fig. 7. Change of feedback scores in the course of the feedback stage. ​Dots (color coded as in                  
Fig. 6) show single-trial feedback scores, pooled across all participants, as a function of trial               
number. Blue circles show averages of individual participants, red crosses show population            
medians, both calculated over consecutive, non-overlapping bins of 25 trials. 
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Fig. 8. Change of RP waveform in the course of the feedback stage. ​Grand average RPs in                 
channel Cz, computed for the first (blue) and the second (red) half of trials, respectively.               
Standard error is shown as a shaded area. Baseline correction was in the interval -1000 to -900). 

 

 

Fig. 9. Coefficient estimates from the linear regression. Bar plots show, for each participant,              
coefficient estimates of the explanatory variables trial number (TN), waiting time (WT),            
movement duration (MD) and peak acceleration (PA), obtained from a linear regression on the              
feedback scores. 

 

Next, we examined whether the RP was modulated by either of the three movement characteristics               

waiting time (WT), movement duration (MD) and peak acceleration (PA) ​. A visual comparison of              
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RPs averaged according to a median split of the three measures of movement characteristics showed               

only minor differences (Fig. 10), as compared to the inherent variability of RP waveforms (Fig.               

6A). There is an apparent small difference in early time periods between short and long waiting                

times (Fig. 10A) that is not detected as significant in our regression analysis. Our data do not allow                  

us to tell whether this is a spurious effect because any testing of this time period would be post-hoc.                   

Two-sided t-tests on the regression coefficient estimates obtained for each participant (Fig. 9)             

showed that they were not significantly different from zero (WT: t​(18)​=-1.121, p=0.277; MD:             

t​(18)​=-0.373, p=0.713; PA: t​(18)​=1.114, p=0.279). Bayes factors for all three variables (WT:            

BF ​01​=2.432; MD: BF ​01​=3.955; PA: BF ​01​=2.448) furthermore show that the data are more likely             

under the null hypothesis and indicate a moderate evidence for absence of an effect. Thus, these                

results suggest the absence of a relationship between RPs and the range of movement parameter               

variation observed in this study. Please note that the effects of these variables are not of interest for                  

our core research question because they are (i) not used by the participants to improve their scores                 

and (ii) reflect physical changes in the movements.  

 

Fig. 10. Modulation of RPs by movement characteristics (channel Cz). We additionally            
checked whether basic spontaneous movement characteristics included in the model as effects of             
no interest modulated the RP waveforms (as reported in previous literature). For each participant              
individually, and for the movement characteristic measures (A) waiting time, (B) movement            
duration, and (C) peak acceleration, two average RPs were generated each using half of the trials                
(according to a median split of the corresponding measure). The curves show grand averages              
across participants. Blue and red traces show the average RP for the shorter and longer half of                 
waiting time (A), for the faster and slower half of movements (B), and for the smaller and larger                  
half of peak accelerations (C), respectively. Standard error is shown as a shaded area. Baseline               
correction was in the interval -1000 to -900. Gray bars indicate in which consecutive,              
non-overlapping 100 ms windows a paired t-test showed a significant (p<0.05) difference of RP              
averages. The small differences in the waveforms in A and B did not affect the EEG classifier                 
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(and therefore the feedback scores), which takes into account the RP waveform across all selected               
channels.  

 

3.4. Self-assessment of task 

We used a questionnaire after the ​feedback stage to assess participants’ experiences and strategies              

(Fig. 11). When asked to rate how much they felt they could influence scores, the most frequent                 

rating was 3 (“average”). When asked to rate how difficult it was to find a strategy that had an                   

effect on the scores, the most frequent rating1 were 1 and 2 (“very hard” and “rather hard”).                 

Participants were also asked to describe in written form the used strategies and whether they were                

successful. Among the strategies reported as successful, some participants named a shift of attention              

towards/away from the movement (2), using relaxation (2), changing the speed (5) or the force (2)                

of the movement, altering waiting time (2), and involving emotion (2). For detailed reports of               

participants’ answers, please see Tab. S1 in the Supplementary Material. 

 

Fig. 11. Likert scale rating in questionnaire of subjective experience. Histograms show the             
number of participants rating question 1 (“​Overall, how much did you feel you could influence               
the scores shown on screen?​”) on a Likert scale from 1 (not at all) to 5 (a lot), and question 2                     
(“​How hard/easy was it to find a strategy that had an effect on the scores?”) on a Likert scale                   
from 1 (very hard) to 5 (very easy). 

 

4. Discussion 

Can people learn to suppress their readiness potential? We tested this possibility in a neurofeedback               

experiment. Participants performed self-paced pedal presses in single trials and after each pedal             
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press they were provided with a feedback score that reflected the magnitude of the RP preceding                

that movement. 

To extract the scores from RPs, ​we employed a machine learning approach: We used data acquired                

during a preparatory stage to train a classifier to distinguish EEG segments preceding movements              

from the idle period before onset of the trial. ​B​y extracting spatio-temporal features from the EEG,                

the classifier learned both the spatial distribution of the RP across channels, and the characteristics               

of its waveform. Thus, w ​hen the classifier was applied to an EEG segment preceding a movement                

onset during the feedback stage, the resulting classifier output -- and thereby the feedback score --                

was a continuous indicator of the degree to which an RP was present in that segment (Fig. 6A). 

Participants were challenged to find a way to perform self-paced movements with small RPs, and               

were instructed to keep using and extending any potentially effective strategies. If they were              

successful, this would be reflected in a gradual decrease of feedback scores in the course of the 300                  

trials of the feedback stage. However, we found no evidence for such a decrease (Fig. 7), suggesting                 

that participants were not able to find or train a successful strategy. 

This finding does not rule out the possibility that participants were able to occasionally modulate               

their RPs. Possibly some weaker potential effects of their strategies went unnoticed and were thus               

not further explored. One way to test this is to examine the relationship between feedback scores                

and the movement characteristics that participants were able to modulate and that we could measure               

in every trial: How long participants waited from trial start until initiating the movement (waiting               

time), how fast they executed the movement (movement duration), and how much force they              

applied to the movement, as reflected by the peak acceleration during movement execution.             

Although waiting time and movement duration slightly modulated the shape of the RP (Fig. 10), we                

found no evidence for an effect of either of the three movement parameters on the feedback score. 

The failure to deliberately suppress the RP does not reflect a fundamental impossibility that small               

RPs occur. Our data clearly show that many RPs recorded during the feedback stage were               

remarkably small in size: One out of five movements were preceded by RPs with very late onsets of                  

only a few 100 ms, had amplitudes more than 50% smaller as compared to the average, and a                  

substantially more confined spatial distribution (Fig. 6A, light color code). These small RPs             

occurred with a fairly constant rate throughout the feedback stage (Fig. 7, light color code). We                

cannot fully exclude the possibility that the small amplitude of these RPs were somewhat              

influenced by mental strategies, however if so then participants failed to notice or systematically              

exploit the effects of these strategies. 

21 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.08.07.241307doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.07.241307


When asked how difficult it was to find a successful strategy, most participants (14 out of 19)                 

reported it was hard or very hard (Fig. 11). This self-assessment is in agreement with our finding                 

that scores did not decrease over the course of the feedback stage. Interestingly, there appears to be                 

some kind of “illusion of control”: When asked to rate their general ability to influence scores,                

participants’ ratings peaked at the midpoint of the scale, reflecting a “moderate” perceived ability to               

influence scores. In the absence of true control over RP scores this could suggest alternative               

interpretations. Possibly participants were biased to remember more of those trials in which an              

intended strategy happened to coincide with a purely random low score, and less those in which the                 

effect was contrary ( ​Thomson et al., 1998​). Alternatively, people often tend to choose scores in the                

middle of Likert scales (which is known as the ​central tendency bias ​), particularly when they are                

unsure about their answer ( ​Nadler et al., 2015​). Thus, the predominance of central ratings in this                

question could be interpreted as participants meaning “I don’t know”, rather than as reporting a               

perceived ability to influence scores. Finally, it is worth noting that we cannot exclude the               

possibility that participants were effectively able to slightly modulate their RPs, for instance by              

employing strategies based on attention ( ​Keller & Heckhausen, 1990​) which we did not measure              

and therefore could not test. However, even if that were the case, this modulation effect was too                 

small for participants to train it or to sustain it over longer periods.  

At first sight, our data seem to differ from previous findings that paralyzed patients can learn to                 

self-regulate their slow cortical potentials by means of real-time visual feedback ( ​Kübler et al.,              

1999; Kübler et al., 2001; Neumann et al., 2004; Birbaumer 1999​). This raises the question why                

participants in our study weren’t able to use comparable mechanisms to suppress their RPs. We               

consider two potential reasons: First, SCPs investigated in those studies reflect changes in cortical              

polarization that occur ​spontaneously ​in the ongoing ​EEG. In contrast, RPs are defined as              

time-locked to the onset of a voluntary movement, and it has been recently debated whether they                

occur in the absence of voluntary action ( ​Travers et al., 2020​). Thus, it is possible that the                 

event-related nature of RPs impedes their conscious self-regulation by the mechanisms through            

which other slow cortical potentials are influenced. Second, paralyzed patients learn and train the              

task of SCP self-regulation in multiple sessions over the course of several weeks or months ( ​Kübler                

et al., 1999; Kübler et al., 2001; Neumann et al., 2004​). While such an approach would be                 

prohibitively expensive for our purposes, we cannot exclude that learning our task might be              

possible if participants were to be provided with much more time. Finally, it is worth noting that we                  

deliberately did not provide participants with any specific instructions as to how they could achieve               

the task of suppressing their RPs. We abstained from doing so because we did not make specific                 
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assumptions about whether or how this task was possible. Thus, we aimed to test whether a                

trial-and-error approach was sufficient for participants to find a successful strategy, without            

introducing a bias on potential strategies. It is however possible that providing specific instructions              

for mental strategies might have facilitated participants to identify and train a successful strategy. 

Our data confirm and expand findings from a recent study, where stop signals were elicited in                

real-time upon detection of RPs while participants were performing self-initiated movements           

( ​Schultze-Kraft et al., 2016​). In one condition, participants were instructed to “move unpredictably”             

so as to not cause stop signals. However, the shape of the RP remained unchanged and stop signals                  

thus continued to be elicited, suggesting that participants were unsuccessful in reducing or             

suppressing their RPs. In that study, in order to avoid stop signals being triggered by noise in the                  

EEG, they were only elicited if the magnitude of an RP was above a certain threshold. Thus, those                  

stop signals can be considered a ​binary feedback of the RP, since they were triggered by large but                  

not by small RPs. In contrast, in the current study the feedback of the RP was ​continuous​: in every                   

trial, a feedback score was shown that directly reflected RP magnitude on a continuous scale. The                

trial-by-trial feedback in our study thus provided considerably more information about the RP to the               

participant, compared to the binary stop signals used by Schultze-Kraft and colleagues ( ​2016​).             

However, the data of both studies suggest that the inability of participants to exert control over their                 

RPs does not depend on the type or scale of the provided feedback. 

Our main finding that participants were not able to consciously suppress or modulate their RPs               

suggests that the RP is a signal over which people cannot exert conscious control, and thus that it is                   

an “​involuntary precursor signal of voluntary action”. Please note, however, that our data remain              

silent as to whether the RP is a ​causal precursor signal of voluntary action, as has been the                  

traditional account of the RP ( ​Libet et al., 1983; Libet 1985​). Alternative accounts suggest that the                

RP reflects the leaky integration of spontaneous fluctuations in a drift-diffusion process ( ​Schurger             

et al., 2012; Schurger, 2018​), and that spontaneous movements occur when the accumulation of              

autocorrelated noise reaches a threshold, with either the output ( ​Schurger et al., 2012​) or the input                

( ​Schurger, 2018​) of this accumulation giving rise to the shape of the RP. 

The accumulation-to-bound model makes several predictions relevant for the interpretation of our            

data. First, the RP-as-input model ( ​Schurger, 2018​) predicts that the shape of the RP is influenced                

by the delay between trial start and movement onset, i.e. the waiting time. Indeed, visual inspection                

of our data show a slight modulation of RP waveform in channel Cz by waiting time (Fig. 10A),                  

compatible with the report by Schurger ( ​2018​, Fig. 6). Note, however, that this modulation is not                
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detected as significant in our regression analysis on the feedback scores, where the Bayes Factor               

supports the absence of an effect. This is possibly because our EEG classifier was trained in a more                  

robust fashion on changes in RP across all channels selected in the training data. Thus, it is unclear                  

if this effect is spurious. Second, in the accumulator model framework people could potentially              

exert influence over their RPs, e.g. by modulating parameters such as drift rate or threshold, as long                 

as these were in turn to change the shape of the RP. Nonetheless, if this accumulation is necessary                  

for voluntary movements then such movements would necessarily be preceded by an RP. Our data               

show that participants seem unable to affect the amplitude of the RP, even when explicitly trying to                 

do so. 

In sum, we performed a neurofeedback experiment to test whether people are able to suppress their                

readiness potential. We found no evidence for the ability of participants to consciously suppress              

their RPs. Our findings thus suggest that the readiness potential is an involuntary precursor signal of                

voluntary action over which people cannot exert conscious control. 
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Supplementary Material 

Participants’ self-reports on questionnaire about strategies 

Table S1. Participants’ self-reports on questionnaire about strategies. Participants were asked           
to write down (i) the different strategies that they used during the feedback stage, (ii) whether they                 
worked, and if so (iii) whether they were trainable. The table shows all reported strategies of single                 
participants in condensed form. Participants’ written accounts of how well each strategy worked             
were classified into three rating categories (right column): accounts such as “unsuccessful” or “did              
not work” are denoted with a 0, accounts such as “seemed to work” or “worked sometimes” are                 
denoted with a +, accounts such as “successful” or “worked well”, or those reported as trainable, are                 
denoted with ++. 

Participant 
ID 

Strategy Rating 

1 Adjust breathing 0 

 Focus on the impulse to press + 

 Shift attention to something else + 

 Relax 0 

2 Focus on the visual stimulus 0 

3 Plan the next movement 0 

 Ignore the goal 0 

 Reward myself for good scores 0 

4 Relax and clear the mind + 

 Evoke positive emotions ++ 

 Ignore scores 0 

5 Relax, don’t think about pressing ++ 

 Move faster 0 

 Think about low numbers 0 

6 Clear the mind + 

 Play song in my head and hit on specific beats 0 

 Delay the first urge to press and press later 0 

7 Don’t think about pressing + 

 Focus on pressing ++ 
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 Delay first urge to press and press later + 

 Feel surprised about pressing the pedal ++ 

8 Slow down movement and decrease force + 

9 Delay the urge to move and move shortly after ++ 

 Don’t think about pressing + 

 Longer waiting time 0 

10 Focus on stimulus or task 0 

 Focus on breathing, clearing the mind 0 

 Slower and less forceful movements ++ 

 Longer waiting time 0 

11 Longer/shorter waiting time 0 

 Increase/decrease force of movement 0 

 Interrupting movement ++ 

12 Relax 0 

 Slower movement ++ 

13 Slower movement ++ 

 Decrease force of movement 0 

 Decrease waiting time 0 

14 None specified 0 

15 Mind wandering (use spontaneous train of thoughts) ++ 

 Relax + 

 Shifting attention away from task + 

 Using emotions + 

16 Increase force of movement ++ 

 Shift attention away from task + 

 Increase waiting time 0 

 Relax + 

17 Clear mind, relax + 
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 Move spontaneously + 

18 Think about something else 0 

 Focus on breathing + 

 Focus on replicating the same movement every trial ++ 

 Shift attention away from task 0 

 Increase movement speed 0 

19 Shift attention away from task + 

20 Waiting time ++ 

 Force of movement 0 

 Movement speed ++ 

21 Moaning + 

 Relax 0 

 Speed of movement 0 

22 Delay the first urge to move, move later + 
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