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Abstract 
 

The complexity of social interactions is a defining property of the human species. 
Many social neuroscience experiments have sought to map ‘perspective taking’, ‘empathy’, 
and other canonical psychological constructs to distinguishable brain circuits. This 
predominant research paradigm was seldom complemented by bottom-up studies of the 
unknown sources of variation that add up to measures of social brain structure; perhaps due to 
a lack of large population datasets. We aimed at a systematic de-construction of social brain 
morphology into its elementary building blocks in the UK Biobank cohort (n=~10,000). 
Coherent patterns of structural co-variation were explored within a recent atlas of social brain 
locations, enabled through translating autoencoder algorithms from deep learning. The 
artificial neural networks learned rich subnetwork representations that became apparent from 
social brain variation at population scale. The learned subnetworks carried essential 
information about the co-dependence configurations between social brain regions, with the 
nucleus accumbens, medial prefrontal cortex, and temporoparietal junction embedded at the 
core. Some of the uncovered subnetworks contributed to predicting examined social traits in 
general, while other subnetworks helped predict specific facets of social functioning, such as 
feelings of loneliness. Our population-level evidence indicates that hidden subsystems of the 
social brain underpin interindividual variation in dissociable aspects of social lifestyle. 
 
 
 
Keywords: artificial neural networks, machine learning, deep learning, systems neuroscience, 
population neuroscience, social cognition 
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Introduction 
 

Social interaction is a central activity to the human species, which has enabled the 
construction of civilizations by collaboration across and between generations (Tennie et al., 
2009). This realization has led many investigators to adopt the social brain hypothesis (Byrne 
& Whiten, 1988; Humphrey, 1978). The perspective posits that dimensions of social 
complexity, like group size (Dunbar & Shultz, 2017; Lewis et al., 2011) or the capacity to 
anticipate other individuals’ ongoing thought (Powell et al., 2010), have shaped the evolution 
of brain structure. To this end, the need to adapt to the increasing demands of social complexity 
and social challenges has likely played a significant role in natural selection, thus influencing 
the course of primate brain evolution (Byrne & Whiten, 1988; Humphrey, 1978). The 
significance of social interaction for the human species also becomes apparent in its close 
relation to mental health. For instance, a lack of regular social interactions is known to escalate 
the risk for various major psychiatric disorders (Danilo Bzdok & Dunbar, 2020; Cacioppo & 
Hawkley, 2009; Tost & Meyer-Lindenberg, 2012). 

To interrogate the relationship between dimensions of everyday social experience may 
manifest themselves in the human brain, previous structural brain-imaging studies have 
established the close relationship between markers of social interaction frequency and quantity 
and grey matter structure in regions, such as the amygdala (R. Kanai et al., 2012), nucleus 
accumbens (Kiesow et al., 2020 in press) and ventromedial prefrontal cortex (Dunbar & 
Shultz, 2017; Lewis et al., 2011). In addition, neuroscientists also commonly rely on carefully 
curated experimental tasks, which frequently endorse a select set of psychological constructs 
like ‘theory of mind’, ‘empathy’, or the ‘mirror neuron system’. These hypothesis-guided 
social, cognitive and affective neuroscience experiments have proven invaluable for localizing 
neural activity responses in controlled task environments. For instance, in moral decision 
making, experimental paradigms involving the trolley dilemma have been used to compare 
the neural correlates underlying emotional-affective processes against those involved in more 
rational abstract-perspective taking (Danilo Bzdok, Groß, et al., 2015; Sevinc & Spreng, 
2014). Recent trends towards large-scale aggregation of social neuroscience experiments have 
opened the door to principled across-study integration by an arsenal of meta-analysis 
techniques. These new tools have allowed neuroscientists to identify the parts of the human 
brain that respond most consistently when participants are engaged in a diverse set of social-
affective experiences (Spreng et al. 2009; Alcalá-López et al. 2018; Schurz et al. 2014). 

Despite the merits of defining convergence zones related to the social brain based on 
aggregate summaries from meta-analyses, the constituent regions may obscure distinct social-
affective functional systems when collapsing separate studies into averages. In social 
neuroscience, a majority of previous brain-imaging studies implicitly assumed that a target 
region is sufficiently described by a single pattern of neural activity obtained through some 
subtraction analysis, which results in relative increase or decrease of neural response. This 
pervasive assumption may obfuscate distinct sources of biological variation - within trusted 
convergence zones - that factor into specific effects in a brain region across individuals. As a 
consequence, much prior social neuroscientific work has been less sensitive to such mutually 
overlapping sources of variation in the wider population. Yet, adaptive social functioning 
relies on the dynamic coordination of a host of abilities, ranging from lower-sensory 
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processing of social cues like faces to higher processing such as mental scene construction 
(Mesulam, 1998). 

The current study adopted a data-driven stance on population neuroscience to dissect 
and characterize separable neural systems from social brain regions that preferentially support 
social-affective processes. All of our analyses capitalized on the UK Biobank (UKB) - 
currently the largest, uniformly acquired human brain-imaging dataset in the world - to 
identify the hidden structural components within the social brain. We further characterized the 
derived social subnetworks by profiling their predictive role in several social lifestyle markers. 
Importantly, the overall analytical strategy departs from many previous approaches that 
assumed each specific brain region underpins a unique element of social functioning. This 
common a-priori assumption neglects the possible existence of subnetworks that may partially 
overlap with each other in topography and functional implications across the social brain 
elements (Shine et al., 2019; R. N. Spreng & Andrews-Hanna, 2015; Yeo et al., 2015). 
Moreover, many studies restricted themselves to charting patterns in the social brain by 
clustering or mixture modeling approaches, which strictly assign each brain region to one 
emerging cluster only. These modeling approaches are also restricted in exploring new ways 
to determine the practical and empirical relevance of certain brain regions, such as by linking 
them to key characteristics of the daily social environment. 

For these reasons, autoencoder neural network algorithms are a particularly promising 
avenue (Danilo Bzdok, Eickenberg, et al., 2015; G. E. Hinton & Salakhutdinov, 2006) to fully 
appreciate and explicitly model potentially complexe variation across known brain locations 
that were previously shown to represent the human social brain (Alcalá-López et al., 2018). 
Hidden subnetwork representations were directly learned from the brain-imaging data 
themselves by translating autoencoder network solutions from the deep learning community. 
This artificial neural network approach for pattern discovery inherently yielded empirical 
validity by gauging the achieved information compression from the variation of the social 
brain. To show practical relevance, we then probed the social-brain-derived candidate 
subnetworks by testing their predictive value across a repertoire of diverse human social traits.  
 

Material and Methods 
 
Human population data resource 

The UK Biobank is a prospective epidemiological resource that provides rich 
information including brain-imaging, genetics, and multiple biological and lifestyle 
measurements. We used the brain-imaging data from the 10,000 participant UKB release (see 
Supplementary Table 1 for demographic information), since this sample was homogeneously 
recruited at the same assessment centre. We used high-resolution T1-weighted structural 
magnetic resonance images (MRI), as these measurements can be used to capture whole-brain 
grey matter morphology (Miller et al., 2016). These brain scans were submitted to 
preprocessing and quality-control workflows from Alfaro-Almagro and colleagues, FMRIB, 
University of Oxford, UK (2018). Use of this uniform preprocessing pipeline increases the 
comparability of our findings to other and future UKB studies. Moreover, we examined 
several key markers of social lifestyle (Table 1, Supplementary Fig. 1). 
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Table 1: Social lifestyle markers 

UKBB-
ID 

Social 
Lifestyle 
Marker 

Group 1 Group 2 Group 3 Group 4 

2020 Loneliness Women feeling 
lonely 

Women not 
feeling lonely 

Men feeling 
lonely 

Men not 
feeling lonely 

4570 Friendship 
Satisfaction 

Women with 
low friendship 
satisfaction 

Women with 
high 
friendship 
satisfaction 

Men with low 
friendship 
satisfaction 

Men with high 
friendship 
satisfaction 

709 Living Alone Women living 
alone 

Women living 
with others 

Men living 
alone 

Men living 
with others 

2149 Number of 
Lifetime 
Sexual 
Partners 

Women with 
one sexual 
partner 

Women with 
several sexual 
partners 

Men with one 
sexual partner 

Men with 
several sexual 
partners 

22617 Job Women 
without a 
social job 

Women with 
a social job 

Men without a 
social job 

Men with a 
social job 

2110 Social 
Support 

Women with 
low social 
support 

Women with 
high social 
support 

Men with low 
social support 

Men with high 
social support 

 
Preprocessing of structural brain-imaging data 

Structural MRI brain scans (T1-weighted 3D MPRAGE sequence at 1 mm isotropic 
resolution) were pre-processed using gradient distortion correction, field of view reduction 
using the Brain Extraction Tool (Smith, 2002) and FLIRT (M. Jenkinson & Smith, 
2001)(Mark Jenkinson et al., 2002), as well as non-linear registration to MNI152 standard 
space at 1 mm resolution using FNIRT (Andersson, J. L., Jenkinson, M., & Smith, S., 2007). 
To avoid unnecessary interpolation, all image transformations were estimated, combined and 
applied by a single interpolation step. Tissue-type segmentation into cerebrospinal fluid, grey 
matter and white matter was applied using FAST (FMRIB’s Automated Segmentation Tool 
(Zhang et al., 2001) to generate full bias-field-corrected images. SIENAX (Smith et al., 2002), 
in turn, was used to derive volumetric measures normalized for head sizes. The ensuing 
adjusted volume measurements represented the amount of grey matter corrected for individual 
brain sizes. 

 
Social brain atlas definition 
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Our study built on a current best-estimate of social brain topography in humans, which 
only recently became available (Alcalá-López et al., 2018). This topographical atlas was 
derived by a quantitative large-scale integration of functional MRI findings from 3,972 task 
experiments involving thousands of individuals. 36 regions of interest were thus previously 
identified (Supplementary Table 2). These 36 already-established locations were also reported 
to be connectionally and functionally segregated into four network clusters (Alcalá-López et 
al., 2018), Fig. 4): i) a visual-sensory cluster (fusiform gyrus, posterior superior temporal 
sulcus, MT/V5), ii) a limbic cluster (amygdala, ventromedial prefrontal cortex, rostral anterior 
cingulate cortex, hippocampus, nucleus accumbens), iii) an intermediate cluster (inferior 
frontal gyrus, anterior insula, anterior mid-cingulate cortex, cerebellum, supplementary motor 
area, supramarginal gyrus), and iv) a higher-associative cortical cluster (dorsomedial 
prefrontal cortex, frontal pole, posterior mid-cingulate cortex, posterior cingulate cortex, 
precuneus, temporo-parietal junction, middle-temporal gyrus, temporal pole). 

Our pattern-learning pipelines were thus anatomically guided by brain volume 
extraction for the 36 consensus brain regions of interest (each associated with one of the four 
previously established functional clusters in the social brain). In this way, neurobiologically 
interpretable measures of grey matter volume were obtained in previously established brain 
locations from the ~10,000 participants (Kernbach et al., 2018; Kiesow et al., 2020 in press; 
Miller et al., 2016). These values were obtained by summarizing whole-brain structural MRI 
maps based on the topographical compartments of the social brain. We applied a smoothing 
kernel of 5mm FWHM to the participants’ structural brain maps to homogenize local 
neuroanatomical features (Frangou et al., 2004). Grey matter volume information (cf. above) 
was averaged in spheres of 5mm diameter around the consensus location from the previously 
established social brain atlas (Alcalá-López et al., 2018), averaging the preprocessed, tissue-
segmented, and brain-size-adjusted MRI signals (cf. above) across the voxels belonging to a 
given target region (Kiesow et al., 2020 in press). This procedure yielded a single 
representative volume measure for each constituent element of our social brain atlas. Note that 
using spheres of 2.5mm or 7.5mm diameter yielded virtually identical results and led to the 
same conclusions. 

This approach yielded 36 neurobiologically meaningful volume measures for each 
UKB participant. Each of these social brain features was z-scored across participants by 
centering to zero mean and scaling the variance to one. These measures of regional brain 
volume in social brain networks served as the basis for all subsequent analysis steps. Full 
information on the social brain locations that provided the basis for this study are available 
online for transparency and reuse at the data-sharing platform NeuroVault 
(http://neurovault.org/collections/2462/). 
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Figure 1: Schematic on how autoencoder neural networks learn to decompose the social brain 
into structural co-dependency patterns. We designed autoencoder learning algorithms to seek 
general principles of how regional volume varies cohesively across the social brain atlas (Danilo 
Bzdok, Eickenberg, et al., 2015; G. E. Hinton & Salakhutdinov, 2006). We assumed that the set of 
social brain region volumes vary jointly in the broader human population. We therefore explored which 
of the 36 atlas regions are the core social regions that provide the most information about cohesive 
volume variation, in an effort to deconvolve the hidden subsystems of structural co-variation in the 
human social brain. The encoder network (left) estimated parameter weights that define the essential 
structural links from the original region volumes to a re-expression in the learned embedding 
representation. The so-called bottleneck (center) represented the embedding expressions that pool from 
volume distributions across regions in each unit in the hidden layer. Each hidden unit arises from an 
adaptive combination of its input links ∑! 𝑤!	𝑥# and activation function 𝜎(⋅). The decoder 
network (right) estimated parameter weights that learn to use the volume distribution embeddings from 
the hidden layer to restore each participant’s region volume distribution. Minimizing the discrepancy 
(reconstruction error) between originally measured and recovered region volumes is the optimization 
goal that drives the search for artificial neural network solutions. For the purpose of illustration, the 
nucleus accumbens (NAC) is depicted with its strength of representation (thickness of links) in the 
different emerging social subnetworks (blue). As such, the artificial neural network architectures were 
trained to learn >1,000 parameter weights by asking: ‘Which coherent interregional representations are 
most instrumental to dis-assemble and re-assemble social brain structure?’ 
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Neural network algorithms to discover subnetworks hidden in social brain variation 
To seize the opportunity to provide a richer picture of potential subnetworks 

underlying variation across the social brain atlas, we leveraged artificial autoencoder neural 
networks (Fig. 1). This family of deep learning algorithms can naturally extend to architectures 
with multiple latent layers of consecutive non-linear processing (Goodfellow et al., 2016; G. 
E. Hinton & Salakhutdinov, 2006). These algorithms were deployed to extract spatially 
distributed patterns dormant in the structural MRI data. The representation learning approach 
directly addressed the question of how the morphological variation across regions of the entire 
social brain can be re-expressed in a limited set of elementary network representations. This 
modeling goal was satisfied by imposing a projection of rich input data to a lower-rank 
bottleneck (Fig. 1) to automatically derive a useful compression of information from structural 
brain variation into a collection of atomic network patterns (Danilo Bzdok, Eickenberg, et al., 
2015; G. E. Hinton & Salakhutdinov, 2006). 

The “encode-decode” modeling scheme yielded one spatially distributed volumetric 
pattern for each extracted dimension in the bottleneck latent space (Fig. 1). Each of the 
distributed volumetric patterns encapsulated one hidden subnetwork that quantitatively 
delineated coherent interregional dependencies across the entire social brain atlas. As such, 
using one, or up to all extracted hidden subnetworks, the autoencoder could rebuild the 
regional brain structure that constitutes the human social brain as best as possible. If 
successful, this modeling agenda can unlock evidence for the subnetworks’ empirically tested 
ability to parsimoniously recapitulate the brain information wedded into the entire social brain 
atlas. These artificial neural network algorithms provide an attractive solution for the goal of 
a comprehensive exploration of hidden sources of variation that collectively comprise the 
social brain atlas. 

Autoencoder learning architectures can be automatically optimized to improve the 
fidelity of the constituent subnetworks that together, combine to the collapsed measures of 
social brain volumes that were actually captured using MRI. The optimization objective was 
based on the original participant volume expressions by means of searching through a vast 
space of candidate hidden subnetwork patterns to converge on an optimal representational 
solution. This model family is naturally scalable because these pattern-learning algorithms are 
well-known to abstract across several classical methods for dimensionality reduction (Danilo 
Bzdok, Eickenberg, et al., 2015; Goodfellow et al., 2016). In line with the primary goal of our 
study, the elected modeling framework allowed for each location of the social brain atlas to 
exhibit a different relevance in different subnetworks. We hypothesized that spatially 
overlapping subnetworks are critical to making progress towards a faithful representation of 
brain compartments closely linked to social-affective processing capacities. Our study hence 
endorses the assumptions that a single target region has a certain association strength with 
several distinct neurocognitive processes, which accommodates the possibility of mixed 
membership with continuous degrees of spatial overlap.  

To guard against overfitting during model building, we carried out a rigorous cross-
validation scheme (Danilo Bzdok, 2017; Hastie et al., 2001). In five (outer) folds of data 
splitting, structural brain scans from 9,933 participants were randomly divided into a training 
set (total n = 4,966, 2,575 females, mean age = 55.41 years, SD ± 7.54) and a test set (total n 
= 4,967, 2,629 females, mean age = 55.27 years, SD ± 7.48). In 10 nested (inner) folds of 
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random data splitting, we used 90% of the training set for model parameter estimation, while 
10% of the training set were used for model hyperparameter tuning and model architecture 
selection. In particular, we charted several architectures of autoencoder neural networks 
(Table 2) on the volume data centered on the 36 social brain regions. To learn hidden network 
representations from structural brain scans by means of different autoencoder architectures, 
we used the RMSprop optimizer (G. Hinton et al., 2012) and a learning rate of 1e-3 based on 
a grid search of the hyperparameters (see Supplementary Table 3 for details). We probed 
autoencoder architectures that differed in the number of latent processing layers (i.e., 6, 4, 1), 
linear versus nonlinear activation functions (identity function versus Relu operation at 
“neuron” processing units), tied versus non-tied weights and different penalty terms exerting 
regularization on the weight matrix of the latent layers inside of the layers (l1, l2 and cross-
covariance regularization constraints (Cheung et al., 2014)). The process of building 
hyperparameter-optimized instances of these different artificial neural networks was 
exclusively performed on the training set (cf. above). In a subsequent step, we evaluated the 
autoencoder-based information compression performance on unseen participants from the 
independent test set. 
 
Table 2: Examined types of autoencoder neural networks  

Autoencoder 
architecture 

Unit 
activation 
function 

Regularization 
constraints 
on parameters 

Number 
of latent 
layers 

Units per latent 
layer 

Tied 
weights 

baseline identity None 1 15 No 

baseline + l1 identity l1 penalty 1 15 No 

baseline + l2 identity l2 penalty 1 15 No 

baseline + 
covariance 

identity covariance 1 15 No 

tied non-linear  Relu None 1 15 Yes 

3-layer non-linear Relu None 3 25-15-25 No 

5-layer non-linear Relu None 5 25-20-15-20-25 No 

 
 
Prediction of social markers based on participants’ subnetwork expressions 

We subsequently examined the predictive role of the discovered social subnetworks 
based on their variation in our population sample. For this purpose, we tested the subnetwork 
generalizability for several markers of everyday social life (Table 1). For this supervised arm 
of our analysis workflow, we used the identical nested cross validation procedure (cf. above). 
That is, inside each of the five outer folds, the particular training set participants were further 
subdivided into ten splits for the purpose of model selection and model hyperparameter tuning 
(cf. above). The estimated candidate models were compared against each other on the 
independent (inner) data splits. This approach allowed identification of the model instance 
with the best hyperparameter configurations, which was based on the highest achieved relative 
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predictive performance. The built hyperparameter-optimized models were then assessed for 
their absolute predictive performance on never-seen participant data from the test set (outer 
loop). To obtain an accurate estimate of the expected performance of the model, the fold-wise 
model performances were subsequently averaged (i.e., across five separate test accuracies) to 
a single cross-validated prediction performance, which we expect to hold in other independent 
or future datasets (Hastie et al., 2009; Pereira et al., 2009). 

For the supervised prediction of social lifestyle traits, we charted two classes of 
predictive algorithms that are complementary in representational capacity and thus 
theoretically achievable prediction power (Danilo Bzdok & Yeo, 2017). As a widely used 
classifier with linear capacity, we opted for Tikhonov-regularized regression with logistic loss 
function. The key hyperparameter of this pattern-learning classifier was the coefficient for the 
l2 penalty term, which we searched in a grid ranging from -3 to +3 in seven logarithmically 
spaced steps. As a commonly employed classifier with a considerably higher capacity to detect 
and exploit complex predictive patterns, we opted for random forest algorithms (Breiman, 
2001). For hyperparameter search, we tuned the maximum depth (2 or 6), the minimal split of 
samples (2 or 6) and the minimum samples of leaves (2 or 6). We noticed that fitting 100 
decision trees showed saturation in prediction accuracy based on the out-of-bag estimates on 
training data from unseen UKB participants by a given decision tree (Hastie et al., 2001). Our 
rationale was to test for the existence of exploitable non-linear effects in our brain imaging 
data for predicting social traits. This consideration informed our decision on whether to 
commit to a high-capacity predictive algorithm, or to resort to a linear predictive algorithm is 
sufficient for our predictive characterization of the identified subnetworks. 

We performed prediction of interindividual differences for a given social trait based 
on the autoencoder-derived latent factor projections (cf. above) of social brain volume 
measures. To ensure balanced groups, the UKB participants were split into more social versus 
less social lifestyles. Each examined social marker was ensured to have binary encoding 
(median-split as appropriate) into more social versus less social categories. Our approach also 
acknowledged the wideranging sex differentiation of social traits in the human brain that is 
receiving increasing empirical support from neuroimaging studies (Kiesow et al., 2020 in 
press; Tannenbaum et al., 2019). As such, the prediction goal, we further split the participants 
according to sex, which yielded four groups for classification: 1) more social males, 2) less 
social males, 3) more social females and 4) less social females. Hence, for each particular 
index of social richness, our classifiers solved a four-class prediction problem. Moreover, we 
incorporated age differences into the analysis pipeline by using participant age as an input 
source of interindividual variation in all predictive models. To enable comparable handling of 
the multi-class classification problem with both l2-penalized logistic loss and random forest 
estimators, we used both prediction algorithms in the widely used one-versus-rest scheme 
(Hastie et al., 2001). In doing so, we obtained parameter weights that indicated the predictive 
role or contribution for each latent autoencoder embedding of social brain morphology for 
successfully discriminating UKB participants who live in a more versus less rich social 
environment. 
 
Scientific computing implementation 
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All computations and visualizations were performed in the Python programming 
language. For the unsupervised arm of the analysis workflow, we used Keras (Chollet & 
Others, 2015) to create and train the different types of autoencoders, while the predictive 
algorithms were used as implemented by scikit-learn (Pedregosa et al., 2012). To process and 
visualize the structural MRI data, we used nilearn (Abraham et al., 2014) and its Pysurfer 
(https://pysurfer.github.io/) interface. We created all additional figures with Matplotlib 
(Hunter, 2007), Seaborn (https://seaborn.pydata.org/) and Bokeh (Bokeh Development Team, 
2019). Pandas (McKinney, 2010) was used for data slicing and dicing. 
 

Results 
 
Neural network algorithms learn coherent subnetworks from social brain variation 

We distilled hidden subnetwork representations from structural variation across the 
social brain atlas in ~10,000 UK Biobank participants. This goal was achieved by charting 
several artificial neural networks that implement autoencoder variants. For a given algorithm 
architecture, the information compression performance was computed by invoking back-
projection from each participant’s specific subnetwork embedding expressions to recover 
volume estimates for all 36 social brain atlas regions (Bzdok et al. 2015). That is, we computed 
the difference between the actual volumes of each social brain region as measured in each 
participant and the volumes reconstructed from the participant-wise hidden subnetwork 
expressions as a metric of parsimony of the derived candidate representations. 

The probed autoencoder neural networks varied in key properties including the depth 
of the consecutive processing layers, intricacy of modeled intervariable relationships, and 
different regularization constraints on model parameter estimation (Table 2). Among the deep 
non-linear autoencoder architectures with Relu activation function, the six-layered 
autoencoder achieved a high explained variance (EV) of 0.78 (SD < 0.01, measured as mean 
absolute error). The baseline autoencoder architecture with identity unit activation function 
and one latent processing layer and without regularization constraints was the simplest 
architecture, and also achieved an explained variance of 0.78 (SD < 0.01 across data splits) 
(Fig. 2). Hence, the information compression performance of the baseline autoencoder in 
learning a parsimonious representation of the original social brain regions was not 
outperformed by other probed autoencoder architectures based on the explained variance (i.e., 
mean absolute error) or stability (i.e., standard deviation over different data splits) (Fig. 2). As 
deeper non-linear neural network algorithms did not yield statistically defensible performance 
improvements on our structural brain data, we focused on baseline autoencoder neural 
networks with one latent layer for all subsequent analyses.  
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Figure 2: Model performance for different autoencoder neural networks from deep learning. 
After forming a given autoencoder model based on the training participants, all models’ explained 
variance performances (i.e., mean absolute error) were evaluated on independent test participants. The 
bar plot shows that the baseline autoencoder (linear processing layers with identity activation 
functions) performs at least as well as any of the other probed, more sophisticated neural network 
algorithms. The mean explained variance is indicated as the heights of the blue bars. The error bars 
display the stability of performance as measured by standard deviation (SD) across data splits. The 
more complex 6-layer autoencoder architecture was not able to outperform the baseline autoencoder 
solution in a convincing way. This observation probably witnesses the risk of overfitting in more 
complex autoencoders. Hence, for our study, there is no substantial advantage of deep or nonlinear 
autoencoders. Furthermore, different penalties did not improve the model. In terms of both model 
performance (i.e., explained variance) and stability (i.e., SD), the baseline autoencoder was at least as 
successful at extracting structural dependence patterns in the social brain as any other examined 
autoencoder architecture. 
 

By means of the baseline autoencoder neural networks with identity unit 
transformations (instead of Relu activation function), we examined the effect of different types 
of regularization constraints on compression performance. For the purpose of increasing 
sparsity, we encouraged exactly-zero parameter values during model estimation, 
corresponding to region relevances, by imposing l1 regularization (EV = 0.36, SD ± 0.02). To 
instead constrain the estimation of model parameters towards smaller absolute values, we 
imposed l2 regularization, which yielded better model performance (EV = 0.65, SD < 0.01). 
Finally, constraining the network pattern discovery to discourage mutual correlation between 
the emerging subnetworks using a covariance penalty term yielded performance (EV = 0.63, 
SD < 0.01), which ranked in-between that of l1 and l2 penalized neural network algorithms. 
Hence, imposing different types of regularization constraints on the baseline autoencoder did 
not outperform the information compression performance of the overall social brain 
morphology in unseen data, and also led to similar solutions of hidden subnetwork 
representations.  

In a series of similarity tests, we additionally assessed the robustness of our candidate 
subnetwork solutions for the social brain. Within each of the subnetworks, we compared the 
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relevance patterns of the social brain regions to corresponding hidden representations emerged 
from the other autoencoder variants with different regularization constraints. The robustness 
of all assigned region relevances to the derived hidden representations was suggested by 
subnetwork-wise Pearsons’ correlations across the 36 region relevances that were learned by 
different autoencoder architectures (Sup. Fig. 2, Sup. Fig 3 A-C). The Pearson correlation 
coefficients averaged over four (Sup. Fig. 3A-C) different autoencoder neural networks with 
identity function was rho = 0.97 (SD ± 0.05). In particular, the most deviant architecture 
among these autoencoders was with covariance penalty loss, which showed a mean Pearson 
correlation of rho = 0.92 (SD ± 0.03). Additionally, a similar Pearson correlation of rho = 0.98 
(SD ± 0.01) was obtained when comparing a given type of identity-function autoencoder 
neural network obtained from the training set with the corresponding architecture learned on 
the independent test set (Sup. Fig. 3D). Together, these confirmatory analyses ascertained that 
the region relevances derived by the baseline autoencoder were stable over several neural 
network architectures. All subsequent analysis steps hence placed focus on the baseline 
autoencoder with an unconstrained parameter estimation (i.e., without penalty for parameter 
regularization). 

After considering the achieved explained variance and confirming robustness of 
different types of baseline autoencoders, we directed attention to how much information each 
separate subnetwork carries about variation in the whole social brain structure. In this series 
of analyses based on the baseline autoencoder, subnetworks 7, 9, and 15 emerged as most 
dominant. An elbow-shaped pattern after the third top subnetwork (subnetwork 15) showed a 
drop in information compression performance (Fig. 3, left panel). Put differently, subnetworks 
7, 9 and 15 were highlighted as the three top hidden subnetworks because these specific hidden 
representations showed the highest importance for encapsulating variation in the complete 
social brain from only a few hidden structural patterns. It is an important quality of this 
analytical approach that each social brain region can potentially contribute to multiple 
subnetworks. This property allowed the set of hidden subnetworks to model several 
overlapping sources of population variation at the same time (Fig. 4). 

Consequently, the particular set of region volume effects in a specific subnetwork 
should be interpreted in light of the relevances inside of the other concomitant subnetworks 
(Supplementary Fig. 4), which compose the overall human social brain. In particular, the 
nucleus accumbens (NAC) contributed strongly to all three dominant subnetworks 7, 9, and 
15 (Fig. 3, right panel). The bilateral MT/V5 yielded similar region relevances for subnetwork 
7. Additionally, the right MT/V5 contributed strongly to subnetwork 9. Moreover, subnetwork 
7 allocated region relevance to the temporo-parietal junction (TPJ) and frontal pole (FP), while 
subnetwork 9 also highlighted the relevance of the bilateral supramarginal gyrus (SMG). 
Furthermore, the bilateral SMG, bilateral TPJ and dorsomedial prefrontal cortex (dmPFC) also 
substantially contributed to subnetwork 15. 
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Figure 3: Most explanatory hidden subnetwork representations learned by the autoencoder 
neural network. Left: We quantify the volume effects of each particular social subnetwork to volume 
variation in the whole social brain atlas. One-after-one, each identified hidden subnetworks (x axis) 
served separately to reconstruct the originally measured volume of 36 social brain regions from each 
individual. The reconstruction performance of social brain volumes is assessed based on mean absolute 
error (y axis) for each hidden subnetwork. A perfect encapsulation of the complete social brain volume 
would yield an explained variance of 1, while incomplete recovery would yield numbers lower than 1. 
This explained variance metric quantified to what extent the directly measured social brain volumes 
could be restored by one of the learned, not directly measurable subnetwork patterns. Right: The 36 
social brain regions (x axis) contribute differently to the three dominant subnetworks (y axis). The 
relevance of each particular brain region to the dominant subnetworks is represented by the color for a 
respective combination of regions in a given subnetwork. A positive (negative) relevance towards 
regional volume is shown in red (blue) tones. The directionality of the volume effects shows which 
regions have opposite effects in explaining social brain variation. For instance, on the one hand, the 
nucleus accumbens is highlighted in the leading three subnetworks 7, 9 and 15, which exemplifies the 
possibility of overlapping volume variation. On the other hand, of the top three subnetworks, the 
dorsomedial prefrontal cortex are highlighted in subnetwork 15. For abbreviations and details on social 
brain regions see Supplementary Table 2. 
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Figure 4: Top three hidden subnetworks that underpin structural dependence patterns in social 
brain differences. Depicts the uncovered hidden representations that were learned by the autoencoder 
neural network, with the allocated relevance of each region from the social brain atlas (cf. Fig. 3). Red 
(blue) colors represent the extent of positive (negative) relevances. The strongest three hidden 
subnetworks 7, 9, and 15 represented meaningful structural inter-dependencies that highlighted key 
regions including the TPJ, medial PFC and NAC. For abbreviations and details on social brain regions 
see Supplementary Table 2. Color coding according to Figure 3. 
 

 
Figure 5: Functional and hierarchical annotation of the learned hidden social subnetworks. To  
provide additional functional profiling, we related the derived subnetworks to previously reported 
clusters, which correspond to four decreasing hierarchical levels of social brain circuits: higher-
associative, intermediate, limbic and visual-sensory systems (Alcalá-López et al., 2018). The red color 
indicates the cluster-per-cluster relevance that are parsed for the social subnetworks derived in the 
present study (x axis). This metric was calculated as the average (absolute) relevance of all brain 
regions part of a consensus cluster (colorbar on z-scale). For instance, in subnetwork 15, aggregated 
relevance is distributed relatively evenly between higher-level and intermediate functional systems. In 
contrast, subnetworks 3, 7, 9, 12 and 13 show stronger relations to the lower visual-sensory functional 
cluster. These alternative summaries of our results validate the previously investigated influence of 
these consensus clusters. These post-hoc exploratory results also highlight that we are able to build 
upon this existing knowledge with overlapping representations of different underlying subnetworks. 
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To functionally annotate the learned hidden subnetworks (cf. methods), we then 
performed a descriptive characterization in context to the previously established functional 
clusters in the social brain atlas (Alcalá-López et al., 2018). This previous study grouped the 
36 constituent regions into four hierarchically differentiated functional circuits: the visual-
sensory, intermediate, limbic, and higher-associative clusters. We computed the aggregated 
(absolute) relevances of all social brain regions inside of each previously defined cluster for 
the present social subnetwork representations (Figs. 4 and 5). For subnetwork 7, the highest 
aggregate relevances were found for the visual-sensory cluster (0.17 on z-scale, cf. methods) 
and limbic cluster (0.14). For subnetwork 9, similar aggregate relevances were apparent across 
all four hierarchical clusters, however the visual-sensory (0.16) and intermediate clusters 
(0.16) yielded the highest identical aggregate relevances. For subnetwork 15, the intermediate 
cluster yielded the highest aggregate relevance (0.16) followed by the higher-associative 
cluster (0.15). 

To summarize the unsupervised analyses on subnetwork discovery, if we only had 
access to each participant’s volume expression from the three most dominant hidden social 
subnetworks, we could produce a reliable estimate of the complete social brain morphology 
across UKB participants. That is, the regions assigned with strongest volume effects in these 
dominant three subnetworks are at the core of the interregional structural dependencies that 
combine to empirical measures of social brain variation.  
 
The discovered subnetworks forecast diverse facets of social life 

In the supervised arm of our study, we finally sought understanding of the predictive 
profiles of the learned social subnetwork representations for relevant indicators of social 
lifestyle. For this purpose, we assessed each participants’ individual combination of 
subnetwork expressions as a basis for classifying social traits that have an impact on 
interindividual variation in everyday social interactions (Fig. 6). Across the examined social 
markers, our predictive pattern-learning algorithm distinguished more versus less sociality in 
males and females. Individuals who were socially less satisfied, had fewer social interactions 
or indicated a lower quality for a given social marker were assigned to the less social group. 
Instead, those more socially satisfied or with more opportunities for social interaction were 
assigned to the more social group. We used a four-class linear classification approach, where 
each fitted instance of the pattern-learning algorithm predicted one group (e.g., social females) 
against the three remaining groups (e.g., non-social female, and social or non-social male) 
given the participant-specific embeddings of subnetwork expressions.  

We then tested whether a nonlinear classification algorithm could outperform our 
simpler linear classifier (cf. methods) by leveraging potentially exceedingly complicated 
patterns in social brain variation at population scale. To this end, we used random forest 
algorithms as a higher capacity estimator to assess the out-of-sample prediction performance 
of participants’ social traits based on the participants’ subnetwork expressions. Virtually 
identical prediction accuracies in new participants were observed for both logistic-loss 
classifier (classification accuracy = 0.29, SD ± 0.02 across data splits) and elaborate random 
forest classifier (classification accuracy = 0.30, SD ± 0.03). Note that both classes of predictive 
algorithms performed better than the chance level of 0.25 in this four-class scenario. However, 
given the similarity in out-of-sample performance, its overlapping dispersion, and our goal of 
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direct interpretability of most discriminatory social subnetworks, we embraced the simpler 
logistic-loss classifier for all subsequent analyses. 

Across all examined social traits (Fig. 6), interindividual variation in hidden 
subnetwork 1 (characterized by high relevance of fusiform gyrus, frontal and dorsomedial 
prefrontal cortex and posterior mid-cingulate cortex, cf. Sup. Fig. 4) was particularly 
informative for detecting differences in regular social experience (predictive model weight 
𝑤1 = 0.04, SD ± 0.02 across social traits). Instead, variation in subnetwork 10 (high relevance 
of anterior insula, rostral anterior cingulate cortex, and supramarginal gyrus) appeared 
especially tuned to sex differences based on its predictive contribution to the classifier (𝑤10 = 
0.04, SD ± 0.02), rather than showing salient trait-specific patterns (Supplementary Fig. 5). In 
line with our study goal, we therefore focused attention on the hidden subnetworks with 
predictive roles for different social markers. These were the trait-discriminatory social 
subnetworks 3 (𝑤3 = 0.03, SD ± 0.01), subnetwork 4 (𝑤4 = 0.03, SD ± 0.02), subnetwork 13 
(𝑤13 = 0.02, SD ± 0.02), subnetwork 15 (𝑤15 = 0.02, SD ± 0.01), subnetwork 11 (𝑤11 = 0.02, 
SD ± 0.01), subnetwork 2 (𝑤2 = 0.02, SD ± 0.01) and subnetwork 7 (𝑤7 = 0.02, SD ± 0.01). 
Thus, volume variation of these hidden subnetworks was the most useful for accurately 
predicting interindividual differences in social exchange. 

In addition to predicting participants’ overall degree of sociality, we next zoomed in 
on the hidden subnetworks that were able to best predict specific markers of social life (Fig. 
7). To tell apart whether participants were lonely or not lonely, interindividual variation in 
hidden subnetwork 13 (high relevance of right temporoparietal junction and left posterior 
superior temporal sulcus) emerged as most useful (e.g., lonely men: w = -0.09, SD ± 0.01, 
more surrounded men: w = 0.00, SD ± 0.01 across data splits), in addition to that of  
subnetwork 3 (high relevance of right supramarginal gyrus, left temporo-parietal junction, and 
bilateral posterior superior temporal sulcus) and subnetwork 1 (cf. above). For discriminating 
participants living alone from participants with richer social interaction at home, subnetworks 
10 (cf. above) and 4 (high relevance of left temporoparietal junction, bilateral temporal pole, 
bilateral cerebellum) yielded the relatively highest predictive role (e.g., subnetwork 4: women 
living alone: w = -0.05, SD ± 0.01, women living with others: w = -0.01, SD ± 0.01). 
Subnetworks 1 (cf. above) and 10 achieved the highest predictive roles for differentiating the 
social brain morphology of participants with regular exchange with peers for social support 
(e.g., subnetwork 10: men without social support: w = -0.06, SD ± 0.01, men with social 
support: w = -0.03, SD ± 0.00). Both subnetworks 1 and 10 also showed individual predictive 
roles for high versus low self-reported satisfaction with friendship circles. For disentangling 
volume patterns in the social brains of participants with more versus less daily social 
interaction at work, salient predictive contributes were identified for subnetwork 10 and 
subnetwork 1 (e.g., women without a social job: w = -0.03, SD ± 0.00, women with a social 
job: w = -0.06, SD ± 0.00). Interindividual morphological variation in social brain structure 
for both subnetwork 1 and subnetwork 3 played the biggest predictive role for participants 
with more monogamous versus more promiscuous romantic relationships (e.g., subnetwork 1: 
women with one romantic partner: w = -0.05, SD ± 0.01, women with more romantic partners: 
w = -0.01, SD ± 0.01).  
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In sum, all revealed hidden social subnetworks showed specific predictive roles 
comparing between the examined social markers. Notably, the hidden subnetworks 1 and 10 
most frequently achieved among the highest predictive roles for specific individual social 
markers. As such, each source of population variation in social brain structure reliably tracked 
largely distinct aspects of everyday social interaction in the family, during leisure time and at 
work.  
 

 
Figure 6: Overall predictive role of the hidden subnetworks for tracking more versus less social 
exchange. Across all examined social markers, each bar indicates the predictive contribution (y axis, 
units on z-scale) of a given subnetwork (x axis) for the degree of sociality in female and male 
participants. A logistic-loss classification algorithm was trained based on variation in subnetwork 
expressions across participants to learn predictive patterns for distinguishing the amount of regular 
social stimulation in men and women (left: less social, right: more social, red: female, blue: male). Our 
analytical approach thus yielded one set of subnetwork weights for each of the four target groups to be 
classified (four panels). The obtained classifier weights are summarized across all social traits (error 
bars for each subnetwork, SD=standard deviation). The predictive contributions (y axis) corresponding 
to each subnetwork (x axis) are shown in each bar. Several subnetworks (e.g., 15, 10, and 1) showed 
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strong predictive contributions across analyses. In general, the directionality of each prediction weight 
appears to be more tuned to sex, while the relative differences in prediction weights are more tuned to 
the richness of social environment.  
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Figure 7. Specific predictive profile of the hidden subnetworks for tracking single social markers. 
The classification algorithm (cf. Fig. 6) was applied to learn predictive patterns separately for each 
social marker (six larger panels). Each plot depicts the hidden subnetworks (x axis) with their 
predictive contributions (y axis, units on z-scale). Each application of the analytical approach yielded 
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one set of subnetwork weights for each of the four target groups to be classified (four smaller panels). 
The obtained classifier weights were summarized for each subnetwork across cross-validation (CV) 
data splits (error bars). 
 

Discussion 
 

We set out to uncover elementary building blocks that underpin social brain differences 
at the population level. The delineated top network representations hidden in the social brain 
atlas distilled information from sources of population variation and effectively recapitulated 
the total social brain structure across individuals from the UK Biobank cohort. Specific social 
brain regions embedded within each subnetwork emerged as especially informative about 
cohesive dependencies that describe volume variation across the entire social brain. As a 
common denominator across several extracted subnetworks, the NAC, TPJ, and medial PFC 
emerged as core network regions in explaining configurations of mutual dependence in social 
brain morphology. We show how these separable brain representations distinctly predict 
indicators of everyday social life, such as the subjective experience of loneliness. These 
signatures of cohesive interregional variations became apparent by algorithmically dis-
assembling and re-assembling structural features of the social brain using autoencoder neural 
networks. 
 

Many hypothesis-driven social neuroscience studies relied on a set of canonical 
cognitive concepts for their analysis and interpretation of neural effects. To flank these theory-
guided efforts, the present pattern-learning investigation translated algorithmic techniques 
from the deep learning community. We empowered pattern discovery in the social brain by 
autoencoder neural networks (Danilo Bzdok, Eickenberg, et al., 2015; G. E. Hinton & 
Salakhutdinov, 2006). This under-exploited algorithmic technique unlocked insight from 
uniformly acquired brain scans of the largest brain-imaging cohort recruited from across the 
United Kingdom.  

In our study, the NAC emerged as one of the driving factors of how social brain regions 
coherently co-vary with each other across thousands of participants, which became apparent 
in all leading social subnetworks. Traditionally recognized to be implicated in reward-guided 
decision-making processes, a host of social neuroscience research suggests that the NAC is 
also one of the core brain regions that are consistently recruited to also support rewarding 
aspects of social interaction (Behrens et al., 2009). For instance, a functional brain-imaging 
experiment reported striatal activity in response to both receiving monetary rewards and 
receiving positive feedback about one's own trustworthiness by unknown others (Izuma et al., 
2008). The authors suggested that social approval from others, such as feedback about one’s 
own personal reputation, may have a common neural basis with nonsocial rewards. In addition, 
the authors also observed medial prefrontal activity only during the social reward trials, 
suggesting the mPFC may be specifically involved in the management of one’s own reputation 
(Izuma et al., 2008). In line with our findings, the NAC and mPFC were flagged as highly 
relevant in the dominant hidden subnetworks. Consistently, the dominant subnetworks also 
showed predictive roles for rewarding aspects of social interaction such as friendship 
satisfaction and having an occupation with frequent social contact. 
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Indeed, a functional neuro-imaging study assessed neural activity in response to 
simulating social interactions with friends versus celebrities in an approach-avoidance 
experiment (Güroğlu et al. 2008). The study showed neural activity responses in the mPFC, 
NAC, TPJ, posteromedial cortex, SMG, and occipital-temporal junction extending into the 
MT/V5, specifically when participants interacted with their friends (Güroğlu et al. 2008). The 
authors (Güroğlu et al. 2008) interpreted that the encounter with close friends may encourage 
recruitment of interpersonal processes such as empathy, emotion-regulation and reward, all of 
which may contribute to mental health and positive well-being in the long run. Thus, these 
findings from functional brain-imaging experiments are in line with our data-led structural 
findings, and especially highlight the NAC, mPFC, SMG and other co-occurring subnetwork 
representations that resulted from our social brain decomposition. This set of regions were 
also placed at the heart of meaningful structural inter-dependencies in our leading hidden 
subnetworks. Furthermore, our findings revealed these key regions to support prediction of 
interindividual differences in social lifestyle markers. 

Neural activity responses in the NAC are not usually thought to encode differences in  
intentions of the interaction partner per se (Behrens et al., 2009; D. Bzdok et al., 2011). Instead, 
perspective-taking processes are typically attributed to a set of higher-level cortical regions 
with prominent involvement of both the TPJ and mPFC. For instance, a previous structural 
brain-imaging study identified an association between the ability to read the mind of others 
through the eyes and grey matter volume in the mPFC, posteromedial cortex and TPJ (Sato et 
al., 2016). The authors suggest that these social brain regions may contribute to processes 
necessary to subserve the ability for mental state inference by reading people’s eyes. We 
extend these previous findings by invigorating the special role of the mPFC, posteromedial 
cortex, and TPJ in brain circuits related to human social interaction from the present view on 
the social brain through the lense of subnetworks: The mPFC, posteromedial cortex, and TPJ 
here explained notable volume effects to major sources of population variation in the social 
brain, especially in our top subnetworks 15, 7, and 9. In addition, the TPJ was also highlighted 
as part of subnetwork 13, which we found to help predict loneliness in UK Biobank 
participants.  

In addition to the TPJ as a region critical for realizing high-level social thoughts like 
perspective taking, a parallel line of research has instead emphasized the mPFC in many other 
forms of social interaction (Danilo Bzdok et al., 2013; Eickhoff et al., 2016; Schurz et al., 
2014). For instance, a series of brain-imaging studies have linked the relationship between 
several socially responsive regions including the mPFC and indices of interpersonal 
phenomena (Kiesow et al., 2020 in press; Lewis et al., 2011; Powell et al., 2010), which are 
reminiscent of our present findings on friendship satisfaction and social support. For instance, 
a previous structural brain-imaging study mapped grey matter volume in the mPFC, TPJ and 
STS to intentionality ability and social network size, suggesting these brain regions to be key 
neuroanatomical correlates for social skills (Lewis et al., 2011). Our current results underscore 
such findings by showing these social brain nodes to represent major sources of population 
variation, with overlapping volume effects from several subnetworks. This became apparent 
in region relevances in the hidden subnetworks 5, 6, 8 and 14, as well as the dominant 
subnetworks 7 and 15. Additionally, the mPFC and other structurally coupled regions have 
also been found to be linked to anticipating social feedback. For instance, one functional brain-
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imaging study reported the mPFC, posteromedial cortex, visual association cortex extending 
into the MT/V5 and ventral striatum, encompassing the NAC, to show more activity when 
anticipating positive social feedback from novel peers (Powers et al., 2013). This observation 
suggests that in concert with the NAC and MT/V5 regions, the mPFC may also play a critical 
role in navigating salient social encounters (Powers et al., 2013). Thus, our investigation 
confirms and details the central position of the TPJ, mPFC as key drivers in co-occurring 
neural substrates that support neurocognitive facets central to social behavior.  

Little existing data-driven evidence appears to simultaneously focus on the relevance 
of the mPFC and TPJ to social cognition, perhaps in part due to the location-by-location logic 
of most brain-imaging task studies. As one of few exceptions, Schurz and colleagues (2014) 
conducted a coordinate-based meta analysis of various functional brain-imaging experiments 
using various psychological paradigms to probe perspective-taking, including social 
animations, reading the mind in the eyes, and trait judgment tasks. The authors identified foci 
of meta-analytically derived hotspots of neural response averages that yielded activity 
convergences situated in the TPJ and mPFC regions. Different from our approach, Schurz and 
colleague (2014) used pre-existing topographically distinct clusters based on structural 
connectivity from diffusion weighted brain imaging. Such clusters have strict topographical 
boundaries that are mutually exclusive, which conveys rigid a-priori assumptions about what 
to expect in brain-imaging data like MRI scans (Danilo Bzdok et al., 2016). Hence, many 
previous brain-imaging studies may have ignored possibly overlapping biological phenomena; 
and joint volume effects of a particular region volume on the complete social brain 
morphology. On the interpretational level, Schurz and colleagues (2014) suggested the mPFC 
to play a role in maintaining mental representations of another person’s social and emotional 
vantage point to create a model of another person's mental life. Our present results allow re-
contextualization and provide solid grounding for such localizationist interpretations in 
mutually overlapping subnetwork representations, which we show to vary in distinct ways at 
the population level and be differently associated with markers of social richness. 

Compared to this previous study, a Bayesian latent factor meta-analysis is more closely 
aligned with our present analysis tactic. Yeo and colleagues (2015) examined mutually 
overlapping components of neural activity with a topographical focus on the higher association 
cortex and its relation to a general battery of task responses. The study answered which of 83 
different experimental paradigms, including the n-back test, Stroop test and anti-saccade tasks, 
exhibit concomitant neural activity changes according to the identified underlying spatially 
distributed neural activity components. This previous study singled out one functional activity 
component (component 10), which turned out to be preferentially linked to social cognition. 
This neural activity component isolated the mPFC, posteromedial cortex, the SMG, and TPJ, 
all of which were also highlighted in several extracted social brain subnetworks. We 
complement this previous investigation of general cognitive domains in the higher association 
cortex by showing coherent structural configurations from a data-driven decomposition of the 
whole social brain in a larger participant sample, which closely represents the wider UK 
population. 

More broadly, previous cross-modal brain-imaging research has shown that the regions 
belonging to the human social brain can be hierarchically grouped into a) lower sensory, b) 
limbic, c) intermediate, and d) higher associative neural systems (Alcalá-López et al., 2018). 
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The described functional compartments were derived under the strict assumption that each 
social brain region is assigned to only a single group at once. To relax such discrete one-to-
one responsibilities, our analyses explicitly quantified the continuous degrees to which a 
specific subset of social brain regions are relevant in explaining structural variation of multiple 
subnetworks. Such degrees of multi-to-multi responsibilities therefore allow for each 
subnetwork to allocate relevance to several of these neural circuits in the social brain. In 
addition to the TPJ and mPFC, other examples for such regions include the SMG, which has 
notable relevance in several of our subnetworks. Despite the prevalence of specific brain 
regions to be relevant in several subnetworks, other subnetworks allocated region relevances 
more evenly to different functional compartments. For instance, the previously established 
visual-sensory circuit of the social brain was here most associated with subnetworks 3, 12 and 
13. The specificity of such functional annotations is illustrated by the observation that 
subnetworks 4 and 14 allocated relevance quite evenly between all subsystems. As such, we 
were not only able to show the prominence of single functional compartments in specific 
subnetworks, but also an overlap between these different clusters for some subnetworks. 

A similar trend is observed in other functionally coherent assemblies of social brain 
regions, which are usually examined in different literature streams. For instance, the putative 
mirror neuron system is often thought of and studied as a cohesive neural system that includes 
regions like the IFG, SMG, SMA, pSTS and MTV5 (Alcalá-López et al., 2018). We found 
that some of these regions (e.g., the SMA) showed  population co-variation with other parts 
of the social brain. Furthermore, these regions were not always similarly relevant in different 
subnetworks. For instance, subnetwork 6 featured the SMG and SMA as strong contributors 
together with the FP, a region which is not typically believed to be part of the canonical mirror 
neuron system. We thus provide evidence that widely assumed neurocognitive systems like 
the mirror neuron system may not prove robust to all ways to study brain-imaging data. 

As another core finding that ignites future research, subnetworks 3 and 13 turned out 
to have predictive roles for interindividual differences in the experience of social isolation. 
The subjective feeling of loneliness has one of the greatest influences on some of our societies’ 
biggest public health concerns, in particular deep consequences for mental illness (Danilo 
Bzdok & Dunbar, 2020; Cacioppo & Hawkley, 2009). However, few brain-imaging studies 
were so far dedicated to the brain basis of perceived social isolation, which we attribute to 
subnetwork 13, especially the right TPJ. As one rare exception, a structural brain-imaging 
study found volume variability in the right TPJ to be significantly linked to rich and thin online 
social networks (R. Kanai et al., 2012). Based on these findings, the authors interpreted the 
TPJ as a region that is especially “sensitive to other people’s intentions”. Additionally, TPJ 
volume decline was reported in participants who self-identified as lonely (Ryota Kanai et al., 
2012). These hints invite the speculation that scarcity of social interaction at home and in 
everyday life may reverberate in brain morphology in a way that can be quantitatively 
measured with common MRI scanners at the population scale. 

Taken together, a few seminal studies have been dedicated to deploying clustering or 
latent factor methods in areas of social neuroscience. Autoencoder neural networks open the 
door to abstract away from clustering methods imposing strict boundaries or component 
discovery. In other words, at the population level, our pattern-learning technique allowed a 
single element of the social brain to structurally resonate with several different partner nodes. 
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The thus extracted structural dependencies of population volume variation within our data 
were distinctly related to differences in social traits. 
 
Conclusion 

We have tailored autoencoder neural networks from deep learning to perform a data-
driven de-construction of an established definition of the social brain at population scale. Our 
fresh look into variation of structural organization suggests the existence of distinct motifs of 
co-dependence in these neural systems. The uncovered structural constellations of cohesive 
co-variation featured driving positions for the TPJ, NAC, and medial PFC. These nodes within 
distinct social subnetworks thus probably relate to multifaceted implementations that anchor 
human-defining cognitive feats, such as encoding and interrogating others’ mental states, 
forming social judgments, and estimating the expected value of anticipated encounters and 
events. Consistently, the hidden subnetwork representations, delineated by the autoencoder 
learning algorithms, revealed different sets of rich associations with indicators of the 
participants’ social capital. Many of these neurocognitive facets are traditionally studied in 
largely disconnected parts of the social neuroscience literature. Additionally, the revealed 
collection of hidden social subnetworks has potentially been overlooked by analytical 
approaches in widespread use. Our quantitative evidence strengthens the idea that hidden 
subnetworks with overlapping sources of population-level structural differentiation bring us 
closer to the primary biology of the social brain.  
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