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In sum, all revealed hidden social subnetworks showed specific predictive roles 
comparing between the examined social markers. Notably, the hidden subnetworks 1 and 10 
most frequently achieved among the highest predictive roles for specific individual social 
markers. As such, each source of population variation in social brain structure reliably tracked 
largely distinct aspects of everyday social interaction in the family, during leisure time and at 
work.  
 

 
Figure 6: Overall predictive role of the hidden subnetworks for tracking more versus less social 
exchange. Across all examined social markers, each bar indicates the predictive contribution (y axis, 
units on z-scale) of a given subnetwork (x axis) for the degree of sociality in female and male 
participants. A logistic-loss classification algorithm was trained based on variation in subnetwork 
expressions across participants to learn predictive patterns for distinguishing the amount of regular 
social stimulation in men and women (left: less social, right: more social, red: female, blue: male). Our 
analytical approach thus yielded one set of subnetwork weights for each of the four target groups to be 
classified (four panels). The obtained classifier weights are summarized across all social traits (error 
bars for each subnetwork, SD=standard deviation). The predictive contributions (y axis) corresponding 
to each subnetwork (x axis) are shown in each bar. Several subnetworks (e.g., 15, 10, and 1) showed 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.08.07.241497doi: bioRxiv preprint 



Hidden population variation in the human social brain     19 

strong predictive contributions across analyses. In general, the directionality of each prediction weight 
appears to be more tuned to sex, while the relative differences in prediction weights are more tuned to 
the richness of social environment.  
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Figure 7. Specific predictive profile of the hidden subnetworks for tracking single social markers. 
The classification algorithm (cf. Fig. 6) was applied to learn predictive patterns separately for each 
social marker (six larger panels). Each plot depicts the hidden subnetworks (x axis) with their 
predictive contributions (y axis, units on z-scale). Each application of the analytical approach yielded 
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one set of subnetwork weights for each of the four target groups to be classified (four smaller panels). 
The obtained classifier weights were summarized for each subnetwork across cross-validation (CV) 
data splits (error bars). 
 

Discussion 
 

We set out to uncover elementary building blocks that underpin social brain differences 
at the population level. The delineated top network representations hidden in the social brain 
atlas distilled information from sources of population variation and effectively recapitulated 
the total social brain structure across individuals from the UK Biobank cohort. Specific social 
brain regions embedded within each subnetwork emerged as especially informative about 
cohesive dependencies that describe volume variation across the entire social brain. As a 
common denominator across several extracted subnetworks, the NAC, TPJ, and medial PFC 
emerged as core network regions in explaining configurations of mutual dependence in social 
brain morphology. We show how these separable brain representations distinctly predict 
indicators of everyday social life, such as the subjective experience of loneliness. These 
signatures of cohesive interregional variations became apparent by algorithmically dis-
assembling and re-assembling structural features of the social brain using autoencoder neural 
networks. 
 

Many hypothesis-driven social neuroscience studies relied on a set of canonical 
cognitive concepts for their analysis and interpretation of neural effects. To flank these theory-
guided efforts, the present pattern-learning investigation translated algorithmic techniques 
from the deep learning community. We empowered pattern discovery in the social brain by 
autoencoder neural networks (Danilo Bzdok, Eickenberg, et al., 2015; G. E. Hinton & 
Salakhutdinov, 2006). This under-exploited algorithmic technique unlocked insight from 
uniformly acquired brain scans of the largest brain-imaging cohort recruited from across the 
United Kingdom.  

In our study, the NAC emerged as one of the driving factors of how social brain regions 
coherently co-vary with each other across thousands of participants, which became apparent 
in all leading social subnetworks. Traditionally recognized to be implicated in reward-guided 
decision-making processes, a host of social neuroscience research suggests that the NAC is 
also one of the core brain regions that are consistently recruited to also support rewarding 
aspects of social interaction (Behrens et al., 2009). For instance, a functional brain-imaging 
experiment reported striatal activity in response to both receiving monetary rewards and 
receiving positive feedback about one's own trustworthiness by unknown others (Izuma et al., 
2008). The authors suggested that social approval from others, such as feedback about one’s 
own personal reputation, may have a common neural basis with nonsocial rewards. In addition, 
the authors also observed medial prefrontal activity only during the social reward trials, 
suggesting the mPFC may be specifically involved in the management of one’s own reputation 
(Izuma et al., 2008). In line with our findings, the NAC and mPFC were flagged as highly 
relevant in the dominant hidden subnetworks. Consistently, the dominant subnetworks also 
showed predictive roles for rewarding aspects of social interaction such as friendship 
satisfaction and having an occupation with frequent social contact. 
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Indeed, a functional neuro-imaging study assessed neural activity in response to 
simulating social interactions with friends versus celebrities in an approach-avoidance 
experiment (Güroğlu et al. 2008). The study showed neural activity responses in the mPFC, 
NAC, TPJ, posteromedial cortex, SMG, and occipital-temporal junction extending into the 
MT/V5, specifically when participants interacted with their friends (Güroğlu et al. 2008). The 
authors (Güroğlu et al. 2008) interpreted that the encounter with close friends may encourage 
recruitment of interpersonal processes such as empathy, emotion-regulation and reward, all of 
which may contribute to mental health and positive well-being in the long run. Thus, these 
findings from functional brain-imaging experiments are in line with our data-led structural 
findings, and especially highlight the NAC, mPFC, SMG and other co-occurring subnetwork 
representations that resulted from our social brain decomposition. This set of regions were 
also placed at the heart of meaningful structural inter-dependencies in our leading hidden 
subnetworks. Furthermore, our findings revealed these key regions to support prediction of 
interindividual differences in social lifestyle markers. 

Neural activity responses in the NAC are not usually thought to encode differences in  
intentions of the interaction partner per se (Behrens et al., 2009; D. Bzdok et al., 2011). Instead, 
perspective-taking processes are typically attributed to a set of higher-level cortical regions 
with prominent involvement of both the TPJ and mPFC. For instance, a previous structural 
brain-imaging study identified an association between the ability to read the mind of others 
through the eyes and grey matter volume in the mPFC, posteromedial cortex and TPJ (Sato et 
al., 2016). The authors suggest that these social brain regions may contribute to processes 
necessary to subserve the ability for mental state inference by reading people’s eyes. We 
extend these previous findings by invigorating the special role of the mPFC, posteromedial 
cortex, and TPJ in brain circuits related to human social interaction from the present view on 
the social brain through the lense of subnetworks: The mPFC, posteromedial cortex, and TPJ 
here explained notable volume effects to major sources of population variation in the social 
brain, especially in our top subnetworks 15, 7, and 9. In addition, the TPJ was also highlighted 
as part of subnetwork 13, which we found to help predict loneliness in UK Biobank 
participants.  

In addition to the TPJ as a region critical for realizing high-level social thoughts like 
perspective taking, a parallel line of research has instead emphasized the mPFC in many other 
forms of social interaction (Danilo Bzdok et al., 2013; Eickhoff et al., 2016; Schurz et al., 
2014). For instance, a series of brain-imaging studies have linked the relationship between 
several socially responsive regions including the mPFC and indices of interpersonal 
phenomena (Kiesow et al., 2020 in press; Lewis et al., 2011; Powell et al., 2010), which are 
reminiscent of our present findings on friendship satisfaction and social support. For instance, 
a previous structural brain-imaging study mapped grey matter volume in the mPFC, TPJ and 
STS to intentionality ability and social network size, suggesting these brain regions to be key 
neuroanatomical correlates for social skills (Lewis et al., 2011). Our current results underscore 
such findings by showing these social brain nodes to represent major sources of population 
variation, with overlapping volume effects from several subnetworks. This became apparent 
in region relevances in the hidden subnetworks 5, 6, 8 and 14, as well as the dominant 
subnetworks 7 and 15. Additionally, the mPFC and other structurally coupled regions have 
also been found to be linked to anticipating social feedback. For instance, one functional brain-
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imaging study reported the mPFC, posteromedial cortex, visual association cortex extending 
into the MT/V5 and ventral striatum, encompassing the NAC, to show more activity when 
anticipating positive social feedback from novel peers (Powers et al., 2013). This observation 
suggests that in concert with the NAC and MT/V5 regions, the mPFC may also play a critical 
role in navigating salient social encounters (Powers et al., 2013). Thus, our investigation 
confirms and details the central position of the TPJ, mPFC as key drivers in co-occurring 
neural substrates that support neurocognitive facets central to social behavior.  

Little existing data-driven evidence appears to simultaneously focus on the relevance 
of the mPFC and TPJ to social cognition, perhaps in part due to the location-by-location logic 
of most brain-imaging task studies. As one of few exceptions, Schurz and colleagues (2014) 
conducted a coordinate-based meta analysis of various functional brain-imaging experiments 
using various psychological paradigms to probe perspective-taking, including social 
animations, reading the mind in the eyes, and trait judgment tasks. The authors identified foci 
of meta-analytically derived hotspots of neural response averages that yielded activity 
convergences situated in the TPJ and mPFC regions. Different from our approach, Schurz and 
colleague (2014) used pre-existing topographically distinct clusters based on structural 
connectivity from diffusion weighted brain imaging. Such clusters have strict topographical 
boundaries that are mutually exclusive, which conveys rigid a-priori assumptions about what 
to expect in brain-imaging data like MRI scans (Danilo Bzdok et al., 2016). Hence, many 
previous brain-imaging studies may have ignored possibly overlapping biological phenomena; 
and joint volume effects of a particular region volume on the complete social brain 
morphology. On the interpretational level, Schurz and colleagues (2014) suggested the mPFC 
to play a role in maintaining mental representations of another person’s social and emotional 
vantage point to create a model of another person's mental life. Our present results allow re-
contextualization and provide solid grounding for such localizationist interpretations in 
mutually overlapping subnetwork representations, which we show to vary in distinct ways at 
the population level and be differently associated with markers of social richness. 

Compared to this previous study, a Bayesian latent factor meta-analysis is more closely 
aligned with our present analysis tactic. Yeo and colleagues (2015) examined mutually 
overlapping components of neural activity with a topographical focus on the higher association 
cortex and its relation to a general battery of task responses. The study answered which of 83 
different experimental paradigms, including the n-back test, Stroop test and anti-saccade tasks, 
exhibit concomitant neural activity changes according to the identified underlying spatially 
distributed neural activity components. This previous study singled out one functional activity 
component (component 10), which turned out to be preferentially linked to social cognition. 
This neural activity component isolated the mPFC, posteromedial cortex, the SMG, and TPJ, 
all of which were also highlighted in several extracted social brain subnetworks. We 
complement this previous investigation of general cognitive domains in the higher association 
cortex by showing coherent structural configurations from a data-driven decomposition of the 
whole social brain in a larger participant sample, which closely represents the wider UK 
population. 

More broadly, previous cross-modal brain-imaging research has shown that the regions 
belonging to the human social brain can be hierarchically grouped into a) lower sensory, b) 
limbic, c) intermediate, and d) higher associative neural systems (Alcalá-López et al., 2018). 
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The described functional compartments were derived under the strict assumption that each 
social brain region is assigned to only a single group at once. To relax such discrete one-to-
one responsibilities, our analyses explicitly quantified the continuous degrees to which a 
specific subset of social brain regions are relevant in explaining structural variation of multiple 
subnetworks. Such degrees of multi-to-multi responsibilities therefore allow for each 
subnetwork to allocate relevance to several of these neural circuits in the social brain. In 
addition to the TPJ and mPFC, other examples for such regions include the SMG, which has 
notable relevance in several of our subnetworks. Despite the prevalence of specific brain 
regions to be relevant in several subnetworks, other subnetworks allocated region relevances 
more evenly to different functional compartments. For instance, the previously established 
visual-sensory circuit of the social brain was here most associated with subnetworks 3, 12 and 
13. The specificity of such functional annotations is illustrated by the observation that 
subnetworks 4 and 14 allocated relevance quite evenly between all subsystems. As such, we 
were not only able to show the prominence of single functional compartments in specific 
subnetworks, but also an overlap between these different clusters for some subnetworks. 

A similar trend is observed in other functionally coherent assemblies of social brain 
regions, which are usually examined in different literature streams. For instance, the putative 
mirror neuron system is often thought of and studied as a cohesive neural system that includes 
regions like the IFG, SMG, SMA, pSTS and MTV5 (Alcalá-López et al., 2018). We found 
that some of these regions (e.g., the SMA) showed  population co-variation with other parts 
of the social brain. Furthermore, these regions were not always similarly relevant in different 
subnetworks. For instance, subnetwork 6 featured the SMG and SMA as strong contributors 
together with the FP, a region which is not typically believed to be part of the canonical mirror 
neuron system. We thus provide evidence that widely assumed neurocognitive systems like 
the mirror neuron system may not prove robust to all ways to study brain-imaging data. 

As another core finding that ignites future research, subnetworks 3 and 13 turned out 
to have predictive roles for interindividual differences in the experience of social isolation. 
The subjective feeling of loneliness has one of the greatest influences on some of our societies’ 
biggest public health concerns, in particular deep consequences for mental illness (Danilo 
Bzdok & Dunbar, 2020; Cacioppo & Hawkley, 2009). However, few brain-imaging studies 
were so far dedicated to the brain basis of perceived social isolation, which we attribute to 
subnetwork 13, especially the right TPJ. As one rare exception, a structural brain-imaging 
study found volume variability in the right TPJ to be significantly linked to rich and thin online 
social networks (R. Kanai et al., 2012). Based on these findings, the authors interpreted the 
TPJ as a region that is especially “sensitive to other people’s intentions”. Additionally, TPJ 
volume decline was reported in participants who self-identified as lonely (Ryota Kanai et al., 
2012). These hints invite the speculation that scarcity of social interaction at home and in 
everyday life may reverberate in brain morphology in a way that can be quantitatively 
measured with common MRI scanners at the population scale. 

Taken together, a few seminal studies have been dedicated to deploying clustering or 
latent factor methods in areas of social neuroscience. Autoencoder neural networks open the 
door to abstract away from clustering methods imposing strict boundaries or component 
discovery. In other words, at the population level, our pattern-learning technique allowed a 
single element of the social brain to structurally resonate with several different partner nodes. 
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The thus extracted structural dependencies of population volume variation within our data 
were distinctly related to differences in social traits. 
 
Conclusion 

We have tailored autoencoder neural networks from deep learning to perform a data-
driven de-construction of an established definition of the social brain at population scale. Our 
fresh look into variation of structural organization suggests the existence of distinct motifs of 
co-dependence in these neural systems. The uncovered structural constellations of cohesive 
co-variation featured driving positions for the TPJ, NAC, and medial PFC. These nodes within 
distinct social subnetworks thus probably relate to multifaceted implementations that anchor 
human-defining cognitive feats, such as encoding and interrogating others’ mental states, 
forming social judgments, and estimating the expected value of anticipated encounters and 
events. Consistently, the hidden subnetwork representations, delineated by the autoencoder 
learning algorithms, revealed different sets of rich associations with indicators of the 
participants’ social capital. Many of these neurocognitive facets are traditionally studied in 
largely disconnected parts of the social neuroscience literature. Additionally, the revealed 
collection of hidden social subnetworks has potentially been overlooked by analytical 
approaches in widespread use. Our quantitative evidence strengthens the idea that hidden 
subnetworks with overlapping sources of population-level structural differentiation bring us 
closer to the primary biology of the social brain.  
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