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Abstract9

Challenging the paradigm of the maximum tolerated dose, recent studies have shown that a strategy10

aiming for containment, not elimination, can control tumor burden more effectively in vitro, in mouse models,11

and in the clinic. These outcomes are consistent with the hypothesis that emergence of resistance to cancer12

therapy may be prevented or delayed by exploiting competitive ecological interactions between drug-sensitive13

and resistant tumor cell subpopulations. However, although various mathematical and computational models14

have been proposed to explain the superiority of particular containment strategies, this evolutionary approach15

to cancer therapy lacks a rigorous theoretical foundation. Here we combine extensive mathematical analysis16

and numerical simulations to establish general conditions under which a containment strategy is expected17

to control tumor burden more effectively than applying the maximum tolerated dose. We show that when18

resistant cells are present, an idealized strategy of containing a tumor at a maximum tolerable size maximizes19

time to treatment failure (that is, the time at which tumor burden becomes intolerable). These results are20

very general and do not depend on any fitness cost of resistance. We further provide formulas for predicting21

the clinical benefits attributable to containment strategies in a wide range of scenarios, and we compare22

outcomes of theoretically optimal treatments with those of more practical protocols. Our results strengthen23

the rationale for clinical trials of evolutionarily-informed cancer therapy.24

Introduction25

The justification for aggressive anti-cancer therapies is to maximize the probability of a cure [1,2]. This rationale26

disappears if a cure cannot be expected. In some if not many cases, treating aggressively can be suboptimal27

due to treatment toxicity and selection for resistance. A better strategy might be rather to use the minimal28

effective dose that contains the tumor subject to ensuring sufficient quality of life [3–5].29

The logic of aiming for containment rather than elimination is based on evolutionary principles. At the30

beginning of therapy, a tumor contains cells with different sensitivities to treatment. An aggressive treatment31

eliminates the most sensitive cells but can enable resistant cells – freed from competing with sensitive cells for32

space and resources – to thrive uncontrollably. This phenomenon, called competitive release, is well understood33

in ecology and pest management [6–8]. By maintaining a large population of treatment-sensitive tumor cells, a34

containment strategy aims to exploit cell-cell competition to prevent or delay the emergence of resistance.35

Various protocols in this spirit have been found to be superior to conventional therapy in experimental36

models [4,9,10], a preclinical trial [11], and a small clinical trial in metastatic castrate-resistant prostate cancer37

[12]. Other clinical trials are active or recruiting [13]. Yet even as empirical evidence accumulates in support of38

tumor containment strategies, the underlying evolutionary theory remains only imprecisely characterized in the39

cancer context. With the notable exception of Martin et al. (1992) [3,14], previous mathematical and simulation40

studies [4, 9, 10, 12, 15–23] have focussed on particular model formulations, specific therapeutic protocols, and41
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typically untested assumptions about tumor growth rate, cell-cell interactions, treatment effects and resistance42

costs. Many previous findings are not readily generalizable because they are based on simulations, rather43

than mathematical analysis. Sufficient conditions for successful tumor containment have not been established.44

Here we address this knowledge gap by synthesizing, generalizing, and extending previous results to form a45

solid theoretical basis for pursuing evolutionary approaches to cancer therapy. Our work thus provides timely46

guidance for empirical research including the design of clinical trials.47

Model48

We consider a general model with two types of tumor cells, sensitive and fully resistant, with subpopulation49

sizes S(t) and R(t), respectively. The total tumor population size is denoted by N(t) = S(t) +R(t), with initial50

value N0 = S0 +R0. Tumor dynamics are described by:51 {
Ṡ(t) = S(t)gs(S(t), R(t), C(t)) ; S(0) = S0 ≥ 0

Ṙ(t) = R(t)gr(S(t), R(t)) ; R(0) = R0 > 0
(Model 1)

where Ṡ, Ṙ denote derivatives, and gs and gr are per-cell growth-rate functions; the quantity C(t) is the drug52

dose at time t (which is assumed to equate with treatment level, neglecting details of pharmacokinetics and53

pharmacodynamics).54

For simulations, we use a Gompertzian growth model studied by Monro and Gaffney (2009) [15] (see also55

Martin et al. (1992) [3]):56

Ṡ(t) = ρ ln(K/N(t)) (1− λC(t))S(t),

Ṙ(t) = ρ ln(K/N(t))R(t),
(Model 2)

where λ is a sensitivity parameter, K is the tumor carrying capacity (the hypothetical size at which the tumor57

would cease to grow), and ρ is the baseline per-cell growth rate. We focus on this particular model in our58

numerical simulations to facilitate comparison with previous analysis [15], and because Gompertzian growth59

has been shown to describe tumor growth better than alternative models such as logistic growth [24, 25]. The60

parameters used for this model are those of Monro and Gaffney [15], except that we neglect mutations and61

backmutations after treatment initiation. They are summed up in Table 1.62

Model assumptions. Our key assumptions are that:63

• The growth rate of sensitive cells is positive in the absence of treatment, decreases as treatment dose is64

increased (gs is strictly decreasing in C), and is negative at sufficiently high doses.65

• Resistant cells are fully resistant (gr does not depend on C).66

• All else being equal, the larger the subpopulation of sensitive cells, the lower the growth-rate of resistant67

cells (gr is strictly decreasing in S). This is a standard assumption in the adaptive therapy literature (see68

Supplementary material, Section 1). This might result from density-dependence (the larger the tumor, the69

larger its doubling time [3, 15, 27], as in the Gompertzian Model 2), frequency-dependence (the rarer resistant70

cells, the larger their doubling time [9,10]), a combination of those two factors [9,12,16,18,19,22], or some other71

form of inhibition of resistant cells by sensitive cells.72

• Mutations from sensitive cells to resistants cells occurring after treatment initiation may be neglected,73

as well as back mutations (we checked that taking into account late random genetic mutations result in little74

quantitative changes in outcomes, see Supplementary Table 6).75

On top of standard regularity assumptions on growth-rate functions, this is enough for our key results. Some76

results also require that increasing the resistant population does not increase the growth-rate of sensitive cells77

(gs is non-increasing in R), excluding cooperative interactions. This ensures that the number of sensitive cells78

is maximized by not treating. We also use a technical assumption ensuring that the treatment level required to79

stabilize a tumor at a certain size increases with the frequency of resistant cells (see Supplementary material,80

Section 2.1). Finally, the instantaneous dose C(t) is assumed no higher than a maximal tolerated dose Cmax,81

but this assumption is relaxed in our idealized treatments (see below).82

Treatments. The main treatments we consider are the following:83
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Table 1: Parameter values. Except when otherwise specified, numerical results use the following parameter values.

Model 3 is introduced later on. The initial size of the resistant subpopulation is derived through the Goldie-Coldman

(1979) formula [2]: R0 = (1 − N−2τ
0 )N0/2, where τ = 10−6 is the mutation and backmutation rate of Monro and

Gaffney [15], and N0 the initial tumor size. The value of Ntol is arbitrary (in log-scale, this is almost the average of

N0 and Ncrit). The value of Cmax is for consistency with Zhang et al.’s (2017) [12] clinical trial, where, in average, the

cumulative dose given is about half the MTD (47%) Simulations were conducted in R using the deSolve package. [26].

Parameter Meaning Value Model(s)

K tumor carrying capacity 2× 1012 Model 2

Ks carrying capacity of a fully susceptible tumor 2× 1012 Model 3

Kr carrying capacity of a fully resistant tumor varied Model 3

ρ, ρr, ρs baseline per-cell growth rate (per day) 0.005928 Models 2 and 3

α competition coefficient 1 Model 3

β competition coefficient varied Model 3

λ treatment sensitivity 1 Models 2 and 3

Cmax maximal instantaneous tolerated dose 2 Models 2 and 3

N0 initial tumor size 1010 Models 2 and 3

R0 initial resistant cell population size 2.3× 105 Models 2 and 3

Ntol tumor size corresponding to treatment failure 7× 1010 Models 2 and 3

Ncrit lethal tumor size 5× 1011 Models 2 and 3

• Maximal Tolerated Dose (MTD): C(t) = Cmax throughout.84

• Containment at the initial tumor size N0: this treatment continuously adjusts the dose to maintain total85

tumor size at N(t) = N0 as long as possible with a dose C(t) ≤ Cmax, then treats at Cmax. Mathematically,86

the stabilizing dose is found by solving the equation Ṅ(t) = 0. In the Gompertzian Model 2, this leads to87

C(t) = N(t)/λS(t). The dose administered is the minimum of this stabilizing dose and of Cmax. In practice,88

containment would only be approximative, and the appropriate dose would be found by regular monitoring of89

the patient and dose adjustments. This would not require to differentiate between sensitive and resistant cells.90

Possible protocols are discussed on page 12 and in Supplementary material, Section 6.91

• Containment at some other threshold size N∗: this treatment does not treat until tumor size reaches N∗92

(if N∗ ≥ N0), or treats at the maximal tolerated dose until tumor size is reduced to N∗ (if N∗ < N0), and then93

contains the tumor at this threshold as above.94

To reveal the logic of containment as clearly as possible, we also consider idealized versions of these treat-95

ments, with no constraint on the maximum instantaneous dose (so that the sensitive population can be reduced96

instantly to any desired size). These idealized treatments, though biologically unrealistic, help reveal the basic97

logic of containment and provide reference points largely independent of model details. In the idealized form98

of maximum tolerated dose treatment (ideal MTD), the sensitive population is instantly eliminated (so that99

S(t) = 0 for all t > 0). This is called “aggressive treatment” or “elimination of sensitive cells” by Hansen et100

al. (2017, 2019) [18] [28] and Hansen and Read (2020) [27]. We may think of this as a treatment inducing an101

infinite kill-rate. Ideal containment at the initial tumor size maintains the tumor at its initial size as long as102

some sensitive cells remain. The tumor is then fully resistant, hence its later growth independent of the treat-103

ment. Ideal containment at some other threshold N∗ lets the tumor grow to N∗ (or instantly reduces tumor104

size to N∗, if N∗ < N0), then stabilizes tumor size at this threshold as long as some sensitive cells remain.105

Containment in the sense of Hansen et al. (2017) [18], from which we borrow this vocabulary, corresponds to106

our ideal containment treatment, except that we do not allow for an instantaneous increase in tumor size.107

Containment and MTD treatments are illustrated in Figure 1. We also consider other possibilities such108

as constant dose or delayed constant dose treatments, studied by Monro and Gaffney (2009) [15]; intermittent109

containment (Fig. 1g), where tumor size is maintained between a high and a low threshold, as in Zhang et al110

(2017) [12]; and forms of metronomic therapy, where treatment is turned on and off at predefined times.111
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Outcomes. Our three main outcomes are :112

• Time to progression: defined here as the time until the tumor exceeds its initial size, N0. The RECIST113

criterion is that progression occurs when tumor size is 20% larger than at treatment initiation. This 20% buffer114

makes sense in medical practice, due to imperfect monitoring of the tumor and imperfect forecast of treatment’s115

effect. In our mathematical models however, this buffer is not needed, and would only obscure the analysis, so116

we use a more basic definition.117

• Time to treatment failure: until the tumor exceeds a threshold size determined by the physician and118

patient, Ntol, which we call the maximal tolerable size. This may be thought of as the maximal tumor size at119

which the tumor is not quickly life threatening, based on physician’s expertise, and does not result in too severe120

side effects for the patient. Due to this second requirement, the maximal tolerable size would only be revealed121

during treatment. To fix ideas, we assume that it is higher than the initial tumor burden, N0. The case where122

it is lower is studied in Supplementary Material.123

• Survival time: until the tumor reaches an hypothetical lethal size, Ncrit, after which the patients is assumed124

to die quickly. This lethal tumor burden is also patient specific.125

Results126

When is containment optimal?127

The optimal treatment strategy depends on the clinical objective. If the emphasis is on rapidly reducing tumor128

burden then the maximum tolerated dose (MTD) is clearly superior to containment. However, if the aim is to129

maximize time to progression, then our formal mathematical analysis proves that containment is likely to be130

optimal, or at least close to optimal, in a broad range of cases.131

To see why, consider a tumor containing sensitive and fully resistant cells. The growth rates of these two132

subpopulations are expected to depend on the subpopulation sizes, and the growth rate of sensitive cells will133

also vary with the treatment dose. Furthermore, if resource competition is the dominant ecological interaction134

between subpopulations then it is reasonable to assume that, all else being equal, the larger the sensitive135

population, the lower the growth rate of the resistant population. To the best of our knowledge, this latter136

assumption holds for all proposed mathematical models with two cell types in which the impact of mutations137

after treatment initiation can be neglected (see Section 1 of Supplementary material for a review of previous138

studies).139

If the objective is to maximize time to progression then, under the above general assumptions, we find that140

the best possible treatment is the containment strategy that precisely maintains the original tumor burden for141

as long as some sensitive cells remain, which we called ideal containment. Moreover, among treatment strategies142

that eventually eliminate the sensitive population, we find that the worst option is to maximise the cell kill143

rate, that is, the ideal MTD treatment. Instead of maximizing time to progression, an alternative objective144

is to maximize the time until tumor burden exceeds a certain threshold. In this case, the optimal treatment145

maintains the tumor at precisely this threshold size.146

The intuitive explanation is that, whereas we can always reduce the sensitive population by using a suffi-147

ciently aggressive treatment, the only way to impair the growth of resistant cells is to exploit competition with148

sensitive cells. By assumption, this ecological form of control is most effective when the sensitive population is149

as high as can be permitted. Conversely, competition is least effective when the sensitive population is smallest;150

that is, under MTD.151

Which containment strategy works best depends on the objective (Fig. 1h). Time to progression is maxi-152

mized by ideal containment at the initial size; time to treatment failure, by ideal containment at the maximal153

tolerable size. In theory, survival time would be maximized by ideal containment just below the lethal tumor154

size. Attempting this would however be extremely dangerous, both due to adverse effect on patient’s quality of155

life and because too optimistic a guess of the lethal burden would lead to quick patient’s death.156
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Figure 1: Illustration of containment and MTD treatments in Model 2. a, Tumor size under no treatment

(black), ideal MTD (dashed), and containment at the initial size for various values of the maximum tolerated dose Cmax.

The case Cmax = ∞ (light blue) corresponds to ideal containment. The patient is assumed to die shortly after tumor

size becomes greater than Ncrit. b, Drug dose under the containment treatments of panel a. If Cmax < 1, the tumor

cannot be stabilized and containment boils down to MTD. c, Tumor size under MTD, ideal MTD, and containment at

the initial size, and resistant population size under MTD and containment. d, Tumor size under MTD, containment at

the maximum tolerable size, and their idealized counterparts. e, Drug dose under containment and ideal containment

at the maximum tolerable size, as represented in panel d. f, Tumor size under no treatment, ideal MTD, and ideal

containment at three different tumor sizes. g, Tumor size under no treatment, ideal MTD, and intermittent containment

between Nmax and Nmin = Nmax/2 for three different values of Nmax. h, Times to progression (blue), treatment failure

(green), and survival time (red) under ideal containment at a threshold size varied from R0 to Ncrit (ideal containment

at R0 is equivalent to ideal MTD). The time until the tumor exceeds a certain size is maximized by ideal containment

at that size. Exact formulas for idealized treatments are in Supplementary material, Section 3.1.
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Mathematical intuition157

Formal mathematical proofs of all these results in Model 1 can be found in Supplementary material, Section 2.158

They are based on a differential equation tool called the comparison principle (a variant of Gronwall’s lemma),159

but the basic argument is simple (see also [18]): between time t and t+ dt (where dt is a small time increment),160

the resistant population increases from R(t) to R(t+ dt) ' R(t) +R′(t)dt, hence by a quantity161

dR ' R′(t)dt = gr(R(t), S(t))dt.

So, if we fix a resistant population size R1 and a small size increment dR, the time it takes for the resistant162

population size to grow from R1 to R1 + dR is roughly:163

dt ' dR/gr(R1, S1), (1)

where S1 is the sensitive population size when R = R1. Assuming R0 ≤ R1 ≤ N0, under ideal containment at164

the initial size, S1+R1 = N0, so S1 = N0−R1. Before progression, under any other treatment, S1 ≤ N0−R1. By165

assumption, the larger the sensitive population, the lower the resistant population growth rate, hence the higher166

the duration dt in (1); it follows that the time it takes for the resistant population to grow from R1 to R1 + dR167

is maximized by ideal containment (and minimized by ideal MTD, since then S1 = 0). Iterating this argument168

shows that the resistant population Ridcont(t) under ideal containment at the initial size will be smaller than169

the resistant population R(t) under any alternative treatment, at least as long as none of these treatments led170

to progression. Since under ideal containment at the initial size, progression occurs when Ridcont(t) = N0, this171

implies that progression occurs later than under any other treatment. Other results require more sophisticated172

arguments, but the intuition is similar.173

Characterizing the intensity of competition between tumor cells174

Although we find that the superiority of ideal containment is qualitatively very robust, the predicted magnitude175

of clinical benefits depends on biological assumptions and parameter values. A critical factor is the strength of176

competition between treatment-sensitive and resistant cells. One biologically plausible hypothesis is that the177

growth rate of resistant cells primarily depends on their abundance relative to sensitive cells [9,10]. In ecological178

parlance, this means that the fitness of resistant cells is frequency-dependent. If this assumption holds then the179

most important parameter in determining outcomes is the relative fitness of resistant cells when rare [9]. In180

other words, what matters is how rapidly resistant cells proliferate, relative to sensitive cells, while resistant181

cells make up only a tiny fraction of the tumor. The smaller this parameter value, the greater the predicted182

clinical gains from containment, relative to MTD.183

An alternative, equally plausible hypothesis is that resistant cells fitness is primarily density-dependent, such184

that the per-cell growth rate decreases as the total tumor burden increases [3,12,14,15,18]. What matters most185

in this case is the strength of density dependence. In the widely-used Gompertzian model of tumor growth,186

the per-cell growth rate decreases relatively rapidly with increasing tumor size, leading to a strong competition187

effect and substantial clinical gains for containment versus aggressive treatment. Mathematical models that188

describe weaker competition, such as the logistic growth model, predict smaller clinical gains [3], whereas those189

that describe stronger competition, such as the von Bertalanffy growth model, predict larger gains (Fig. 2c,190

Supplementary Fig. 1; Supplementary material, Section 4.1.1).191

Important differences between model predictions underscore the need to advance understanding of the ecolog-192

ical interactions that govern intra-tumor dynamics [29], which remain only poorly characterized. Nevertheless,193

we find that what matters is not so much whether a mathematical model assumes frequency- or density-194

dependent fitness, but rather whether the model accurately describes the strength of this dependence.195

Other important biological parameters196

To illustrate how biological parameter values are predicted to influence clinical outcomes, consider Model 2.197

Recall that the ideal MTD treatment depicted in Fig. 1a (dashed line) is an idealized version of MTD which198

instantly eliminates sensitive cells [18] [28]. The clinical gain from this regimen, compared to no treatment, is199
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the time it takes for the tumor to grow from R0 (the initial resistant population) back to its initial size N0;200

that is, the time taken for the resistant population to increase by a factor of N0/R0 after being freed from201

competition with sensitive cells.202

In the case of ideal containment, the clinical gain is instead the duration of the stabilization phase. This203

is equal to the time taken for the resistant population to increase by a factor of N0/R0 while the tumor is204

maintained at the stabilization size. Because competition with sensitive cells impedes the growth of resistant205

cells, the gain from ideal containment is invariably greater than the gain from ideal MTD. Moreover, a larger206

stabilization size results in a longer stabilization phase and hence improved survival (Fig. 1f).207

Simple mathematical expressions may be derived to quantify the effects of containment and MTD strategies208

in various density-dependent scenarios, and in some frequency-dependent ones (see Supplementary material,209

Section 3). This enables us to examine the impact of varying any parameter on time to progression, time to210

treatment failure, and survival time. Recall that these three outcomes are defined, respectively, as the times until211

the tumor becomes larger than N0 (the size at treatment initiation), Ntol (a hypothetical maximum tolerable212

size) and Ncrit (the hypothetical lethal tumor size). For idealized treatments, these outcomes are independent213

of the treatment’s mode of action (for example, whether it results in a log kill rate, a Norton-Simon kill rate214

proportional to the net growth rate of an untreated tumor [1], or some other effect).215

For Model 2, the times to progression under ideal containment at the initial size and ideal MTD are216

tprog(idContN0) =
1

ρ

ln(N0/R0)

ln(K/N0)
and tprog(idMTD) =

1

ρ
ln

(
1 +

ln(N0/R0)

ln(K/N0)

)
,

respectively, where ln is the natural logarithm. In terms of time to progression, the absolute clinical benefit of217

ideal containment over ideal MTD is the difference between these numbers; the relative benefit (or fold change218

in progression time in Hansen and Read [27]) is the ratio219

tprog(idContN0)

tprog(idMTD)
=

x

ln(1 + x)
with x =

ln(N0/R0)

ln(K/N0)
. (2)

These formulas reveal the importance of three patient-specific factors: the baseline growth-rate, ρ; the initial220

frequency of resistant cells, R0/N0; and the initial tumor size compared to the carrying capacity, N0/K.221

For idealized treatments, decreasing the growth rate parameter (ρ) has no effect on the relative clinical222

benefits of containment, but, by slowing the dynamics, leads to higher absolute benefits. Instead decreasing223

the initial frequency of resistant cells (R0/N0) increases both absolute and relative clinical gains of containment224

versus MTD. This is in part because aggressive treatments are especially suboptimal when resistance is very rare,225

as they then cause a drastic reduction in tumor size, which permits rapid expansion of the resistant population.226

Lastly, a higher value of ratio N0/K implies more intense competition at the initial tumor size. This increases227

both absolute and relative benefits of containment at the initial size. Fig. 2 illustrate some of these effects for228

Model 2. The impact of a large initial tumor size on relative benefits of containment at the maximal tolerable229

size is more complex (Fig. 2b; Supplementary material, Section 4.1.2).230

Practical treatment strategies can be close to optimal231

For simplicity in the above mathematical analysis, we assumed no restriction on maximum dose, which permits232

the ideal containment strategy of maintaining the tumor precisely at a target size until it becomes fully resistant.233

In reality, toxicity constraints typically impose a maximum instantaneous dose Cmax. Figs. 1a, 1b, 1d and 1e234

compare tumor dynamics and doses under ideal containment and under containment strategies. In the latter235

case, the stabilization phase is shorter because it finishes before all sensitive cells have been removed, which236

results in shorter times to progression or treatment failure (Figs. 2d, 2g, 2h). However, as long as Cmax is237

substantially higher than the dose allowing to stabilize a fully sensitive tumor, the two treatments are quite238

close and result in similar survival times (Figs. 1a, 1d, Figs. 2f, 2h). Differences between ideal and non-ideal239

containment outcomes are discussed in greater detail in Supplementary material, Section 4.2.240

An additional consideration is that a continuous containment strategy requires continuous monitoring of241

tumor size, which is typically infeasible. More practical protocols include intermittent containment, constant242

dose therapy and metronomic therapy.243
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Figure 2: Comparison of clinical benefits of containment and MTD treatments in Model 2. a,

Relative benefit, in terms of time to progression, for ideal containment at size N0 versus ideal MTD (that is, ra-

tio tprog(idContN0)/tprog(idMTD)), as a function of initial tumor size and frequency of resistant cells. b, Relative

benefit, in terms of time to treatment failure, for ideal containment at size Ntol versus ideal MTD (that is, ratio

tfail(idContNtol)/tfail(idMTD)), as a function of initial tumor size and frequency of resistant cells. c, Relative benefit,

in terms of time to treatment failure, for ideal containment at size Ntol versus ideal MTD, for a Gompertzian growth

model (black curve; Model 2), a logistic growth model (red) and a von Bertalanffy growth model (blue). Parameter

values for the Gompertzian growth model are as in Table 1. Parameter values of the other two models are chosen so that

untreated tumor growth curves are similar for tumor sizes between N0 and Ncrit (the lethal size). See Supplementary

Figure 1 for details. d, e, f, Time to progression (panel d), to treatment failure (panel e), and survival time (panel f)

versus initial frequency of resistance. Outcomes are shown for MTD treatment and containment at N0, both in the ideal

case (Cmax = ∞) and subject to Cmax = 2. g, Relative benefit, in terms of time to treatment failure, for containment

versus ideal containment (at size Ntol), as a function of maximum dose threshold (Cmax) and initial frequency of resis-

tant cells (formulas are in Supplementary material, Section 3.3). Contour lines are at intervals of 0.05. h, i, Time to

treatment failure (panel h), and survival time (panel i) versus initial frequency of resistance. Outcomes are shown for

MTD treatment and containment at Ntol, both in the ideal case (Cmax =∞) and subject to Cmax = 2.
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Intermittent containment. The question of whether it is better to implement containment via a continuous244

low dose or an intermittent high dose treatment has yet to be settled. Both strategies worked well in mice245

[11]. Although Zhang et al. (2017) [12] obtained highly promising clinical results from intermittent high246

dose treatment, it is plausible that a continuous low dose treatment would have performed even better (as, if247

anything, seems to be the case in mice [11], although the evidence is too scarce to be conclusive). Mathematical248

models that account for cell-cycle dynamics, pharmacodynamics, and drug-induced resistance may be able249

to predict the optimality of a specific intermittent treatment, provided they can be precisely parameterized.250

In our simple setting, however, higher tumor burden implies slower growth of resistance, and hence exact251

containment at an upper threshold Nmax is better than containment between upper and lower bounds Nmax252

and Nmin. Nevertheless, as is apparent from comparing Figs. 1g and 1h, and from the theoretical analysis253

in the Supplementary material (Section 2.3, Propositions 5 and 6; Section 3.1.5; Section 3.3, Supplementary254

Table 4), the difference between the two types of protocol is small provided that Nmin is a large fraction of255

Nmax. Indeed, decreasing tumor burden from Nmax to Nmin then only slightly increases the growth rate of256

resistant cells. Intermittent containment as in the clinical trial of Zhang et al. (2017) [12], which may be the257

only practical possibility, therefore appears to be a sound implementation of containment, as long as the lower258

threshold is not too low.259

Constant dose. To maximize time to progression in Model 2, the optimal constant dose is slightly higher260

than C = 1/λ (which corresponds to C = 1 in Fig. 3a). The constant dose C = 1/λ stabilizes the sensitive261

population size, whereas containment uses the evolving dose C = N/λS = 1/λ+R/λS to stabilize tumor size.262

According to our definition, the former approach leads to immediate progression because it allows the overall263

tumor size to increase from the start of treatment. However, provided that resistant cells are initially rare, the264

dose C = 1/λ maintains tumor size close to the initial size for nearly as long as under containment (Figs. 3a,265

3c). Differences that emerge after resistant cells become abundant are relatively unimportant. Thus, for a given266

patient, the dose C = 1/λ is expected to lead to similar outcomes as containment at the initial size. Similarly,267

delaying treatment until the tumor size reaches Ntol and then applying dose C = 1/λ has similar outcomes as268

containment at the maximum tolerable size (Figs. 3b, 3e). Table 2 gives examples of times to progression, times269

to treatment failure, and survival times for various constant doses and other treatments. Note that the constant270

dose that maximizes time to progression is slightly higher than 1/λ, whereas the non-delayed constant dose that271

maximizes survival time is lower than 1/λ (Fig. 3c, Supplementary Table 6, Supplementary Fig. 4). Constant272

dose treatments may lead to higher survival time than containment at the initial size (Fig. 3a, Supplementary273

Fig. 4) but to the cost of quicker progression, and they always lead to lower survival time than containment at274

sufficiently higher sizes.275

Adaptive treatments may be close to optimal for all patients. A problem with constant dose therapy is that the276

parameters that determine the best dose for a particular patient are typically unknown. Giving slightly too277

little or too much treatment can be far from optimal (blue and red curves in Figs. 3c, 3d, 3e). Any constant278

dose that works relatively well for some patients will inevitably be suboptimal for others, and the constant dose279

that gives the best average result for a cohort of patients will typically be further from containment than the280

best constant dose for a single patient (Figs. 3c, 3d, 3e; Supplementary material, Section 4.6). By contrast,281

a containment strategy will be close to optimal for every patient because it entails continuously adjusting the282

dose as a function of patient response, without requiring any parameter to be known in advance (except that283

the tolerable tumor burden Ntol must be chosen by the physician or revealed during treatment). Similarly (in284

the absence of an initial induction phase where treatment is given at MTD, which would trigger competitive285

release), conventional metronomic therapy – in which low doses are given at regular, predefined intervals – may286

look similar to intermittent containment. However, intermittent containment (a particular form of adaptive287

therapy [12]) has the important additional benefit of adapting doses to the evolution of the tumor and to288

patient-specific parameters, without knowing these parameters in advance [30].289

Fitness costs of resistance are helpful but not essential290

Previous studies have asserted or assumed that a necessary condition for effective tumor containment is that291

treatment resistance incurs a cellular fitness penalty. This is especially the case in the literature on adaptive292
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Figure 3: Constant dose and delayed constant dose treatments in Model 2. a, Tumor size for various

constant dose treatments compared to containment at the initial size (subject to Cmax = 2) and ideal MTD. b, Tumor

size for various delayed constant dose treatments (the dose is applied continuously from the first time when N = Ntol)

compared to containment at Ntol (subject to Cmax = 2) and ideal MTD. Until N = Ntol, all curves are the same, except

ideal MTD. c, Times to progression for two patients whose tumors differ in treatment sensitivity (parameter λ) under

constant dose treatments, as a function of the dose. The yellow line is the mean of the two patient outcomes and the

dashed line is the time to treatment failure under ideal containment at N0 (which is the same for both patients, and the

maximal time to progression). d, Times to treatment failure for two patients whose tumors differ in treatment sensitivity

under constant dose treatments, as a function of the dose. The yellow line is the mean of the two patient outcomes and

the dashed line is the time to treatment failure under ideal containment at Ntol (which is the same for both patients, and

the maximal time to treatment failure). e, Times to treatment failure for two patients whose tumors differ in treatment

sensitivity under delayed constant dose treatment (the dose starts to be applied when N = Ntol for the first time). The

yellow line is the mean of the two patient outcomes and the dashed line is the time to treatment failure under ideal

containment at Ntol (which is the same for both patients, and the maximal time to treatment failure).

Table 2: Time to progression, time to treatment failure, and survival time for Model 2. The constant

dose or delayed constant doses C = 1.09 and C = 1.07 maximize tprog and tfail, respectively, among all constant dose

or delayed constant dose treatments. Times are measured in days.

Treatment tprog tfail tsurv

No treatment 0 77 226

Ideal MTD 186 263 412

MTD (Cmax = 2) 236 314 463

C = 1.09 303 397 549

Containment at N0 (Cmax = 2) 318 418 568

Ideal containment at N0 340 417 566

C = 1.07 from N = Ntol 0 543 731

Containment at Ntol (Cmax = 2) 0 580 767

Ideal containment at Ntol 0 615 764
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Figure 4: Consequences of costs of resistance in Model 3. a, Relative benefit, in terms of time to treatment

failure, for ideal containment (at size Ntol) versus ideal MTD, for varied values of Kr and β. This figure is based on

approximate formulas that are highly accurate for the selected parameter values (see Supplementary material, Section

5.2). Supplementary Fig. 5 shows an alternative version of this plot based on simulations. Contour lines are at powers

of 2. b, Eventual outcomes of ideal containment (idCont) and ideal MTD (idMTD) treatment strategies, based on exact

formulas (see Supplementary material, Section 5.1). The “infinite” region in panel a corresponds to the “TI” region in

panel b. Fixed parameter values are as in Table 1.

therapy (for example, [4, 5, 10, 11, 30–33]). As noted in a recent review article [5], “the theory behind adaptive293

therapy focuses on the phenotypic costs of the molecular mechanism(s) of resistance.” Importantly, none of our294

qualitative results depends on a fitness cost of resistance. Indeed, we find that containment can be an optimal295

and highly effective strategy even if resistant cells are fitter than treatment-sensitive cells in the absence of296

therapy.297

Yet, although not required for containment to improve on aggressive treatment, fitness costs of resistance298

may increase clinical gains. The precise effect depends on whether the cost of resistance is constant or is higher299

in the presence of sensitive cells [18]. To examine this issue, let us consider the following model:300

Ṡ(t) = ρs ln

(
Ks

S(t) + αR(t)

)
(1− λC(t))S(t),

Ṙ(t) = ρr ln

(
Kr

R(t) + βS(t)

)
R(t).

(Model 3)

Here, the baseline growth rates ρs, ρr and the carrying capacities Ks, Kr are specific to sensitive and resistant301

cells, respectively. In the denominators, total tumor size has been replaced by a weighted sum of the resistant302

and sensitive population sizes, as is commonly assumed in ecological models. The higher the competition303

coefficient β, the greater the impact of sensitive cells on resistant cells. If β = 1, then resistant cells are affected304

equally by all cells and R+ βS = N , as in Model 2.305

In Model 3, a resistance cost may correspond to:306

• a reduction in growth rate, independent of competition intensity (low ρr);307

• a general inability to compete with other cells (low Kr);308

• a specific inability to compete with sensitive cells (high β).309

All such costs increase clinical gains of any treatment by slowing the growth of resistant cells. Moreover,310

resistance costs reduce the expected initial fraction of resistant cells, which is good for all treatments, but311

especially good for containment.312

Nevertheless, for a given initial fraction of resistant cells, only some types of resistance cost increase relative313

clinical gains of ideal containment over ideal MTD. For instance, halving ρr doubles times to progression under314

both treatments, so the absolute benefit of containment doubles, but the relative benefit is unchanged. In a315

model that accounts for mutation from sensitive to resistant, lowering ρr may even decrease the relative benefit316

of containment [18]. In contrast, lowering Kr or increasing β increases both absolute and relative clinical gains,317

because it harms resistant cells proportionally more in the presence of sensitive cells. Some of these effects are318

illustrated in Figure 4 (see also complementary analyses in [18,34]).319
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What if all tumor cells are partially sensitive to treatment?320

If resistant cells retain some sensitivity to treatment then the basic logic changes in two ways. First, if resistant321

cells are sufficiently sensitive, then MTD can cure the tumor. This is not a case that concerns us, since our322

goal is to find alternative treatments when MTD is expected to fail. Second, even if a cure is impossible, there323

are now two ways to fight resistant cells: treating at low dose (to maintain competition with sensitive cells)324

or aggressively (to exploit partial sensitivity). Since competition with sensitive cells weakens as the sensitive325

population is depleted, treatment failure can be delayed by switching from a containment strategy to MTD326

at an appropriate time before treatment failure, but at the cost of increased toxicity. Whether the gain from327

switching to MTD is typically small or substantial remains to be investigated but, in general, the difference in328

outcomes for containment versus MTD is smaller when all cells are partially sensitive to treatment. If resistant329

cells are sufficiently sensitive then MTD may even be superior to pure containment.330

If resistant cell frequency and sensitivity are unknown then we face a conundrum. Should we treat at high331

dose after low dose treatment failure? If the tumor is already fully resistant then any further treatment will incur332

needless toxicity. If resistant cells are fully resistant but some sensitive cells remain then it might be better333

to maintain a low dose. But if resistant cells retain some sensitivity then treating at high dose after initial334

treatment failure may be the best option, subject to treatment toxicity. To make the best choice, clinicians335

will require new methods for assessing tumor composition and sensitivity during therapy. Determining optimal336

strategies in the case of partial or unknown treatment sensitivity is an important topic for future theoretical337

research. In particular, when it may be proved that it is optimal to first contain the tumor and then switch to338

MTD, clinically implementable methods to determine a close to optimal switching time should be developed.339

When can the tumor be contained forever?340

In Model 3, unless a fully sensitive or fully resistant tumor is intrinsically benign (Ks < Ntol or Kr < Ntol,341

respectively), indefinite containment under the maximum tolerable size requires two conditions: first, resistant342

cells are harmed more from competition with sensitive cells than from competition with other resistant cells343

(β > 1); second, the resistant population would decline in an almost fully sensitive tumor of threshold size Ntol.344

The latter condition is equivalent to Kr < βNtol. Since the resistant population’s carrying capacity is likely345

to be significantly larger than the threshold tumor size, this condition typically requires a large competition346

coefficient β. Therefore, at least in this model, indefinite containment is possible only if sensitive cells greatly347

impair the fitness of resistant cells (green region of Figure 4a; green and yellow regions of Figure 4b). These348

results are derived in Supplementary material, Section 5.1.349

Protocols for containment at the initial size.350

Previous studies suggested variants of downward or upward titration strategies, where the dose is gradually351

decreased or increased until an appropriate stabilizing dose is found [4, 11, 17, 35]. This may be combined with352

treatment vacations. Although titration methods have the advantage of being conceptually simple, they could353

be slow in determining an approximately stabilizing dose. Moreover, they need not have an explicit target354

size, and typically do not fully take into account how much tumor size recently increased or decreased, e.g.,355

they increase the dose by the same amount whether tumor size increased substantially or hugely. We therefore356

propose a new protocol. As previous protocols, it assumes the existence of a tumor biomarker. Details may be357

found in Supplementary Material, Section 6, but the basic idea is as follows.358

The initial dose is neither zero nor the maximal tolerated dose, but an intermediate dose; e.g., a dose359

expected to a least stabilize tumor in 75% of patients. The variation of the biomarker is then relatively quickly360

measured, and a second dose is chosen that differs enough from the first dose to be expected to bring tumor361

back towards its initial size N0. From the third measurement on, an educated guess for a stabilizing dose may362

be made based on simple tumor growth models (see below). The dose delivered until the next measurement is363

then the estimated stabilizing dose if tumor size is equal to its target, a higher dose if it is above, and a lower364

dose if it below.365

A concrete example is to fix a low and a high threshold, Nl < N0 and Nh > N0, positive parameters γ1 and366
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γ2, and to deliver the following dose until the next measurement, where N is the current estimated tumor size,367

and Cguess the estimated stabilizing dose:368

C =



0 if N ≤ Nl;
Cguess

[
1−

(
N0−N
N0−Nl

)γ1]
if Nl ≤ N ≤ N0;

Cguess + (Cmax − Cguess)
(
N−N0

Nh−N0

)γ2
if N0 ≤ N ≤ Nh;

Cmax if N ≥ Nh

The dose thus varies continuously between 0 and Cmax depending on the estimated stabilizing dose and how369

far tumor size is from target. The parameters γ1 and γ2 tune whether the emphasis is on stabilizing tumor size370

(γi > 1) or bringing it back to N0 (γi < 1). Note that only the ratios N/N0, Nh/N0 and Nl/N0 matter. This371

is important when the evolution of the biomarker level in a given patient correlates well with the evolution of372

tumor size, but the initial level is not a good indicator of initial tumor size.373

We conclude by explaining how to find an estimation of the stabilizing dose. Assume that the biomarker374

levels were measured at time tk−2, tk−1 and at the current time tk, leading to estimated tumor doubling times375

of DTk−2 between tk−2 and tk−1, and DTk−1 between tk−1 and tk (if the tumor is regressing, the doubling time376

is defined as the opposite of the “halving time”). Denote by Ck−2 and Ck−1 the doses given between tk−2 and377

tk−1, and between tk−1 and tk, respectively. We show in Supplementary material, Section 6, that a reasonable378

guess for the stabilizing dose is:379

Cguess =
DTk−1Ck−1 −DTk−2Ck−2

DTk−1 −DTk−2
This assumes that the kill-rate is proportional to the dose, as in Model 2. If the kill-rate is assumed proportional380

to a function f(C) of the dose, due, e.g., to some saturation effect, then the formula becomes381

f(Cguess) =
DTk−1f(Ck−1)−DTk−2f(Ck−2)

DTk−1 −DTk−2

and a guess for the function f should also be made. Wrong guesses for this function could lead to systematic382

under-estimation or over-estimation of the stabilizing dose, but this is compensated by the fact that the protocol383

takes into account how far tumor size is from target. Moreover, if measurements are frequent enough, learning384

algorithms may help to determine which models work best to predict tumor evolution in a specific patient, and385

to gradually improve the estimation of the stabilizing dose. For a more substantial discussion of containment386

protocols, see Supplementary material, Section 6, and the forthcoming Ph.D. thesis of Jessica Cunningham.387

Discussion388

Theoretical support for maximum tolerated dose therapy relies on the assumption that resistant cancer cells389

are absent [1] or arise only during treatment [2]. Given that many if not most large solid cancers are expected390

to harbor pre-existing resistance [36], we have sought to build a firm theoretical foundation for understanding391

when containment strategies are likely to improve on the conventional approach. The logic of containing392

tumors is fundamentally simple: if some cells are fully resistant to treatment then the only way to fight them393

is via competition with sensitive cells, where “competition” includes any process that leads to a decrease in394

the resistant population growth rate due to the presence of sensitive cells. Moreover, given the constraint395

of maintaining tumor size below a certain threshold, competition is maximized under containment treatment396

strategies. We have shown that this logic can be formalized and given a rigorous mathematical form in a general397

setting. It follows that model details are qualitatively irrelevant, provided that resistant cells are highly resistant398

and that increasing the number of sensitive cells always decreases the resistant population growth rate.399

However, identifying conditions under which containment strategies are expected to perform well also em-400

phasizes that the case for containment is weaker when these conditions are not met. For instance, though we401

checked that taking into account random genetic mutations occurring after treatment initiation would not have402

substantially affected our results, we did not investigate treatment-induced mutations, nor models where sensi-403

tive cells arise from resistant tumor stem cells. We also note that if resistant cells are only partially resistant404

then switching to MTD before the failure of low dose treatment may be superior to a pure containment strategy.405
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When to switch and whether the difference in outcomes is substantial remains an important topic for further406

investigation.407

In our simple but general framework, the time until tumor size exceeds any particular threshold is maximized408

by maintaining tumor size precisely at this threshold for as long as there remain sensitive cells. This is true even409

if resistance has no cellular fitness cost. This suggest that tumor containment experiments and trials should not410

be restricted to cases where a resistance cost is assumed to exist. Our results also underline a trade-off between411

maximizing time to progression and maximizing the time at which tumor size becomes higher than some larger412

threshold. Since clinical evidence supporting containment strategies remains limited, it seems safer to test413

containing tumors at their initial size, or some relatively low size. If results are convincing, more ambitious414

strategies aiming at increasing intra-tumor competition by letting the tumor grow to its maximal tolerable size415

before containing it could be attempted. This maximal tolerable size would not have to be known in advance,416

but could be discovered during treatment, based on patient’s quality of life.417

To implement containment strategies, the nature of the resistance mechanism, the frequency of resistant418

cells, or other patient specific parameters need not be known, but a tumor burden indicator seems required. In419

our models, when resistant cells are initially rare, applying a dose close to the initial stabilizing dose throughout420

typically leads to results similar to containment at the initial size. In practice however, tumor growth is much421

more irregular. Thus, finding a dose, or schedule, that initially results in tumor stabilization is not enough:422

regular monitoring and dose adjustment are required. We proposed a new protocol that takes into account how423

far tumor size is from its target and how much it recently increased or decreased.424

Importantly, although the ideal form of containment is impractical, our simulations and theoretical argu-425

ments predict that more feasible containment strategies will also improve substantially on maximum tolerated426

dose (MTD) treatment. These more practical approaches include adaptive therapy [4], which has an important427

advantage over constant-dose or metronomic protocols, in that the optimal dose need not be known in advance.428

On the other hand, our theoretical results imply that an on-off implementation of adaptive therapy – as was429

employed in the only clinical trial of tumor containment to date [12] – may be suboptimal, because it causes430

tumor size to deviate substantially below the maximum tolerable threshold. Further research is needed to es-431

tablish optimal dosing protocols in the presence of biological factors not accounted for in our framework, e.g.,432

spatial structure [17].433

By deriving explicit formulas for predicted clinical gains due to containment, we have shown that a crucial434

factor is the intensity of competition between sensitive and resistant cells. For tumors that obey the Gompertzian435

growth law, clinical gains are predicted to be substantial, at least when resistant cells are initially rare and the436

initial tumor size is not very small (at least 0.1% of carrying capacity). Less conventional tumor growth437

models predict either smaller or larger clinical gains. Our findings therefore underscore the need to characterize438

intratumor cell-cell competition [29]. A useful indicator that could be measured experimentally is the amount439

by which the resistant population growth rate increases – if at all – upon elimination of sensitive cells.440

Although we have investigated various extensions and variants of our basic model, we have not considered all441

potential clinical costs and benefits of containment. By maintaining a substantial tumor burden, containment442

might increase risk of metastasis, cancer-induced illness such as cachexia, or emergence of more aggressive tumor443

clones via mutation [37]. On the other hand, containment has the important advantage of reduced treatment444

toxicity. Stabilizing tumor size might additionally lead to a more stable tumor microenvironment and better445

drug delivery, which would be consistent with the finding that, in preclinical trials in mice, tumor size could be446

stabilized using progressively lower doses [11]. Further experimental and theoretical research is needed to clarify447

whether the benefit of containment in terms of prolonging survival always outweighs its potential downsides.448

Notwithstanding these important caveats, our findings generally strengthen the case for conducting further449

experimental and clinical trials of tumor containment strategies.450
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