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Abstract

Motivation. The accuracy of RNA secondary and tertiary structure prediction can

be significantly improved by using structural restraints derived from evolutionary or direct

coupling analysis. Currently, these coupling analyses relied on manually curated multiple

sequence alignments collected in the Rfam database, which contains 3016 families. By

comparison, millions of non-coding RNA sequences are known. Here, we established

RNAcmap, a fully automatic method that enables evolutionary coupling analysis for any

RNA sequences. The homology search was based on the covariance model built by Infernal

according to two secondary structure predictors: a folding-based algorithm RNAfold and the

latest deep-learning method SPOT-RNA.

Results. We show that the performance of RNAcmap is less dependent on the

specific evolutionary coupling tool but is more dependent on the accuracy of secondary

structure predictor with the best performance given by RNAcmap (SPOT-RNA). The

performance of RNAcmap (SPOT-RNA) is comparable to that based on Rfam-supplied

alignment and consistent for those sequences that are not in Rfam collections. Further

improvement can be made with a simple meta predictor RNAcmap (SPOT-RNA/RNAfold)

depending on which secondary structure predictor can find more homologous sequences.

Reliable base-pairing information generated from RNAcmap, for RNAs with high effective

homologous sequences, in particular, will be useful for aiding RNA structure prediction.

Availability and implementation. RNAcmap is available as a web server at

https://sparks-lab.org/server/rnacmap/) and as a standalone application along with the

datasets at https://github.com/sparks-lab-org/RNAcmap.

Keywords: RNA structure, Direct coupling analysis, Evolutional coupling, Rfam,

infernal
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INTRODUCTION

RNA structures are the foundations for their diverse functional roles ranging from

catalysis, cell-signalling, to transcriptional regulation (1). Determining RNA structures by

traditional experimental techniques such as X-ray crystallography, nuclear magnetic

resonance, and cryogenic electron microscopy is costly and time-consuming. In fact, only 3%

or 99 of 3016 RNA families from Rfam (2) have experimentally solved structures and the

number of solved RNA-only structures per year stay the same for the past two decades

(50~80/year). By comparison, the number of noncoding RNAs collected in RNAcentral has

doubled from 8 million in 2015 to 16 million in 2019(3, 4). The fast-increasing gap between

the number of noncoding RNA sequences and the number of experimentally-solved

structures makes computational approaches highly desirable.

Computational RNA structure predictions were evaluated by RNA puzzles(5–7), which

were blind experiments in RNA 3-D structure prediction, similar to Critical Assessment of

Structure Prediction (CASP) for blind protein structure prediction (8–10). Results of recent

three rounds of RNA puzzles showed that predicting near-native models (RMSD <10 Å)

remained challenging for most current methods (5–7). However, there is a significant

improvement in ab initio protein structure prediction in CASP13 (11), largely due to

employing significantly improved prediction in protein contact maps as the restraints for 3D

structure prediction. Prediction of protein contact map was improved by increasingly

accurate mutational coupling analysis due to the fast-expanding protein sequence database

and more powerful, deep contextual learning for enhancing coupling signals (8, 12).

Contact maps inferred from mutational coupling have been demonstrated to improve

RNA secondary (13, 14) and tertiary structure prediction (15–17). However, RNAalifold (13)

relies on mutual information that is unable to separate direct and indirect coupling (18),

while more accurate evolutionary coupling (16) or direct coupling (17) analysis relied on

homologs identified in the Rfam database, which has 3016 families only as of January 2019.
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This limitation prevents a wide application of evolutionary coupling for RNA secondary and

tertiary structure prediction.

An accurate mutational coupling analysis requires a large number of sequence

homologs. RNA homology search is a challenging problem because most structural RNAs are

known to preserve the secondary structure rather than the primary sequence(19). The

covariance-model-based search enabled by Infernal was shown to outperform both

sequence-based and profile HMM-based methods with very high sensitivity and specificity, as

it incorporates information from both sequence and secondary structure(20). Recent studies

on genome-wide search for pseudoknotted noncoding RNA(21, 22) and comparison of RNA

multiple sequence alignment tools(23) confirmed the state-of-the-art performance of Infernal.

The purpose of this work is to develop a fully-automatic method (RNAcmap) for RNA

evolutionary coupling analysis that is not limited to RNA homologous sequences identified in

Rfam. RNAcmap first employs BLAST (24) to perform an initial homolog search from the

NCBI nucleotide database. The resulting homologous sequences and the predicted secondary

structure are then employed for building the covariance model for the second-round search

by Infernal (25), the same tool employed in Rfam to facilitate the comparison. Unlike Rfam

that utilizes experimentally validated secondary structures or consensus prediction,

RNAcmap employs a folding-based algorithm RNAfold (26) or a recent deep-learning-based

method SPOT-RNA (27) for secondary structure prediction to ensure that the method is

fully automatic. The resulting multiple sequence alignment from the second-round search is

then employed for evolutionary coupling analysis to yield base-pairing and distance-based

contact maps. Three methods for evolutionary coupling analysis are examined (GREMLIN,

plmc and mfDCA) (15, 17, 28).

We showed that the resulting contact maps from RNAcmap (SPOT-RNA) are

comparably accurate to those based on Rfam-aligned homologous sequences for those

sequences in Rfam. More importantly, RNAcmap can yield similarly accurate base-pairing
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results for those sequences that are not curated in Rfam. RNAcmap should be useful for

improving RNA secondary and tertiary structure prediction.
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MATERIALS AND METHODS

The RNAcmap Pipeline

The RNAcmap pipeline provides two rounds of the search for RNA homologs. The first

round of search is based on a purely sequence-based search tool, BLAST-N (24), against the

NCBI nucleotide database. The parameters of -evalue 0.001, line-length 1000, and

-task blastn are used in this round. The homologous sequences are obtained by an e-value

cut off of 0.001. Then a covariance model is built using cmbuild from Infernal (25) with the

above-obtained homologous sequences and predicted secondary structure from a pre-chosen

secondary-structure prediction tool as input. Afterwards, the covariance model is employed

to perform the second round of search against the NCBI database by cmsearch of Infernal

(25) with parameters --incE 10.0. The new updated homologous sequences (based on a cut

off of E-value 10.0) and their alignment are used for evolutionary coupling analysis with a

chosen tool. We employed a cut off of 10.0 for E-value in cmsearch as Sun et al in order to

include more homologs with low sequence identity(29).

RNA Secondary Structure Prediction Tool

We employed either a folding-based algorithm RNAfold (26) or our recently developed

deep-learning method SPOT-RNA (27) for secondary structure prediction. SPOT-RNA

improves prediction of secondary structure over existing folding-based algorithms, not only

in canonical but also in non-canonical and non-nested (pseudoknot) base pairs. The

improvement is the largest for non-nested and non-canonical base pairs (27).

Evolutionary Coupling Analysis Tool

Several tools are employed for final evolutional coupling analysis. GREMLIN(28) is

obtained from https://github.com/sokrypton/GREMLIN_CPP. The method is based on

the pseudo-likelihood inference of direct coupling analysis with L2 regularization. GREMLIN

is run with the recommended parameter for RNA (-alphabet rna -gap_cutoff 1.0
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-lambda 0.01 -eff_cutoff 0.8 -max_iter 100). The plmc method was obtained from

https://github.com/debbiemarkslab/plmc. It employed similar pseudo-likelihood to infer the

parameters in the DCA model (17). We utilized the recommended parameters for RNA (-a

-.ACGU -le 20 -lh 0.01 -m 50) . The mfDCA method was obtained from

http://dca.rice.edu/portal/dca/download. It employed the inverse covariance matrix to infer

the coupling parameters(15, 18). An additional Average Production Correction (APC) (30)

was applied to the original mfDCA to be consistent with other DCA methods.

Evolutionary coupling analysis using Rfam-supplied multiple sequence

alignment

RNAcmap can provide evolutionary coupling analysis based on a fully automatic

search for homologous sequences. The Rfam database consists of 3016 manually curated

RNA families (RFAM version 14.1) (2, 25). Thus, evolutionary coupling analysis based on

multiple sequence alignment provided in Rfam can be considered as an upper limit for

comparing with RNAcmap. This is because RNA secondary structures may be

experimentally validated or from consensus prediction in Rfam-supplied alignment.

Datasets

We downloaded a total of 4528 structures containing 6294 RNA chains from the

Protein Databank. Among them, 4281 RNA chains were selected with sequence length

between 32 and 500. Using cmfind and Rfam database (version 14.1)(2, 25), these chains

were further split into two sets: 3182 RNA chains were mapped to existing Rfam families and

1099 RNA chains were not mapped to any Rfam families. The majority of structure-mapped

Rfam families (77%, 2461 of 3182) are tRNA, 5S rRNA and 5.8S rRNA. These two sets were

further reduced by limiting to X-ray-determined structures with resolution better than 3.5 Å

and clustered by cd-hit-est(31, 32) with sequence identity cut off of 0.8.

For those RNAs mapped to known Rfam families, we required the minimal aligned

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.08.242636doi: bioRxiv preprint 

https://github.com/debbiemarkslab/plmc
http://dca.rice.edu/portal/dca/download
https://doi.org/10.1101/2020.08.08.242636
http://creativecommons.org/licenses/by-nc-nd/4.0/


RNACMAP 8

length to be 80% of the RNA length and the aligned length of the Rfam covariance model to

be greater than 50%. If one RNA was aligned to two or more Rfam families, the family with

the highest score (or the lowest E-value) was taken as the correctly aligned family. Finally,

for each family, we selected one RNA. The final Rfam set contained 43 structured,

non-redundant RNAs.

For those RNAs that were not mapped to Rfam families, we required the minimal

number of base pairs to be 10, which is the lowest number of base pairs in the Rfam set.

This non-Rfam set contained 117 non-redundant RNAs.

We used X3DNA-DSSR(33) to annotate the secondary structure from the PDB

structure and bpRNA (34) to annotate various base pair types and stem regions for both

predicted and reference secondary structure. Briefly, a stem is defined as a helix consisting of

only canonical Watson-Crick and wobble pairs with a continuous backbone. An isolated

canonical basepair is defined as a basepair without stacking interaction or not belonging to a

stem. Pseudoknots exist when two non-nested base pairs (i, j) and (a, b) satisfy (i<a<j<b).

Pseudoknot base pairs are those pairs that require the least to remove to yield

pseudoknot-free secondary structure.

Performance Measures for Base Pair Prediction

The performance of a single RNA was evaluated by the sensitivity

(SN=TP/(TP+FN)), precision (PR=TP/(TP+FP)) and F1-score (the harmonic mean of

sensitivity and precision, F1=2SN*PR/(SN+PR)) using top L/6, L/4, L/2 and L predicted

pairs. Here, TP, TN, FP and FN are true positives, true negatives, false positives and false

negatives, respectively. Only non-local pairs were evaluated (|i-j|>4, i and j are the sequence

positional indices of the nucleotides).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.08.242636doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.08.242636
http://creativecommons.org/licenses/by-nc-nd/4.0/


RNACMAP 9

Performance Measures for Stem Prediction

Because evolutionary or direct coupling only captures a few base pairs within a stem

with the strongest co-mutation signals, it is necessary to evaluate the performance on the

stem level, rather than on the base-pair level. This is because it is more important to

capture all the stems for the overall correct topology, rather than obtain most base pairs in

some stems but not even a single base pair in other stems. To evaluate the performance on

the stem level, we defined that a stem is correctly predicted if one or more base pairs within

the stem are correctly predicted.

Performance Measures for Tertiary-contact Prediction

Here, we defined non-hydrogen-bonded tertiary contacts if a) the nearest-heavy atom

distance between two nucleotides is less than 8Å and b) these two nucleotides are not

adjacent to the existing base pairs. This definition follows the work by De Leonard et al(15).

Tertiary contacts were evaluated after removing base pairs and two nucleotides neighbouring

to the base pairs. The overall performance was also evaluated by F1-score, sensitivity, and

precision.

RESULTS

Comparison Between Evolutionary Coupling Tools for RNAcmap (RNAfold)

RNAcmap requires a secondary structure prediction tool for building the covariance

model and an evolutionary coupling tool for predicting contacting pairs. In RNAcmap

(RNAfold), we employed RNAfold for secondary structure prediction and examine how

different evolutionary coupling tools would impact the outcome of contact prediction. Figure

1 compares F1-score, precision, and sensitivity for base-pair prediction in the Rfam dataset

by GREMLIN, mfDCA_apc and plmc, respectively. Results for top L/6, L/4, top L/2 and

top L predictions are presented for 43 RNAs in the Rfam set. As expected, increasing the

number of predictions from top L/6 to L leads to an increase in sensitivity but a decrease in
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precision. Top L/4 predictions reached the highest F1-score for all evolutionary coupling

methods, suggesting that L/4 predictions have the optimal balance of sensitivity and

precision.

GREMLIN and mfDCA had comparable performance. For example, using the F1 score

for top L/4 prediction as a measure, there was no statistically significant difference between

GREMLIN and mfDCA (p-value=0.81, the paired t-test). Both, however, were statistically

significant but only slightly better than plmc (p-value=0.005 for mfDCA better than plmc,

p-value = 0.0007 for GREMLIN better than plmc). Because the difference between the three

methods was small, GREMLIN will be used as the default for all subsequent analysis.

Evolutionary Coupling Analysis from Rfam-supplied alignment and from the

alignment generated from RNAcmap (RNAfold)

Using the same Rfam dataset, Figure 2 compares F1-score, precision, and sensitivity of

base-pair prediction from evolutionary coupling analysis by GREMLIN with

multiple-sequence alignment generated by RNAcmap (RNAfold) and supplied by Rfam,

respectively. For a reference, the result based on the first-round BLAST-N search is also

shown. BLAST-N-based alignment provides very poor (nearly random) prediction. Manually

curated alignments from Rfam improves over automatic homology search and alignment

given by RNAcmap (RNAfold). The improvement is observed for both sensitivity and

precision. Rfam-alignment improves over RNAcmap (RNAfold) statistically significant for

top L/6 predictions (p-value=0.02, paired t-test on F1-score of 43 RNAs), top L/4

predictions (p-value=0.01), and top L/2 predictions (p-value=0.04) but not top L

predictions (p-value=0.06).

Figure 3 further examine the ability to predict tertiary contacts by comparing the

results of Rfam-based alignment, RNAcmap (RNAfold), and Blast-N. Performance for all

methods is poor with <5% in median precision and <2% in median sensitivity for all top
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L/6, L/4, L/2 and L predictions although Rfam-based alignment and RNAcmap (RNAfold)

are significantly better than Blast-N (with p-value<0.0002 for all cases). Thus, here and

hereafter we will focus on base-pair prediction only.

Beyond Rfam sequences

Although Rfam-based alignment has a slight edge in performance for top L/4

predictions, in particular, one advantage of RNAcmap (RNAfold) is that it can predict

sequences which are not in the Rfam collection. Figure 4 illustrates F1-score for the Top L/4

predictions as a function of the number of effective homologous sequences, normalized by

sequence length (Neff/L). While the Rfam-based alignment improves over RNAcmap

(RNAfold) for the Rfam set, the performance of RNAcmap (RNAfold) for 117 RNAs in the

non-Rfam set is nearly the same as that for 43 RNAs in the Rfam set. All showed a trend of

improved prediction with increased Neff/L. Particularly, reasonably accurate predictions

(F1-score>0.5) are made for Neff/L>1 for 21 of 27 RNA sequences (78%) for the Rfam set

using Rfam alignment, 15 of 20 RNA sequences (75%) for the Rfam set using RNAcmap

(RNAfold) alignment, and 16 of 19 RNA sequences (84%) for the non-Rfam set using

RNAcmap (RNAfold) alignment. Two outliers with high Neff/L and low F1-score in Figure 4

were both resulted from poorly predicted secondary structures (red:6ASO:I, blue: 4QJD:B),

which led to incorrect homologous sequences.

The Effect of Secondary Structure Prediction on the Performance of RNAcmap

We compared the effect of using RNAfold and SPOT-RNA in the RNAcmap pipeline.

To make a fair comparison, we excluded those RNAs in Rfam and non-Rfam sets with

sequence similarity greater than 80% to any of RNAs in the SPOT-RNA training set. This

sequence-identity cut off was the lowest cutoff allowed by cd-hit-est (31, 32)and employed

previously for separating training and independent test sets (27, 35, 36). This leads to a

total of 77 RNAs as a combined test set (21 in the Rfam set and 56 in the non-Rfam set).
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Figure 5 compares the performance in F1 scores for the top L/4 predictions by

RNAcmap (SPOT-RNA) and by RNAcmap (RNAfold), respectively. It is clear that

RNAcmap (SPOT-RNA) offers a substantial improvement over RNAcmap (RNAfold). The

former has 31 RNAs with higher F1-scores, compared to 18 RNAs with higher F1-scores by

the latter. The median F1 score is 0.35 for RNAcmap (SPOT-RNA) and 0.29 for RNAcmap

(RNAfold). The difference is statistically significant with p-value =0.037 for 18 RNAs with

Neff/L >1 (paired t-test).

To further understand the source of the performance difference, Figure 5 also shows

RNAs in different colours depending on whether Neff obtained from RNAcmap (SPOT-RNA)

is higher or lower than that from RNAcmap (RNAfold). For many cases, the performance of

RNAcmap is better for higher Neff/L, regardless if SPOT-RNA or RNAfold is employed.

This suggests that it is possible to make a simple meta predictor RNAcmap

(SPOT-RNA/RNAfold) depending on whether RNAcmap (SPOT-RNA) or RNAcmap

(RNAfold) yields a higher Neff/L. This meta server would produce a median F1-score of 0.37

for the combined test set, compared to 0.35 by RNAcmap (SPOT-RNA) and 0.29 by

RNAcmap (RNAfold). The difference is slightly better but not statistically significant with

p-value <0.1 from RNAcmap (SPOT-RNA) but is significantly better with p-value <0.004

from RNAcmap (RNAfold). This meta server can achieve 14 of 18 RNA sequences (78%)

with accurate predictions (F1-score>0.5) in the combined test set using RNAcmap

alignment, compared to 10 by RNAcmap (RNAfold) or 13 by RNAcmap (SPOT-RNA). It

should be noted that for 21 Rfam sequences in this combined set, the performance difference

between contact maps from RNAcmap (SPOT-RNA) and those from Rfam-supplied

alignments are statistically insignificant (p-value=0.28). The difference between contact

maps from Rfam-supplied alignments and those from RNAcmap (RNAfold) is still significant

(p-value=0.018) as in the full Rfam set.

One interesting question is how the base pairs obtained from evolutionary coupling

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.08.242636doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.08.242636
http://creativecommons.org/licenses/by-nc-nd/4.0/


RNACMAP 13

differ from those directly predicted by secondary structure predictors. Figure 6A shows the

results for 18 RNAs in the combined test set with Neff/L>1 as we considered that the

evolutionary information is not reliable for Neff/L<1 as shown in Figure 4. We evaluated the

performance on the base-pair level and on the stem-level. On the base-pair level, we

examined different types of base pairs including canonical base pairs in helical regions, in

nonhelical regions (unstacked, isolated single base pairs), noncanonical base pairs, and nested

base pairs. RNAfold (or SPOT-RNA) can correctly predict more canonical base pairs in a

helical region but less in nonhelical regions than evolutionary coupling by using the

corresponding predicted secondary structure for search and alignment (i.e. RNAcmap

(RNAfold) or RNAcmap (SPOT-RNA)). On the other hand, RNAcmap (RNAfold)

significantly improves over RNAfold in predicting non-canonical base pairs and base pairs in

pseudoknots, whereas SPOT-RNA is slightly better in predicting non-canonical base pairs

and much better in predicting base pairs in pseudoknots than RNAcmap (SPOT-RNA). This

is because RNAfold was not built for predicting pseudoknots or noncanonical base pairs

whereas SPOT-RNA, a deep learning technique, was trained for predicting any base pairs

including pseudoknots and noncanonical base pairs. Moreover, pseudoknot pairs are not

employed by Infernal for building covariance models. What is more revealing is the

evaluation at the stem level (Figure 6 last columns): RNAcmap (SPOT-RNA) reaches a

consistently higher precision and sensitivity than SPOT-RNA (or RNAfold).

Discussion

In this paper, we have established a fully automatic server RNAcmap that can predict

contact maps directly from any given RNA sequences by homology search and evolutionary

coupling analysis. The performance of RNAcmap (SPOT-RNA) or RNAcmap

(SPOT-RNA/RNAfold) is comparable to that from manually curated Rfam sequences. More

importantly, the performance is robust for those sequences not belonging to Rfam families.

Thus, RNAcmap is expected to be useful to generate structural restraints for RNA secondary
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and tertiary structure prediction, as demonstrated previously(14–17).

It is found that the performance of RNAcmap is less dependent on the tools for

evolutionary coupling analysis. The difference between GREMLIN, mfDCA_apc and plmc is

small (Figure 1). This result is consistent with an independent study (23). However, the

performance of RNAcmap is more strongly dependent on the secondary structure predictor

(Figure 5). SPOT-RNA, that has more accurate secondary structure prediction, improves

over RNA-fold in generating alignments that yielded improved contact map prediction. In

particular, more stem regions were captured by using RNAcmap (SPOT-RNA) (Figure 6B),

indicating more accurate topological connections in base pairing patterns. A simple meta

predictor RNAcmap (SPOT-RNA/RNAfold) was established by using the secondary

structure predictor that will yield a higher number of effective homologous sequences (Neff).

This meta predictor further improves over RNAcmap (RNAfold). It is not entirely surprising

as RNAfold (a folding-based algorithm) and SPOT-RNA (a deep-learning based method) are

likely complementary to each other.

Contact map results for RNAs are different from those of proteins. For homologous

sequence alignment, our results showed that sequence-only similarity search (BLAST-N)

missed many homologous sequences with low sequence identity, resulting in poor prediction

in the downstream evolutionary coupling analysis. Using a predicted secondary structure in

the RNAcmap greatly expanded the coverage of homologous sequences, resulting in a much

more accurate prediction. This is different in the case of protein homologous search, where

sequence-only similarity is sufficient to capture most homologous sequences(37). Moreover,

the contact maps for RNAs are dominated by the hydrogen-bonded base pairs. The accuracy

for predicting distance-based tertiary contacts are only marginally better than random

(Figure 3). This result is consistent with previous studies (15, 23).

However, not all base pairs are of equal importance when inferring the RNA structure.

As showing in the comparison between RNAcmap and secondary structure predictors
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(SPOT-RNA(27), RNAfold(26)), RNAcmap-predicted base pairs are more enriched with

isolated, pseudoknotted and non-canonical base pairs, which bring richer information for the

overall topology of the RNA. Even for helical stem regions, RNAcmap predicts more stems

than both SPOT-RNA and RNAfold, although the average number of predicted canonical

base pairs within a stem is less than that of secondary-structure predictors. This is because

evolutionary coupling can only capture the strongest signals that show marked difference in

structural and functional stabilities between deleterious single and rescuing double

mutations. In other words, the results from evolutionary coupling analysis offer a topology

frame that can be further improved by a post processing method. Indeed, Zhe et al showed

that a simple Monte-Carlo simulated annealing can recover nearly all base pairs of two

ribozymes using pairing probabilities from mutational coupling analysis as a part of the

energy function for folding secondary structure (14). A post processing model for RNAcmap

is working in progress.

Availability

RNAcmap is available as a webserver (https://sparks-lab.org/server/rnacmap/) and a

standalone application (https://github.com/tcgriffith/RNAcmap)
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Figure 1 . Boxplot of F1-score (A), Precision (B), and Sensitivity (C) of predicted base

pairs by RNAcmap (RNAfold) based on three evolutionary coupling methods GREMLIN,

mfDCA_apc and plmc, respectively, for 43 RNAs in the Rfam set.The distribution is shown

in terms of median, 25th and 75th percentile with outlier shown by dots.
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Figure 2 . Boxplot of F1-score (A), Precision (B), and Sensitivity (C) by Rfam-supplied

alignment in comparison to RNAcmap (RNAfold) and BLAST-N for 43 RNAs in the Rfam

set. The distribution is shown in terms of median, 25th and 75th percentile with outlier

shown by dots. All employed GREMLIN for base-pair prediction
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Figure 3 . As in Figure 2 but for distance-based tertiary contact prediction
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Figure 4 . F1-score of base-pair prediction as a function of alignment effective size normalized

by length (Neff/L). GREMLIN was used for evolutionary coupling analysis using top L/4

pair predictions by Rfam-supplied alignment (filled red circle) and RNAcmap (RNAfold, red

circle) for the Rfam set, and RNAcmap (RNAfold, blue ) for the non-Rfam set.
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Figure 6 . F1-score (A), Precision (B) and Sensitivity (C) of predicted base pairs reported

according canonical, isolated canonical, noncanonical, pseudoknot base pairs and stems. The

metrics are evaluated on 18 RNAs with “deep” RNAcmap alignment (Neff/L>1).
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