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Abstract 
 
Alternative splicing shapes the phenotype of cells in development and disease. Long-
read RNA-sequencing recovers full-length transcripts but has limited throughput at the 
single-cell level. Here we developed single-cell full-length transcript sequencing by 
sampling (FLT-seq), together with the computational pipeline FLAMES to overcome 
these issues and perform isoform discovery and quantification, splicing analysis and 
mutation detection in single cells. With FLT-seq and FLAMES, we performed the first 
comprehensive characterization of the full-length isoform landscape in single cells of 
different types and species and identified thousands of unannotated isoforms. We 
found conserved functional modules that were enriched for alternative transcript usage 
in different cell populations, including ribosome biogenesis and mRNA splicing. 
Analysis at the transcript-level allowed data integration with scATAC-seq on individual 
promoters, improved correlation with protein expression data and linked mutations 
known to confer drug resistance to transcriptome heterogeneity. Our methods reveal 
previously unseen isoform complexity and provide a better framework for multi-omics 
data integration. 
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Main 
 
Single-cell RNA-sequencing (scRNA-seq) is a widely adopted method for profiling 
transcriptomic heterogeneity in health and disease1. However, assessing transcript-
level changes between cell types using current scRNA-seq protocols is challenging 
due to their reliance on short-read sequencing. Previous studies using plate-based 
methods2,3 have focused on individual alternative splicing events such as exon 
skipping, due to the fundamental limitation of short-read sequencing in linking distal 
splicing outcomes belonging to the same transcript. The Smartseq3 protocol4 can 
achieve full-length transcript coverage but is still unable to assemble the complete 
transcript sequence and is heavily reliant on the reference annotation. Droplet-based 
methods5 such as 10x only sequence the 3’ or 5’ end of transcripts which largely 
precludes isoform identification. Long-read sequencing can overcome this limitation 
and generate full-length transcript information in single cells, as illustrated in several 
recent studies6–9. However, the throughput of current long-read sequencing platforms 
is still not comparable to short-read platforms and the per-base accuracy is also lower, 
which together create many issues. Limited sequencing throughput introduces a trade-
off between the per-cell sequencing depth and the number of cells or genes processed. 
Protocols such as ScISOr-Seq6 perform shallow sequencing per cell while RAGE-Seq7 
focuses on specific transcripts rather than the whole transcriptome.  On top of the 
current protocol limitations, another pressing issue is the lack of data analysis 
pipelines for long-read transcriptome data, especially for single cells. Methods such 
as FLAIR10 and TALON11 have been developed for isoform annotation and 
quantification but have not been benchmarked and lack the ability to perform 
quantification at the single-cell level. Therefore, we need both new protocols and 
computational pipelines to overcome these limitations. 
 
To this end, we developed FLT-seq and FLAMES to perform single-cell isoform 
sequencing and data analysis. Adapted from the popular 10x Chromium platform, 
FLT-seq is a cost-effective approach to discover and quantify isoforms in single cells 
by integrating data from short- and long-read sequencing technologies. By 
subsampling single cells from a full 10x run and applying nanopore long-read 
sequencing, FLT-seq can achieve comparable sequencing depth per cell to that 
obtained from short-read platforms. For data analysis, we developed a computational 
framework to perform single-cell full-length analysis of mutations and splicing 
(FLAMES), which includes cell barcode, UMI assignment from nanopore reads and 
semi-supervised isoform discovery and quantification. We applied FLT-seq and 
FLAMES to human and mouse samples containing different cell types and highlight 
shared splicing patterns in human cancer cells and mouse quiescent muscle stem 
cells. Differential transcript usage analysis pinpointed common functional modules and 
genes across samples. We also demonstrate that FLT-seq is a promising tool for 
detecting coding variants of clinical relevance. Taken together, our new protocol and 
data analysis pipeline enable comprehensive characterization of the full-length 
isoforms present in single cells that are currently missed by short-read sequencing 
datasets. 
 
High-throughput single-cell full-length transcriptome sequencing with FLT-seq 
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FLT-seq is based on the Chromium scRNA-seq platform (10x Genomics), with 
optimizations to better amplify the full-length cDNA. Since the throughput of long-read 
platforms is still limited compared to Illumina sequencing platforms, we developed a 
strategy to subsample 10-20% of the 10x Chromium generated Gel Bead-in-
Emulsions (GEMs) after reverse transcription (Figure 1A). This is equivalent to 
sampling 10-20% of the cells as the cDNA of each cell is still within the GEMs. After 
subsampling, the GEMs are pooled separately for library preparation. Part of the 
amplified cDNA from the 10-20% subsample is used for Oxford Nanopore 
Technologies long-read library preparation and sequencing on a PromethION. The 
remainder of the cDNA from the 10-20% sample together with the GEMs from the 80-
90% sample are used for regular 10x library preparation and Illumina sequencing in 
parallel. In the end, long-read data from the 10-20% subsample of cells and Illumina 
short-read data for all cells are generated by this protocol. 
 
We demonstrate FLT-seq by profiling 16,660 cells from diverse biological systems, 
2,737 of which were sequenced by both long-read and short-read technologies (Figure 
1A, Table S1). Firstly, we used our previously published scmixology design12, which 
involved an equal mixture of cells from five cell lines (H2228, H838, H1975, HCC827, 
A549). Two biological replicates were profiled (scmixology1 and scmixology2) with 
FLT-seq together with 10x scATAC-seq for the second replicate. In addition to the cell-
line mixtures, we sequenced freshly isolated quiescent and activated muscle stem 
cells (MuSCs) from mouse. Lastly, we applied FLT-seq to a cryogenically preserved 
peripheral blood mononuclear cell (PBMC) sample from a patient (CLL2) whose 
chronic lymphocytic leukemia (CLL) had progressed on venetoclax treatment after a 
durable response. The sample was prepared together with the 10x CITE-seq assay 
with 17 antibody markers. This demonstrated the broad utility of FLT-seq, which is 
compatible with different 10x transcriptomic assays and can be applied to both fresh 
and frozen samples. The Uniform Manifold Approximation and Projection (UMAP) 
visualization presented the cell populations as expected (Figure S1) and revealed no 
obvious bias in the sampling process of FLT-seq (Figure 1B). Collectively, we 
generated 230 million long reads across all samples, together with scATAC-seq and 
CITE-seq data for the scmixology2 and CLL2 samples respectively. 
 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.10.243543doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.243543
http://creativecommons.org/licenses/by-nd/4.0/


   
 

   
 

 
Figure 1. Overview of experimental design, FLT-seq and FLAMES methods and 
basic summary statistics. 
(A) Summary of the study design, with an overview of the FLT-seq protocol and FLAMES data 
processing pipeline. 
(B) UMAP visualization of cells in each sample, cells colored in red are sampled for long-read 
sequencing. scmixology1 and scmixology2 were integrated and shown together in one plot. All UMAP 
visualizations are based on short-read data 
(C) The number of nanopore reads generated from each sample, and the percentage of reads that were 
assigned a cell barcode. 
(D) Distribution of UMI counts per cell for Illumina and nanopore data in each sample. 
(E) Correlations between gene UMI counts generated from nanopore long-read and Illumina short-read 
data. 
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(F) Density scatter plot shows the relationship between transcript-level counts and scATAC-seq read 
counts around the TSS regions. The horizontal orange line shows the threshold calculated that 
separates open chromatin from the background. The percentage shows the transcripts that have their 
TSSs in open chromatin regions. 
 
Single-cell isoform detection and quantification with FLAMES 
 
We developed a flexible computational framework called FLAMES (Full-Length 
Analysis of Mutations and Splicing in long-read data) to detect and quantify isoforms 
for both single-cell and bulk long-read data (Figure 1A and Methods). Input to FLAMES 
are fastq files generated from the long-read platform. Using the cell barcode 
annotation obtained from short-read data as the reference, it identifies and trims cell 
barcodes/UMI sequences from the long reads. After barcode assignment, all reads 
were aligned to the relevant genome to obtain a draft read alignment. The draft 
alignment is then polished and grouped to generate a consensus transcript assembly. 
All reads are aligned again using the transcript assembly as the reference and 
quantified. 
 
Next, we benchmarked FLAMES on a bulk SIRV spike-in dataset13 for which the 
isoform structure and abundances are known a priori. We compared our new method 
to FLAIR, TALON and StringTie214 which are designed for bulk long-read isoform 
detection and quantification. Our results clearly show that FLAMES outperforms other 
tools both in terms of the isoform detection (Figure S2A) and quantification (Figure 
S2B). It is notable that TALON and FLAIR still have many false positive transcripts 
after filtering by abundance (82% and 78% respectively) compared to FLAMES (3%), 
highlighting the importance of choosing an appropriate method. 
 
After validating the method, we used FLAMES to preprocess and analyze the four 
datasets generated. 40-60% of the long reads could be assigned to an expected cell 
barcode and were kept for further analysis (Figure 1C). The transcript coverage of 
reads realigned to assembled transcripts showed that the percentages of full-length 
reads decreased for longer transcripts (Figure S3), which also been shown in another 
study15 . Reads that are not full-length and cannot be uniquely assigned to transcripts 
are discarded during data processing. The average UMI count per cell ranges from 
10,000-60,000, varied by cell type, and was comparable to the short-read counts from 
the same cells (Figure 1D). Gene-level UMI counts between the matched nanopore 
and Illumina data were also found to be highly correlated (Figure 1E). The data 
processed by FLAMES showed that FLT-seq generated high quality long-read data 
that was comparable to the short-read Illumina data when analyzed at the gene-level. 
 
To validate the transcription start sites (TSSs) from the isoforms generated by 
FLAMES, we compared them to the FANTOM5 TSS peaks16 and found that around 
75% of the TSSs are within the FANTOM5 annotation (Figure S4A). For the 
scmixology data where scATAC-seq data from the same populations were also 
available, we aggregated scATAC-seq signals around the TSSs as an indicator of 
open promoters. The result showed scmixology1 and scmixology2 have similar open 
promoters and more than 85% of the TSSs are within active promoters, supporting the 
existence of these transcripts (Figure 1F). In contrast, when we process the 
scmixology data using TALON, FLAIR and StringTie2 the results were less optimal. 
The majority of transcripts generated by FLAIR and TALON did not match the 
reference annotations (Figure S4B) and FLAIR, TALON and StringTie2 had fewer 



   
 

   
 

TSSs overlapping the FANTOM5 annotations compared to FLAMES (Figure S4C). 
We found similar results when comparing the scATAC-seq signals around the TSS 
regions from transcripts generated by different methods (Figure S4D), with TALON 
and FLAIR having around 40% and 50% of their TSSs in open chromatin regions 
respectively. In summary, our comparisons yield similar results between a spike-in 
dataset and the scmixology dataset, with FLAMES outperforming StringTie2, FLAIR 
and TALON with the latter two generating many false transcripts. 
 
Characterization of isoforms reveals the distinct splicing landscapes of different cell populations 

 
Figure 2. Overview of the single-cell isoform-level analysis from FLAMES. 
(A) Classification of transcripts according to their splice sites when compared to reference annotations. 
(B) Summary of transcripts in different categories in (A) both in numbers (left) and in the percentage of 
UMI counts (right). 

Reference

Full splice match (FSM)

Incomplete splice match (ISM)

Novel, in catalog (NIC)

Novel, not in catalog (NNC)
0

25000

50000

75000

scmixology1

scmixology2
MuSC

CLL2
nu

m
be

r o
f t

ra
ns

cr
ip

ts

structural_category
full−splice_match

incomplete−splice_match

novel_in_catalog

novel_not_in_catalog

0.00

0.25

0.50

0.75

1.00

scmixology1

scmixology2
MuSC

CLL2

pe
rc

en
ta

ge
 o

f U
M

I c
ou

nt
s

structural_category
FSM 

ISM

NIC

NNC

0

2000

4000

6000

1 2 3 4 5 >5
number of isoforms per gene

Fr
eq

ue
nc

y

scmixology1 scmixology2 MuSC CLL2

0

20000

40000

60000

nu
m

be
r o

f t
ra

ns
cr

ip
ts

full−splice_match incomplete−splice_match novel_in_catalog novel_not_in_catalog

A B

C D

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9
rank of isoforms by abundanceis

of
or

m
 a

bu
nd

an
ce

 / 
ge

ne
 a

bu
nd

an
ce

E

F

Fu
ll 

sp
lic

e 
m

at
ch

CLL2 MuSC

N
ov

el
 n

ot
 in

 c
at

al
og

CLL cells

quiescent MuSC

Dim1

D
im

2

NNC

Dim1

D
im

2
NIC

Dim1

D
im

2

FSM

Dim1

D
im

2

ISM

relative 
proportions

higher

lower

60290

18986

12276
8727 8186

5183 3975

20000

40000

60000

scmixology1
scmixology2

CLL2

0250005000075000
Set Size

mutually_exclusive_exon

intron_retention

incomplete_splice_match

exon_inclusion_skip

alt_splice_site

complex_changes

0
100

0
200

0
300

0

experiment CLL2 MuSC scmixology2

Exon inclusion / skipping

Incomplete splice match

Intron retention

Mutually exclusive exons

Complex splicing changes

Alternative 5/3’ splice sites

0

2000

4000

6000

1 2 3 4 5 >5
number of isoforms per gene

Fr
eq

ue
nc

y

scmixology1 scmixology2 MuSC CLL2

Major isoform
Second major isoform

G



   
 

   
 

(C) UpSet plot showing overlap of transcripts in human datasets, where number of transcripts shared 
by different sets of samples are indicated in the top bar chart, colored by categories specified in (A). 
(D) UMAP visualization of CLL2 and MuSC dataset on the cells sampled for long-read sequencing. 
Colored by percentage of UMI counts of transcripts in FSM (top) and NNC (bottom) categories. CLL 
cells and quiescent MuSCs are annotated on the plot. 
(E) Bar plot of number of distinct transcripts expressed per gene. Genes with more than five distinct 
transcripts are merged. 
(F) Box plot showing the percentage of transcript abundance relative to gene abundance for genes 
express multiple transcripts. Transcripts are ranked by abundance, shown on the x-axis. 
(G) Summary of the type of alternative splicing between the two most abundant transcripts of each 
gene. The `Complex splicing changes’ category represents transcripts with more than one type of 
constitutive alternatively spliced event. 
 
We compared the transcripts generated by FLAMES to the reference annotation and 
classified them using the scheme introduced in SQANTI17 , including transcripts with 
all splice junctions matching to reference transcripts (full splice match, FSM) or 
partially matching to consecutive splice junctions for a reference transcript (incomplete 
splice match, ISM) and transcripts with novel splice junctions with new (Novel, not in 
catalog, NNC) or known (Novel, in catalog, NIC) donor and acceptor sites (Figure 2A). 
We observed that the number of transcripts detected varies between samples and was 
correlated with the sequencing throughput as shown in Figure 1C. While around half 
of the transcripts detected were novel, the majority of reads aligned to known 
transcripts with novel transcripts having lower abundance in general. In addition to the 
comparison with reference annotations, we also compared the transcripts generated 
from the three human samples to each other (Figure 2C) and found many transcripts 
unique to each sample (22%, 27% and 68% for scmixology1, scmixology2 and CLL2 
respectively). A majority of transcripts (~60%) were shared between biological 
replicates and among these 30% were novel, suggesting that many conserved 
alternative splicing events in these cell lines have not been annotated. 
 
Within samples we found consistent alterations in splicing patterns between cell 
populations (Figure 2D). CLL cells had higher proportions of novel transcripts, 
especially transcripts with novel splice junctions (NNC), compared to non-CLL cells 
from the same sample, including T cells, NK cells and monocytes. Similarly, quiescent 
muscle stem cells also had higher proportions of novel transcripts compared to 
activated stem cells. Analysis of intronic reads from RNA-seq data18 has demonstrated 
that intron retention, which would produce novel transcripts, is increased in quiescent 
mouse muscle stem cells and is essential for these cells to exit the quiescent state. 
This is consistent with our results and suggests that differences in splicing patterns 
between different cell populations may act as a regulatory mechanism. 
 
After comparing the transcripts identified against reference annotations, we sought to 
characterize isoforms within the same gene. Around 80% of genes can be expressed 
as multiple isoforms. The average number of isoforms expressed per gene ranges 
between 3 and 6 and varied between the different samples (Figure 2E). The 
distribution of isoform expression is skewed with only a few abundant transcripts 
dominantly expressed for most genes (Figure 2F). On average, the two most highly 
expressed isoforms account for 80% of the total counts (median 85%). Next, we 
categorized the types of alternative splicing between the two most highly expressed 
isoforms (Figure 2G). Alternative splicing has mostly been studied based on particular 
events such as exon skipping or alternative 5’ splice sites using short-read sequencing 
technology19. Here we found that around 30% of genes have more than one type of 



   
 

   
 

alternative splicing event between the top two isoforms. This means that the 2 most 
highly expressed isoforms differ by complex splicing changes involving multiple exons, 
which may not be accurately characterised by short reads because two isoforms could 
have a skipped exon near the 5’ end and a different splice site near the 3’ end. 
 
In addition to summarizing isoforms at the sample-level, we examined how splicing 
variants are captured at the single-cell level. Individual alternative splicing events in 
single cells might follow a unimodal binomial distribution and a cassette exon is 
skipped or included at the same probability for all cells. Or cells may not share the 
same parameter of the binomial distribution and create the bimodal splicing pattern, 
with some cell always skipping an exon while others always include it. The latter is 
supported by an early single cell study2. Recently by analyzing the splice junctions 
using short-read scRNA-seq data, splicing in homogeneous cell populations has been 
found to be largely unimodal20. Here we expanded the binomial model from 
considering single splice junctions to complete isoforms in order to estimate the 
isoform choice between the major isoform and other isoforms (see Methods). These 
results showed the percentage of cells with binary isoform choice is strongly related 
to the gene abundance and can be approximated by a unimodal binomial distribution 
(null distribution), which indicates the cell randomly chooses isoforms with a certain 
frequency (Figure S5A). We also noticed that the MuSC and CLL2 samples contained 
more genes with binary splicing patterns, especially for genes with low abundance. 
This could result from the difference in mRNA amounts where the cell lines are 
transcriptionally active, and the other samples have lower numbers of mRNA 
molecules per cells. Or it could be that the MuSC and CLL2 samples have 
heterogeneous populations with different splicing patterns. To further explore the 
effect of recovery on isoform identification and splicing analysis, we sampled reads 
from the scmixology dataset to retain 20-80% of the total reads for analysis. The 
number of transcripts detected decreased with lower sampling rate (Figure S5B), 
especially for novel transcripts, while binary splicing still showed a unimodal 
distribution (Figure S5C). This suggested that the reliability of isoform choice 
estimation may be influenced by multiple factors, including the transcriptional activity 
and heterogeneity of the cell identities. 
 
Common classes of genes with differential transcript usage across samples 
 
Following the analysis of isoform abundance, we investigated whether genes with 
multiple isoforms exhibited differential transcript usage (DTU) between the clusters or 
cell types shown in Figure S1. We focused on changes in the use of internal splice 
junctions, grouping transcripts with the same intron chain. To mitigate the high dropout 
rate in single-cell data, we aggregated the transcript counts into pseudo-bulk values 
per cluster and filtered out transcripts with low abundance. Next, we evaluated how 
sequencing level influenced the results of a DTU analysis using the same 
downsampling scheme used in the last section (see Methods). We observed that 
although as expected the number of genes with DTU decreases with decreasing 
sequencing depth per cell, 58% of the changes could still be detected with 20% of the 
reads (Figure S5). We then performed DTU analysis on all samples and identified 
between 500 and 1,000 genes with differential transcript usage (gDTU) in each sample 
(Figure 3A, Table S2). Nearly half of the gDTU (244 out of 573) are shared between 
scmixology1 and scmixology2. Besides this overlap, gDTU were largely unique for 
each sample (Figure S6A). The functional annotation clustering of these genes 



   
 

   
 

revealed shared pathways across different samples, especially pathways related to 
transcription and translation, such as mRNA splicing and ribosome biogenesis (Figure 
3B, Table S3). As an example, different gDTU related to mRNA splicing were found in 
different samples. PQBP1, which is involved in pre-mRNA splicing, is a gene with DTU 
in the scmixology samples (Figure S6B), while SRSF2 and SRSF3, which belong to a 
family that act both as general splicing factors and as regulators of alternative 
splicing21, exhibit DTU in the CLL2 sample (Figure S6C). 
 
Apart from the gDTU that are unique to each sample, we also found a few genes (18) 
that appeared in all samples (Figure S6A), including a ribosomal protein RPS24 that 
had the smallest P-value among different samples (Table S2). RPS24 is a highly 
conserved gene between mouse and human, with exon 5 and 6 alternatively spliced 
to generate different protein coding sequence (Figure 3C, 3D). Further analysis 
showed transcript usage of this gene is altered at multiple levels in different samples. 
Firstly, the major transcript of RPS24 was distinct between different samples. 
Transcripts without exon 5 and 6 were most abundant in the cell lines (scmixology1 
and scmixology2, Figure 3C), while the transcript with only exon 5 was highly 
expressed in the patient derived PBMC sample (CLL2, Figure 3C) and MuSC sample 
(Figure 3D). In addition to the major transcript, additional transcripts showed 
differential transcript usage in different cells within the same sample. The transcript 
with exon 5 and 6 was more frequently expressed in CLL cells while the transcript 
without exon 5 and 6 was preferentially expressed in non-CLL cells (Figure 3E). 
Besides these known transcripts, we also identified a new isoform in mouse (Rps24-
001) that was preferentially expressed in quiescent MuSCs (Figure 3F). Different 
RPS24 isoforms have tissue-specific expression22 and some have been linked to 
tumor progression23, however the functional differences between the encoded 
proteins remains unclear. In summary, we have highlighted the heterogeneity of 
expression of the RPS24 transcript that is missed in a typical gene-level analysis 
(Figure 3E, 3F). 
 



   
 

   
 

 
Figure 3. Summary of differential transcript usage results from FLAMES. 
(A) Summary of results from the statistical testing of DTU detected many significant genes per sample 
(adjusted P-value < 0.01).  
(B) Table of common functional categories among different samples from the functional enrichment 
analysis of gDTU. 



   
 

   
 

(C) Top 4 most abundant isoforms of RPS24 in human and heatmap of their expression at the single-
cell level in the scmixology1, scmixology2 and CLL2 samples. 
(D) Top 4 most abundant isoforms of RPS24 in mouse and heatmap of their expression at the single 
cell level in MuSCs. 
(E) UMAP of cells in CLL2, colored by RPS24 gene expression and transcript expression. Two 
transcripts with differential expression on different populations were selected. Transcript expression in 
each cell is colored by scaled relative expression to highlight the difference between different 
populations. 
(F) Similar to (E), UMAP of cells in MuSC sample, colored by RPS24 gene expression and transcript 
expression. 
(G) Top 4 most abundant isoforms of CD45 in CLL2 and UMAP visualizations of the cells colored by 
(from left to right) gene expression, transcript expression and corresponding protein expression. 
(H) Top 4 most abundant isoforms of CD82 in MuSC, with UMAP visualization of cells colored by 
expression of two isoforms that have differential expression between quiescent and activated MuSC. 
(I) scATAC-seq read coverage for PRDX1 with cells from each cell line aggregated and plotted together. 
UMAP plots showing isoform expression, with each cell colored by scaled transcript expression. 
 
Another category of gDTU of interest is cell-surface proteins. Genes encoding cell-
surface proteins produce alternative mRNA isoforms, usually by changing the 
combinations of consecutive exons corresponding to certain functional domains. 
Some of the isoforms have been characterized, such as CD45, where alternative 
splicing of exons 4 to 6 are expressed in different lymphocytes24. By analyzing the 
CLL2 data where the surface marker expression is available through CITE-seq, we 
detected multiple isoforms of CD45 (Figure 3G). We found similar expression patterns 
between the transcript and the protein it encodes, where the protein was quantified by 
counting antibody derived tags (ADT) from CITE-seq data. The result both validated 
the isoform quantification from the FLAMES pipeline and showed that transcript-level 
analysis can provide better correlation between mRNA and protein expression that 
cannot be achieved using gene-level quantification. We also observed other genes 
encoding important cell surface markers with DTU, such as CD82 (Figure 3H), CD47 
(Figure S6D) and CD44 (Figure S6E), with different combinations of consecutive 
exons. Notably, some of the novel transcripts in CD47 can be observed in different 
samples (Figure S6D), suggesting conserved alternative splicing patterns that are 
missing from the reference annotation. In sum, we observed previously overlooked 
isoform diversity of cell-surface proteins, which could introduce functional diversity and 
contribute to development and diseases25,26. 
 
Alternative promoters have been shown to regulate cancer-specific transcription27. 
Here we found transcripts with different TSSs expressed in different cancer cell lines. 
We have shown that open chromatin captured by scATAC-seq is correlated with the 
promoter region indicated by the TSS (Figure 1F). As an example, we found multiple 
isoforms of PRDX1, including a new isoform PRDX1-001 with a different TSS. The 
new isoform expressed in H838 and A549 contains a novel first exon that is not found 
in the other cell lines (Figure 3I). Additional open promoter regions are observed in the 
scATAC-seq data from H838 and A549 that coincide with the new exon (Figure 3I). 
This result suggests that FLT-seq can be integrated with scATAC-seq at the promoter 
level to further enhance the resolution of integration and reveal promoter 
heterogeneity that cannot be found via gene-level integration28. 
 



   
 

   
 

FLT-seq links coding sequence variation to transcriptome heterogeneity 

 
Figure 4. Summary of differential allele frequency analysis to detect coding 
mutations. 
(A) Summary of variation filtering and analysis pipeline implemented in FLAMES. Candidate variants 
are filtered based on allele frequency first, then based on per cell allele frequency to remove technical 
artefacts. The remaining variants are used for differential allele frequency analysis. 
(B) PCA on alternative allele matrix using the variants after filtering, colored by unsupervised clustering 
results using top PCs and annotated with cell lines. 
(C) Manhattan plot of P-values from a differential allele frequency analysis with Benjamini–Hochberg 
adjustment. Genes with significant variants are labelled. 
(D) UMAP visualization highlighting two CLL populations that have differential allele frequency for the 
significant variants. 
(E) UMAP visualization of cells colored by Gly101Val mutation status. 
 
Nanopore long-read sequencing allows full transcript coverage compared to 3’ or 5’-
end short-read sequencing, which provides us with a better chance of identifying 
coding variations. But the high error rate in sequencing presents an obstacle29. To 
overcome this challenge, we first exclude homopolymer regions since they have 
higher sequence error rates30,31. After excluding these regions, ~95% of regions have 
a reference allele frequency >90% (Figure S7A). The remaining single-nucleotide 
variants (SNVs) were filtered again using a statistical test in FLAMES to enrich for true 
positives and clonal mutations, based on the assumption that the occurrence of 
sequencing errors is independent of cell barcode and will occur randomly in all cells 
(Figure 4A and Methods). We tested our approach on the scmixology samples where 
the five cell lines carry distinct mutations. The principal-component analysis (PCA) on 
the filtered allele count matrix successfully recapitulated the expected population 
structure (Figure 4B). Louvain clustering on leading principal components generated 
similar results to the cell type assignment obtained from running Demuxlet32 on the 
short-read data (98.7% and 99.4% concordance for scmixology1 and scmixology2 
respectively), which indicated that we can successfully capture mutations in these 
different cell lines using long-read data. We then performed differential allele 
frequency analysis to find SNVs that were specific to each cell line. The results showed 
a high precision (80.1%) with the SNVs called from bulk RNA-seq data from individual 
cell lines. 
 



   
 

   
 

After we confirmed the approach using the cell lines, a similar analysis was performed 
on the CLL2 dataset to examine the relationship between transcriptome heterogeneity 
and sequence variations. We searched for SNVs that only existed in the cancer cells 
and had a differential allele frequency across different CLL transcriptional clusters. We 
found four significant mutations (adjusted P-value < 0.05, chi-square test, Benjamini–
Hochberg correction) associated with different CLL clusters (Figure 4C, 4D) and their 
existence was confirmed by bulk genomic sequencing (data not shown). By 
investigating the allele frequency of these mutations across clusters (Figure S7B), we 
identified two subclones, where mutations in the genes BCL2, RAD21 and PHEX are 
enriched in subclone1 and the mutation located in the gene B3GAT3 is enriched in 
subclone2 (Figure 4D). Although the analysis itself does not require genomic 
sequence data as a reference, it is important to validate the mutations detected since 
the changes in allele frequency may also come from allele-specific expression or RNA 
editing. The Gly101Val mutation has been confirmed to promote resistance to 
venetoclax treatment by reducing the affinity of BCL2 for venetoclax33, and patient 
CLL2 was known to carry ~25% Gly101Val mutations. Using FLT-seq, we showed that 
the mutation is not just subclonal, but also linked to specific transcriptional clusters. 
Taken together, FLT-seq provides unbiased high-throughput linking of single-cell 
mutations and transcriptomic heterogeneity. 
 

Discussion 
 
Transcriptional activity is typically summarized at the gene-level due to the limitations 
of short-read technology, especially in scRNA-seq studies. The recent development 
of long-read sequencing technology promises sequencing of the full-length transcript, 
but its application to single cells has been slowed by a lack of protocols and data 
analysis pipelines. By optimizing the 10x Genomics scRNA-seq protocols we have 
developed the scalable and affordable FLT-seq approach by cell sampling to achieve 
per-cell sequencing depths similar to short reads at a much lower cost than other 
methods6. It combines the advantages of throughput and accuracy from short-read 
sequencing to identify cell barcodes and perform clustering with the strengths of long-
read sequencing that enables isoform discovery and quantification, the results of 
which are combined in an integrated analysis. FLT-seq is compatible with a variety of 
10x transcriptomic assays and could be potentially applied to any single-cell 
transcriptomic protocol with cell barcoding, including Visium spatial transcriptomics. It 
could also be combined with other single-cell long-read sequencing approaches such 
as R2C234 or other sequencing platforms including PacBio Sequel II. As the 
throughput and accuracy of long-read sequencing platforms increases, it may be 
possible to skip FLT-seq's sampling step and apply long-read sequencing only rather 
than the current hybrid approach to achieve similar aims in future studies. 
 
To analyze noisy long-read data, we developed the FLAMES pipeline that can detect 
and quantify novel and known isoforms in single-cell and bulk samples. It can also find 
cell-type-specific isoforms and mutations through comparative analysis. We showed 
that FLAMES outperforms other methods both on a synthetic spike-in dataset35 and 
experimental datasets. Our comparison indicated that certain methods generate many 
spurious transcripts, highlighting the importance of designing appropriate methods to 
detect novel isoforms. 
 



   
 

   
 

With FLT-seq and FLAMES, we performed the first comprehensive characterization of 
full-length isoforms at the single-cell level across species and cell types. We detected 
thousands of novel transcripts expressed at low levels, most of which were unique to 
each sample. Novel transcripts also showed distinct enrichment patterns at the single-
cell level where CLL cells and quiescent muscle stem cells often have more novel 
transcripts. We frequently found more than one differentially spliced junction between 
isoforms for many genes, suggesting the inadequacy of studying individual splicing 
junctions via short reads. Furthermore, we found that single cells often express more 
than one mRNA isoform per gene and the isoform choice is largely random, 
challenging the argument that individual cells have binary outcomes in splicing36. In 
addition to the overall stochasticity of isoform choice, we observed cell type specific 
isoform usage for genes that are enriched for common functions such as mRNA 
splicing and ribosome biogenesis. The expression of ribosomal and spliceosome 
proteins has low correlation with their gene-level expression37, indicating some protein 
expression levels might be regulated by alternative splicing. Genes encoding cell-
surface proteins such as CD44 and CD47 often have cell-type-specific splice variants, 
some of which have not been previously annotated, and may result in different 
functions36. The examples we show indicate that identification of cell-type-specific 
isoforms may have broad applications in many fields such as immunotherapy, where 
cell surface proteins play an important role. 
 
Compared to short-read scRNA-seq, FLT-seq provides better linkage between 
proteome and genome as it can resolve the full-length transcript. Transcript 
abundance can be aligned directly to single-cell protein measurements, which is 
particularly helpful for proteins with multiple isoforms such as CD45. We also showed 
that FLT-seq facilitates integration with scATAC-seq data, such that open chromatin 
signals are not summarized at the gene-level but at the exact transcription start site. 
Full transcript coverage unlocks the potential to detect mutations and allelic 
expression for specific isoforms. Through unsupervised analysis, we not only identified 
coding mutations that cannot be easily detected by 3’ or 5’-end short-read sequencing, 
but we could also associate mutations to different transcriptional signatures. This can 
improve our understanding of the correlation between the single-cell transcriptome 
and genome in cancer. 
 
FLT-seq and FLAMES provide new avenues for characterizing single-cell 
transcriptomic heterogeneity at the transcript-level and unveils new questions and 
challenges. Benchmarking studies that compare the performance of emerging long-
read sequencing protocols and computational methods are needed to help our 
understanding of the strengths and weaknesses of different approaches. Many 
unanswered questions about transcript expression and alternative splicing in single 
cells also remain. For example, do the majority of novel transcripts simply reflect 
stochastic noise in the splicing machinery38, or are they indicative of a genuine 
increase in protein diversity? Our methods and analysis provide a starting point for 
addressing these questions to accelerate isoform-level studies in single cells. 
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Methods 
 
Human Cell Lines 
The cell culture and sample preparation of the scmixology cell lines are as previously 
described. Briefly the five cell lines (H2228, H838, H1975, HCC837, A549) were 
retrieved from the ATCC (https://www.atcc.org/) and cultured in Roswell Park 
Memorial Institute (RPMI) 1640 medium with 10% fetal calf serum and 1% penicillin-
streptomycin. The cells were grown independently at 37°C with 5% carbon dioxide 
until near 100% confluency. The cells were then counted and mixed in equal numbers. 
The mix was used for FLT-seq library preparation. The first batch was derived from 
the same sample featured in a previous study (scmixology1). The cell lines were 
cultured again using the same protocol to create a second batch (scmixology2) 
processed by both FLT-seq and scATAC-seq. 
 
Mouse Muscle Stem Cells 
Animals 



   
 

   
 

All procedures were approved by the Animal Ethics Committee of The University of 
Melbourne and conformed to the Australian code of practice for the care and use of 
animals for scientific purposes as stipulated by the National Health and Medical 
Research Council of Australia. Mice were housed in the Biological Research Facility 
at The University of Melbourne under a 12h light-dark cycle, with drinking water and 
standard chow provided ad libitum. Pax7creERT2R26-eYFPfl/fl mice were generated from 
Pax7creERT2 and R26-eYFPfl/fl founder mice strains39,40 both on a C57BL6 background. 
 
Muscle Injury and Stem Cell Isolation 
At 3 months of age, Pax7creERT2; R26RYFP mice received daily 100µL tamoxifen 
(20mg/ml in corn oil) for five days to label MuSCs with YFP. Two weeks after the final 
injection, animals were killed and hindlimb muscles excised and dissociated as 
described previously41. Cells were sorted on a FACS Aria III (BD Biosciences) with 
gating based on YFP. 
To obtain activated MuSCs, mice were anaesthetized with isoflurane and muscles 
were injured with 1.2% barium chloride (Sigma). Lower hindlimbs received 40µL 
barium chloride via an intramuscular injection. Activated cells were isolated 72 hrs 
post injury while quiescent MuSCs were isolated from uninjured muscles as described 
previously. 
 
Human CLL Sample 
After providing written informed consent, the patient sample was collected after 
progression on venetoclax treatment42 (Human Research Ethics Committee approvals: 
Melbourne Health 2011.044, 2016.305; Peter MacCallum Cancer Centre 11/18; 
Walter and Eliza Hall Institute 05/04). Blood was collected in EDTA tubes and 
processed within 2 hours. Peripheral blood mononuclear cells (PBMCs) were isolated 
using Ficoll-Paque Plus (#17144002, lot:10258101, GE Healthcare) density gradient 
centrifugation and cells were cryopreserved. PBMCs were thawed, rested for 2 hours, 
and incubated with Fc Receptor blocking solution (Human TruStain FcX, Biolegend) 
for 10 minutes prior to staining with TotalSeq C antibodies (Biolegend) at 4 degrees 
for 30 min. PBMCs were washed three times and stained with propidium iodide (PI, 
Sigma). Viable cells (PI negative) were flow sorted using the FACSAria (BD) and 
diluted to 1000 cells/µL.    
 
FLT-seq 
Single-cell capture and cDNA amplification for mouse skeletal muscle stem cell and 
cell lines was performed using 10x Genomics Chromium Single cell 3’ Library and Gel 
Bead (v2 for MuSC and scmixology1 and v3 for scmixology2) and for CLL sample 
using Chromium Single Cell 5′ Library & Gel Bead Kit (v1) according to manufacturer 
instructions. Full-length cDNA generation for FLT-seq was carried out as described in 
detail at protocols.io43. Briefly we followed the standard 10x genomic user guide, with 
RT time increased to 2 hours to increase reverse transcription of longer transcripts. 
After GEM-RT we transferred 10-20% volumes of GEMs into a new tube and 
performed subsequent steps in parallel for both 10-20% and 80-90% subsample 
where each subsample is treated as a separate sample according to the 10x user 
guide. Volume of the Cleanup Mix was reduced accordingly. cDNA generation for 
hybrid capture input was similar to FLT-seq except that cDNA from the remaining 
sample (i.e. 80-90%, excluding the 10-20% subsample) was used for amplification 



   
 

   
 

using primers 10x Partial R1: CTACACGACGCTCTTCCGATCT and T5’ PCR Primer 
IIA: AAGCAGTGGTATCAACGCAGAG in place of FPSfilA and RPSfilBr. 
 
Standard single cell Illumina libraries were prepared according to 10x protocol. 
Illumina HiSeq2500 was used for sequencing scmixology1 (2x125 cycles) and MuSC 
(2x150 cycles). Other libraries were sequenced on NextSeq 500 (1x 28 / 1x91 cycles 
plus 8 base index cycle) using the v2 150 cycle High Output kit (Illumina) as per the 
manufacturer’s instructions. The base calling and quality scoring were determined 
using Real-Time Analysis on board software v2.4.6, while the FASTQ file generation 
and de-multiplexing utilised bcl2fastq conversion software v2.15.0.4. Full-length cDNA 
libraries from subsamples or capture cDNA were prepared using Oxford Nanopore 
Technologies SQK-LSK109 Ligation Sequencing Kit with the following modifications: 
incubation times for end-preparation and A-tailing were lengthened to 15 minutes, and 
all washes were performed with 1.8X Ampure beads to conserve smaller fragments. 
SFB was used for the final wash of the libraries. 50 fmol per library were sequenced 
on PromethION FLO-PRO002 R9.4.1 flow cells according to manufacturer protocols.  
 
Single cell ATAC-seq (scATAC-seq) 
The cells from five cell lines were counted and mixed equally. Cell nuclei were isolated 
and washed according to the Nuclei Isolation for Single Cell ATAC Sequencing (10x 
Genomics) protocol, with 1 million cells to start with (0.2 million from each cell line) 
and 3 minutes lysis on 100µL buffer. Nuclei were then used to generate scATAC-seq 
libraries according to the Chromium Single Cell ATAC Reagent Kits User Guide (10x 
Genomics; CG000168 Rev B) Sequencing libraries were loaded on an Illumina 
sequencer with 2 × 75 paired-end kits using the following read length: 72 bp read 1N, 
8 bp i7 index, 16 bp i5 index and 72 bp read 2N. In the sequencing reaction, reads 1N 
and 2N contain the DNA insert, while the index reads, i5 and i7, capture the cell 
barcodes and sample indices, respectively. Cells were sequenced on Illumina 
HiSeq2500 with near around 300 million read pairs in total. 
 
scATAC-seq data analysis 
scATAC-seq sequencing data was demultiplexed, preprocessed and aligned with the 
default settings of the single cell ATAC Cell Ranger platform (1.0). The reference used 
for alignment through the Cell Ranger platform was hg38. Next, Picard tools 
(http://broadinstitute.github.io/picard/) was used to remove the PCR duplicates. 
Samtools44 (1.7) was used to extract read pairs that have mapping quality (MAPQ)>30, 
were nonmitochondrial and not chimerically mapped. bedtools45 (v.2.26.0) was used 
to identify reads in mate pairs (i.e. fragments) and adjust the start of the paired reads 
to account for the 9bp region that the transposase enzyme occupies during 
transposition (i.e. +4 bp for + strand and -5 bp for - strand). Next, Demuxlet was used 
to identify the cell lines of each cell barcode using the genotypic information acquired 
in our previous benchmarking studies12,46.  
 
The count matrix was generated for each barcode separated BAM file using the 
featureCounts function in the Rsubread package47 (1.32.4) in the R environment (v. 
3.5.1). The annotation features were promoter regions (i.e. TSS - 500 bp to TSS + 200 
bp) corresponding to isoforms identified by the various long-read analysis methods 
(i.e. FLAMES, TALON, FLAIR, StringTie2). To determine the background of scATAC-
seq and identify the open promoter, we performed analysis on randomized TSS, where 



   
 

   
 

a random position in each gene body was used as the TSS. The 90% percentile of the 
fragment count around random TSS (7.64) was used as the threshold to determine 
the open promoters and is annotated in Figures 1F and S4D. 
 
For Figure 3I, scATAC-seq coverage was calculated from the aligned BAM files using 
compute_coverage in the plyranges package48 (1.7.14) and visualised using 
view_coverage in the superintronic49 package (0.99.4). 
 
Illumina short-read data analysis 
The fastq data were processed by scPipe to generate a gene count matrix for all 
samples except CLL2, which was processed by Cell Ranger (3.0.0) to generate the 
antibody and gene count matrix. Each gene count matrix was used as input to the 
standard Seurat pipeline with normalization performed by SCTransform50. Clustering 
was performed for the MuSC and CLL2 samples with resolution equal to 0.6. The cell 
line annotation for scmixology was acquired using Demuxlet with the same parameters 
as our previous benchmark study. Integration of the scmixology1 and scmixology2 
datasets was performed using Seurat. The clustering results and cell line annotation 
is shown in Figure S1. 
 
Nanopore sequencing and data preprocessing  
We performed basecalling on the raw fast5 data using Guppy (1.8.1 for MuSC sample 
and 3.1.5 for scmixology and CLL2) from Oxford Nanopore Technologies. For each 
read, we locate the barcode sequence by searching for the flanking sequence before 
the cell barcode. The cell barcodes identified from the short-read data provide a 
reference to search for and trim in the long reads. An edit distance of up to 2 is allowed 
during cell barcode matching. Reads that failed to match any cell barcode were 
discarded. Sequences following the cell barcode were used as UMIs and trimmed. For 
the 3’ end protocol, the polyA tail after the UMI sequence was trimmed and sequences 
after the polyA tail were kept. The cell barcode and UMI sequence was integrated into 
the fastq read header as per scPipe51. The processed fastq was used as input for 
genome alignment and further analysis. 
 
Detection and quantification of isoforms 
Reads were aligned to the genome by minimap252 (-ax splice --junc-bonus 1 -k14 --
secondary=no --junc-bed) using Gencode reference (human hg38.v33, mouse 
mm10.vM24). FLAMES summarizes the alignment for each read by grouping reads 
with similar splice junctions (<5bp) to get a raw isoform annotation. The raw isoform 
annotation is compared against the reference annotation to correct potential splice site 
and transcript start/end errors. Transcripts that have similar splice junctions (<5bp) 
and transcript start/end (<100bp) to the reference transcript were merged with the 
reference. This process will also collapse isoforms that are likely to be truncated 
transcripts. Next, the sequence of each polished transcript was extracted and used as 
the updated reference. The reads were realigned to this reference by minimap2. The 
transcript coverage of individual reads is summarized in Figure S3. We noticed that 
the scmixology2 data contained more reads that were not full-length, which might 
relate to the difference in sample preparation time or the v2 and v3 10x chemistry. The 
transcripts with fewer than 5 full-length aligned reads (>95% coverage) were discarded. 
The reads were assigned to transcripts based on both alignment score, fractions of 
reads aligned and transcript coverage. Reads that cannot be uniquely assigned to 
transcripts or had low transcript coverage (<60%) were discarded. The UMI transcript 



   
 

   
 

count matrix was generated by collapsing the reads with the same UMI in a similar 
way to what is done for short-read scRNA-seq data, but allowing for an edit distance 
of up to 2. Downsampling was performed by randomly selecting reads in bam files that 
aligned to the genome according to the sampling ratio. The counts of transcripts from 
the same gene were aggerated to generate the gene-level UMI count and compared 
to the gene count generated from the short-read data in Figure 1E. FLAMES is written 
in python and uses other packages, including pysam44 (0.15.2), numpy53 (1.14.2) and 
editdistance (0.5.3) (pypi.org/project/editdistance). 
 
Comparison of FLAMES to other tools 
Direct RNA sequencing data from SIRV spike-in E2 mix which contains 69 synthetic 
isoform transcripts (from 7 SIRV genes) was downloaded from NCBI (SRX3204589). 
Alignment was performed using minimap2 (2.17), with “-ax splice --splice-flank=no -
k14 --secondary=no” and “--junc-bed”. For TALON, the mapped reads were processed 
using TranscriptClean (1.02) to correct for mismatches and microindels. Following 
correction, long reads were collapsed into a transcript isoform quantification table in 
TALON (4.1), using the SIRV annotation. We ran the FLAIR pipeline (1.4) using default 
parameters with the SIRV annotation supplied to aid isoform detection. We ran 
StringTie2 (2.0.4) with “-L -G -c 10” and uses the SIRV annotation. For FLAMES, we 
used the default parameters except “strand_specific:1” and we filtered transcripts with 
at least 10 reads. For comparison, transcripts generated by TALON and FLAIR were 
also filtered to have a read count of at least 10. The scmixology1 data was processed 
in a similar way to the SIRV data. Gencode human hg38.v33 was used as the gene 
reference annotation for each method. TALON was run in parallel on each 
chromosome to reduce compute time and the results were aggregated later. 
 
Isoform classification and splicing analysis 
SQANTI2 (4.1, https://github.com/Magdoll/SQANTI2) was used to compare the 
transcripts identified to the reference with parameter “-g --cage_peak --coverage --
force_id_ignore”. We used the FANTOM5 cage peak dataset on hg19 and mm9 and 
lifted these to the hg38 and mm10 reference using UCSC’s liftOver tool 
(https://genome.ucsc.edu/cgi-bin/hgLiftOver). The isoform classification was extracted 
from the SQANTI2 result and plotted in Figure 2B. The gffcompare54 (0.11.2) program 
was used with parameter “-T -R -M” to compare isoform annotations generated from 
different samples (Figure 2B). It was also used to compare isoform annotations 
obtained after downsampling (Figure S5B). Results from these comparisons were 
plotted using UpsetR55 (1.4.0). We ranked transcript abundance for each gene that 
had multiple isoforms and obtained the alternative splicing events from the most 
expressed transcript and the second most expressed transcript. We used a common 
model to classify the splicing events56, where alternative 5/3’ splice site includes 
alternative promoter and alternative polyadenylation. Transcripts with more than one 
splicing event were classified as complex splicing changes (Figure 2G). 
 
The binary splicing analysis was performed for each multi-isoform gene by calculating 
the percentage of cells that only expressed the major isoform (isoform with highest 
abundance) or only expressed other isoforms. The null distribution for each gene 
assumes each cell randomly chooses isoforms and the chance of picking the major 
isoform is proportional to the major isoform expression 𝑝!, calculated by dividing the 
major isoform’s total UMI count by the total gene UMI count across all cells. Next, we 
assume the count of the major isoform follows a binomial distribution 𝐵(𝑛, 𝑝!) where 



   
 

   
 

n is the UMI gene count for a cell. Therefore, the probability of binary splicing is 
Pr(0, 𝑛, 𝑝!) + Pr	(𝑛, 𝑛, 𝑝!). We used the UMI gene count for each cell Pr(0, 𝑛, 𝑝!) +
Pr	(𝑛, 𝑛, 𝑝!)take the average. In Figure S5A, S5C we fit the relationship between the 
average binary splicing probability and total gene count (black lines) using 
geom_smooth() in ggplot256 (3.3.1) which uses generalised additive models. 
  
Differential transcript usage analysis 
We filtered genes to have at least two isoforms, each with more than 15 UMI counts > 
15. For each gene, the per cell transcript counts were merged by group to generate 
pseudo bulk samples. For scmixology the groups are based on cell line identify 
inferred by known genetic variation, and for the MuSC and CLL2 data the groups are 
based on the clusters acquired from Seurat clustering, shown in Figure S1. The top 2 
highly expressed transcripts for each group were selected and a UMI count matrix 
where the rows are selected transcripts and columns are groups was used as input to 
a chi-square test of independence (chisq.test in R). P-values were adjusted by 
Benjamini–Hochberg correction57 and results were summarized in Table S2. We 
performed functional clustering with DAVID58 using genes with significant DTU 
(adjusted P-value < 0.01) as input (Table S3). The transcript structures in all figures 
were plotted using geom_alignment in ggbio59 (1.36.0). We performed imputation of 
transcript counts on cells that were not sampled for long-read sequencing using the 
shared nearest neighbour network constructed by Seurat60 (3.1.5). We then scaled 
the transcript expression matrix for each gene and the results were used in heatmaps 
and UMAP visualizations (available in Seurat) in Figure 3 and Figure S6. The imputed 
results were used for visualization purposes only. 
 
Variant calling and clonal analysis 
First, we identified candidate SNVs using FLAMES by excluding homopolymer regions 
(runs >3 of the same nucleotides), positions with coverage of fewer than 100 reads 
and positions with reference allele frequency less than 10% or greater than 90%. For 
each candidate SNV, we generated an allele count matrix of the reference and 
alternative allele. Next, we collect the cells that have reads with the reference allele 
and the alternative allele and performed a binomial test on the allele counts in a similar 
way as the binary splicing analysis, assuming that under the null hypothesis each cell 
has the same probability of having the alternative and reference allele. P-values were 
adjusted by Benjamini–Hochberg correction and candidate SNVs with an adjusted P-
value < 0.05 were kept for further analysis. PCA was applied to the filtered alternative 
allele count matrix from the scmixology data and first two PCs were plotted in Figure 
4B. The top 5 PCs were selected to build the shared neighbour network 
(scran::buildSNNGraph61 k=20, d=5) which is used for Louvain clustering 
(igraph::cluster_louvain62) in order to examine whether the allele count matrix captured 
the variants in the cell lines. Next, we performed differential allele frequency analysis 
in a similar way to the DTU analysis, but with the allele counts aggregated for each 
cluster. The candidate SNVs with adjusted P values < 0.05 were selected and 
compared to the VCF reference generated from a previous study using bulk RNA-seq. 
After analyzing the scmixology dataset, we processed the CLL2 data in the same way 
and conducted differential allele frequency analysis on the CLL2 clusters shown in 
Figure S1. The bar plot of cells with alternative alleles of significant SNVs were shown 
in Figure S7B and summarized in Figure 4D.  The capture enrichment data was 
analyzed in similar way, with the reads processed by FLAMES and an allele count 
matrix generated for the Gly101Val mutation. All plots were generated using ggplot2 



   
 

   
 

unless otherwise specified and most of the analysis was performed in R63 (4.0) unless 
otherwise specified. 
 

Data and code availability 
 
Raw data are available from GEO under accession numbers GSE126906 and 
GSE154869 (scmixology1), GSE154870 and GSE142285 (scmixology2), 
GSE154868 (MuSC) and the patient data (CLL2) is available from EGA. Refer to Table 
S1 for a summary of these datasets. The FLAMES source code is available from 
https://github.com/LuyiTian/FLAMES. The processed data and scripts used in this 
study are available from https://github.com/LuyiTian/FLTseq_data. 
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