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Abstract 
A hallmark of amyloid disorders, such as Alzheimer’s disease, is aggregation of secreted proteins. However it                
is largely unclear how the hundreds of secretory pathway proteins contribute to amyloid formation. We               
developed a systems biology framework that integrates expression data with protein-protein interaction            
networks to successfully estimate a tissue’s fitness for producing specific secreted proteins. Using this              
framework, we analyzed the fitness of the secretory pathway of various brain regions and cell types for                 
synthesizing the Alzheimer’s disease-associated amyloid-precursor protein (APP). While none of the key            
amyloidogenic pathway components were differentially expressed in AD brain, we found the deposition of Aβ is                
associated with repressed expression of the secretory pathway components proximal to APP. Concurrently, we              
detected systemic up-regulation of the secretory pathway components proximal to β- and γ-secretases in AD               
brains. Our analyses suggest that perturbations from 3 high confidence AD risk genes cascade through the                
secretory machinery support network for APP and into the endocytosis pathway. Thus, we present a model                
where amyloidogenesis is associated with dysregulation of dozens of secretory pathway components            
supporting APP, which could yield novel therapeutic targets for the treatment of AD. 
 

Introduction 
No mammalian cell exists alone. Indeed, each cell dedicates >1/3 of its protein-coding genes to interact directly                 
with other cells and its environment, using hormones and receptors for communication, enzymes and other               
proteins to modify their extracellular matrix, transporters for exchanging metabolites, etc. The mammalian             
secretory pathway is tasked with the synthesis, post-translational modification (PTM), quality control, and             
trafficking of these secreted proteins (secPs)​1,2​. SecPs account for >25% of the total proteome mass​3​,​4 and are                 
among the most tissue-specific genes in the human genome ​5​. The precision and efficiency of the mammalian                 
secretory pathway result from the concerted effort of hundreds of secretory machinery components (secMs)              
including chaperones, enzymes, transporters, glycosyltransferases, metabolites and lipids within the secretory           
pathway​6–9​. Since many secPs relay signals between cells or modify a cell’s microenvironment, each cell must                
carefully regulate the synthesis and localization of each secP.  
 
Perturbations to the secretory pathway result in misfolded proteins, which induce ER stress and apoptosis. In                
amyloid diseases, the misfolded proteins can aggregate into toxic amyloid fibrils, which ultimately lead to cell                
death. Aβ deposition, a major pathological hallmark of Alzheimer’s disease (AD), stems from the perturbed               
processing of the transmembrane amyloid precursor protein (APP). In Aβ aggregation, alternative proteolytic             
cleavage of amyloid precursor peptide by β- (rather than α-secretase) releases the secreted form of APP, the                 
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aggregation-prone Aβ1-42.​10–12 Furthermore, additional PTMs in the secretory pathway may affect APP            
cleavage,​13,14 phosphorylation,​15 glycosylation,​16​,​17–19 amyloidogenesis, and APP trafficking. However, protein         
aggregation could stem from the perturbation of diverse processes, but no systematic exploration of all               
processes supporting proper APP processing has been done.​20 Several large-scale GWAS also identified more              
than 45 AD risk loci ​21–23​, although for many loci, it remains unclear how they induce Aβ deposition.                  
Furthermore, a large part of AD heritability remains unknown ​21,24​. The genetic landscape of late-onset               
Alzheimer’s (LOAD) is highly heterogeneous, with multiple complex molecular interactions contributing to the             
disease phenotype. Therefore, the discovery of concerted expression changes in LOAD, such as the              
remodeling of immune-specific modules requires systems approaches on large datasets ​25​. 
 
To unravel the molecular changes leading to Aβ deposition, we focused on the roles of the secretory pathway                  
in amyloidogenesis. The secretory pathway is responsible for the processing, quality control and trafficking of               
key components of the amyloidogenic pathway ​26,27​, such as APP and the secretases, so we investigated if                 
there is a systemic dysregulation of the secMs supporting their production and processing. To do this, we first                  
developed a network-based approach that leverages protein-protein interaction (PPI) and mRNA and protein             
abundance data to quantify a cell or tissues’ “secretory machinery support”. This measures the fitness of a                 
tissue or cell for properly secreting a specific secP based on the expression of its supporting secMs. Next, we                   
investigated if there are disruptions in the secretory machinery support for key players of the amyloidogenic                
pathway (i.e., APP and the secretases), leading to increased Aβ deposition in LOAD, based on data from                 
several large-scale clinical bulk- and single-cell RNA-Seq datasets ​28,29​. We found significant dysregulation of              
the secretory pathway proximal to APP and the secretases, and this dysregulation is a major determinant of Aβ                  
deposition. We further demonstrated that the concerted expression changes in the secretory support modules              
for the APP, BACE1, and PSEN1 can be linked to known ​AD risk genes and their regulation targets. In terms                    
of subcellular localization, the core perturbed network enriches for known hotspots for Aβ production such as                
ER, cytosol and endosomes. Moreover, we found that the AD risk loci activate endocytosis via the core support                  
network and we identified a candidate TF binding motif that is conserved in the promoter regions of the                  
interaction network genes. ​Together, our analyses suggest mechanisms underlying impaired protein secretion,            
which could propose novel therapeutic targets for the treatment of AD. It also proposes mechanisms by which                 
AD genetics imbalance the secretory pathway, thus resulting in Aβ deposition, cell death, and cognitive               
impairment.  
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Results 

Secreted proteins and secretory machinery show similar tissue-specific expression 
The secretory pathway synthesizes and transports a variety of secreted proteins, each with different              
requirements for their synthesis and secretion (e.g., different physicochemical properties and post-translational            
modifications). With the human secretome being one of the most tissue-specific subsets of the human               
proteome ​5,30​, we hypothesized each tissue expresses just the secMs needed to synthesize and process secPs                
from the tissue. Supporting this, we observed that clustering tissues by secP gene expression grouped tissues                
similarly as when clustering by secM gene expression (Figure 1, p-value = 0.0145; Figure S1). Thus the secMs                  
are not merely housekeeping proteins always expressed to support any proteins being secreted; rather, they               
express in a tissue-specific fashion to meet the demands of different tissues ​7​. However, the question remains                 
if the pairings between secMs expressed in each tissue represent those needed to specifically support the                
secPs they secrete. 

 

Figure 1. The secMs and the secPs show coordinated expression profiles across different human tissues. 
The tissue similarity structures from the perspective of the secretome and the secretory pathway expression were 
represented by two hierarchical clustering dendrograms, which were then compared with a tanglegram​31 ​. Gene 
expression of the secretory pathway and its clients show a high level of coordination across human tissues, with 
precision significantly better than expected by sampling genes from each tissue (bootstrapping p-value 0.013 and 0.045 
for data from GTEx ​32 ​ and Human Protein Atlas ​5 ​ respectively). 
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Tissue specific expression of secMs predict expression of their client secreted proteins 
To further dissect the pattern of secP-secM co-regulation seen across tissues, we incorporated two sources of                
information: protein-protein interactions (PPIs) and secM gene expression. We harness PPIs to identify the              
secMs relevant to each secP, since PPIs are one of the major modalities through which machinery proteins in                  
the secretory pathway assist protein secretion ​33–36​. Further, secMs responsible for secP post-translational             
modifications are well-captured by PPIs between the secPs and the secMs (Figure S2). To focus on spatially                 
proximal interactions, we filtered the PPIs for interactions between secMs and other secretory             
pathway-resident proteins for each secP (see Methods), resulting in a “secM support network” consisting of               
3658 genes. By overlaying secM gene expression on this network, one can quantify the secM support for                 
secretion of each secP. To systematically quantify the fitness of the secM support network for producing each                 
secP in a tissue, a machinery support score is calculated for each secP by a random walk algorithm that                   
integrates secM gene expression levels proximal to each secP in its PPI network. More specifically, for each                 
secP, we added the protein to the secM support network, and centered the network on the secP. We then                   
performed a random walk on the secM support network starting from the secP. We adapted the transition                 
probabilities of the random walk to incorporate gene expression of the secMs so that propagation is                
constrained by not only PPI network topologies but also the expression of the secM components (methods;                
Figure 2a). The algorithm assigns a component score to each protein in the network, representing its                
availability to the secP of interest. The “secretory machinery support score” (i.e., the average component               
scores the secretory pathway components receive from the random walk) then quantifies the overall secretory               
pathway support for the given secP. Using this approach, we found the secretory machinery support score for                 
each secP increases in tissues wherein the secP is more highly expressed (Figure 2b, Figure S3). Further, the                  
machinery support score improves the prediction of secP protein abundance from mRNA expression by >50%               
(Figure S4). Thus, by accounting for the mRNA/protein expression of PPIs surrounding each secP, the               
machinery support score quantifies a tissue’s relative fitness for synthesizing and secreting the secP of               
interest. 

A 
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B

 

Figure 2. Expression data can quantify a tissue or cell’s fitness for synthesizing a secreted or membrane                 
protein. (a) ​In our systems biology approach, the mRNA or protein abundance is overlaid on a PPI network surrounding                   
a secreted protein (secP). The secP synthesis fitness is quantified by summing the secM expression, scaled by                 
distance from the secP (computed by a random walk), yielding a quantitative “machinery support score”. The calculation                 
of the support score also provides a sub-network of proteins contributing to secP synthesis. ​(b) We quantified the                  
machinery support score for every secreted protein in all tissues in the Human Protein Atlas, and found a clear                   
correlation between the secP expression and the relative machinery support score. This correlation was seen for both                 
mRNA (top) and protein (bottom) abundance. Thus, our machinery support score allows one to quantify how fit a cell or                    
tissue is for properly expressing and processing a secreted or membrane protein. 
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Aβ deposition in Alzheimer's disease is characterized by perturbed secretory support of            
amyloid precursor protein 
The co-regulation of the secP and their cognate secMs results from millions of years of evolution. Could                 
perturbations to such co-regulation underlie the molecular pathology in AD? Specifically, Aβ deposition is a               
major hallmark of AD-pathology. The precursor to Aβ, APP, is moderately to highly expressed (high transcript                
levels and moderate protein levels) in the cerebral cortex. While APP overexpression from APP duplication can                
cause early-onset (familial) AD ​37,38​, sporadic (non-familial) AD does not show differential transcript abundance              
for APP between AD and non-AD individuals despite the increase in Aβ plaques ​39​. However, APP does                 
undergo post-transcriptional processing, with pathogenic Aβ being released from APP following sequential            
cleavage by β- and γ-secretases, while the α-secretase promotes the correct processing of APP.  
 
To test the relevance of secretory pathway expression to AD, we analyzed RNA-Seq data from 4 brain regions                  
in 298 AD and age-matched control subjects (from the Mount Sinai Brain Bank​28​) and single-cell RNA-Seq                
from the prefrontal cortex (Brodmann area 10) of 48 individuals​29 (Figure 3). APP was not differentially                
expressed in AD brains at both the single-cell ​29 and the tissue level ​28​. This is not surprising since the                    
amyloidogenic pathway giving rise to neurotoxic Aβ takes place post-translationally ​40​. Additionally, expression             
of neither BACE1 nor PSEN1 correlated with plaque abundance in affected brain regions (Figure 3). However,                
each gene had significant changes in machinery support scores correlating with severity (Figure 3b).              
Specifically, the supporting machinery score for APP decreased in affected brain regions, showing suppressed              
scores in cells with amyloid deposition (p<0.0066). The largest effect was in cell types that are major producers                  
of Aβ, including neurons ​26,27,41​, reactive astrocytes ​42–45 (Figure 3a), and in brain regions affected early in the                  
onset of AD (Figure 3b, Figure S5). However, BACE1 and PSEN1, which aid in amyloidogenesis, showed an                 
opposite trend, with affected cells increasing machinery support for these secretases (Figure 3b; p-values for               
Brodmann area 36 (parahippocampal gyrus, BM36) and Brodmann area 44 (inferior frontal gyrus, BM44): p               
<0.0038 and p<0.014 for β-secretase; p<0.13 and p<0.083 for γ-secretase).  
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Figure 3. AD-relevant genes show perturbed secretory machinery support scores. (A) ​Overall, APP expression              
does not correlate with plaque densities across individuals in single-cell RNA-Seq. However, support scores show a                
negative correlation with plaque density, suggesting the secMs supporting proteostasis of APP are suppressed in AD.                
(B) Similar trends were seen in several brain regions, including the AD-affected BM36 and BM44 regions, where APP,                  
BACE1 and PSEN1 do not correlate with plaque abundance, but the secM support score APP shows a negative                  
correlation while the support scores for BACE1 and PSEN1 positively correlate with amyloid formation, suggesting AD                
pathogenesis involves dysregulation of the secretory pathway. 
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Secretory pathway support of APP is most strongly suppressed proximal to APP 
The secretory machinery support score for APP is significantly decreased in AD. Is the decreased score a                 
general suppression of many secMs throughout the secretory pathway, or is it specifically the secMs most                
proximal to APP that are suppressed? To test this we defined a core support network for APP based on                   
network proximity and gene expression. As the abundance and proximity to APP vary across the secMs in the                  
network, we broke down the APP support score into the individual component scores for each protein in the                  
secM support network (Table S1). This quantifies each secM’s corresponding contribution to the secretory              
support of APP. When the secMs are rank-ordered by their individual component scores, their contribution to                
the APP support score follows a pattern of exponential decay (Figure S6A), suggesting that the support score                 
is mostly determined by a smaller number of proteins with high proximity to APP (Figure 4A). While the entire                   
APP support network is not differentially expressed between AD and healthy brains, we wonder if this is the                  
case with secMs that are major contributors to the support score. When we overlaid the differential expression                 
across brain regions and cell types and considered progressively smaller subsets of the APP support network                
consisting of proteins with the highest component scores, we saw the strongest repression at around 20-30                
secMs, suggesting that the proteins nearest to APP are the most suppressed (Figures 4A, S6B, S6C).  

Changes in APP-supporting PPIs are regulated by AD risk loci 
Large GWAS screens found AD risk genes impacting many pathways.​22,46 Although the secretory pathway is               
tasked with the synthesis and processing of APP, it is not generally implicated in LOAD pathogenesis, since                 
secretory pathway genes are not enriched for among LOAD risk genes from large-scale GWAS studies ​22​.                
However, our results show transcriptional perturbations of machinery support for key amyloidogenic genes;             
thus, there may be a concerted regulatory change for modules supporting APP production and proteostasis in                
the secretory pathway. Thus, we tested if regulatory AD risk loci (i.e., transcription factors) regulate the secMs                 
interacting with APP. While the entire APP support network does not enrich for the AD risk genes nor their                   
regulatory targets, we wondered if AD risk loci selectively target the secMs more proximal to APP in the PPI                   
network. As we assessed enrichment for AD risk gene targets in subnetworks that were progressively closer to                 
APP (i.e., more focused on the support network interacting most directly with APP), we found the secMs                 
supporting APP were increasingly enriched for targets of AD risk regulatory genes (Figures 4B, S6D). The                
results are reproducible across multiple GWAS significance thresholds (Figure S7). Since the enrichment of              
AD risk gene targets steadily increased in statistical significance with increasing proximity to APP in the PPI,                 
we focused on the top 20 proteins interacting the most closely with APP from the support network. This                  
resulted in an APP support subnetwork where the enrichment significance for AD risk gene targets peaks. This                 
cutoff also coincides with the subnetwork with the strongest suppression of secM expression (Figures 4A, S6B,                
S6C).  
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Figure 4. The APP secM proteostasis network is not enriched for AD risk genes, but is enriched for AD risk                    
gene regulatory targets. ​The networks of secM proteins supporting APP production at two support component score                
cutoffs, representing the top ​n ​= 20 / ​n ​= 100 proteins contributing the most to the APP’s support score. The top 20                       
proteins with the highest component scores are labeled. ​(A) Starting from n=1 where the secM with the highest                  
component score was considered, we incrementally included secMs less proximal to APP. The sizes of the                
subnetworks are indicated by the x-axis. At each iteration, we calculated the average differential expression (y-axis)                
between AD and healthy subjects for each subnetwork. The strongest repression of the AD support network occurs at                  
around n=15~30. ​(B) We also calculated the degree to which the subnetwork enriched for regulatory targets of known                  
AD risk genes above the genome-wide significance threshold (y-axis). The regulatory targets of AD risk genes are                 
generally depleted among the general non-APP-specific secMs (Figure S6 for full trend across all 3685 subnetworks),                
but targets of AD risk genes enrich strongly among the core secMs closest to APP. 
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AD risk loci activate endocytosis via the core support network 
We analyzed the content of the core support network, and found it is enriched for genes in the amyloidogenic                   
pathway. Specifically, in terms of subcellular localization, we saw interactions were concentrated in the ER,               
endosomes, and the cytosol (Figure S8, FDR p<1.1e-3), consistent with the localization of amyloidogenesis.              
For example, the endosome hosts intracellular Aβ production with its β-secretase, and is enlarged in autopsies                
from AD​47 and stem cell models.​48 To further unravel the link between endocytosis and the core support                 
network, we analyzed the patterns of the core network differential expression between AD and controls across                
multiple cohort studies using gene regulatory networks obtained from ENCODE​49 and Ingenuity Pathway             
Analysis (IPA)​50​. Complementing our previous observation that a significant portion of the core support network               
is endosome-resident, we saw significant up-regulation of genes associated with endocytosis (p-value =             
8.95e-14), mediated by the core supporting machinery (Figures 5A, S9) across various brain regions. We               
further analyzed the APP core support network and identified transcription factors (TFs) that are most strongly                
associated with the perturbed secM module. The APP core support network coincides significantly with the               
regulatory targets of 3 genes from AD risk loci-- NR1H3, MAF and SPI1 ​21–23,46​. To investigate the extent to                   
which these AD risk genes perturb transcription of the supporting machinery in AD, we analyzed the                
differentially expressed genes between AD and controls across multiple cohort studies using gene regulatory              
networks obtained from ENCODE​49​ and Ingenuity pathway analysis (IPA)​50​.  
 
In addition to predicting upstream transcriptional regulators associated with amyloidogenesis from gene            
signatures or differentially expressed genes, we searched for conserved TF binding sites among the              
top-ranked dysregulated genes of the core-network in Alzheimer’s Disease. Specifically, we conducted de             
novo TF binding site motif discovery for the 20 genes in the core support network (see Methods). We identified                   
one significant TF motif (E value= 9.8e-3) that is present in 7 of the genes in the core support network (Figure                     
S10), which is associated with the SP1, SP2, and SP3 transcription factors. SP1 is important in AD​51,52 and is                   
predicted to bind the 3 genes from AD risk loci (NR1H3, MAF, and SPI1) with high confidence via 3 elite                    
enhancers​53 GH11J047390 (GH score=2.2), GH16J079764 (GH score=2.4), and GH11J047247 (GH          
score=2.1), respectively. Thus, a perturbation to multiple TFs could disrupt the APP core support network,               
wherein both genetic risk genes (NR1H3, MAF, and SPI1) and global regulators can contribute to the                
dysregulation of the core network.  
 
Further analysis suggests the AD risk genes and the core support network genes are further co-regulated with                 
an activation of endocytosis in the AD pathogenesis. W​e further characterized the functional association of               
conserved TF motif by scanning all promoters of genes in the genome for the motif (see Methods for details).                   
The conserved TF motif was significantly enriched in the promoter regions of known endocytic pathway genes                
(p-value=4.28e-4) and several other pathways relevant to AD pathogenesis (Table S5, Figure S10). Together,              
these results suggest a concerted change in endosomal activities and dysregulated pathways between normal              
and AD brains that arises due to the differential expression of the core supporting machinery surrounding APP.  
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Figure 5. The regulatory relationships surrounding the core support network. 
(A) Regulatory structures of the 20 proteins from the core support network were constructed using IPA. Gene                 
expression profiles from the 4 brain regions (BM10, BM22, BM36, BM44) ​28 ​, the Mayo Study ​54 and the ROSMAP study                    
(Religious Order Study and Memory and Aging Project) ​55 were averaged and overlaid on the core support network.                  
The endocytosis pathway is strongly activated in AD brains via the core support network, which in turn is regulated by 3                     
genes from AD risk loci-- NR1H3, MAF and SPI1. The proteins harboring binding sites for the TF motif (shown in panel                     
B) were outlined in red. (B) The TF motif (top panel) aligns significantly to 8 genes from the entire support network                     
(bottom panel), of which 7 of them belong to the core support network. 
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Discussion 
 
In the past four decades, the Alzheimer’s research community has made huge strides towards elucidating               
molecular processes contributing to amyloid deposition. However, despite involving aggregation of secreted            
proteins, it remained unclear to what extent the core processes of protein secretion and proteostasis are                
involved. Here we developed a systems biology approach that analyzed the interactions between key              
amyloidogenic components and the secretory pathway. This approach predicted the propensity for amyloid             
deposition at the single-cell level. To gain systems-level insights into LOAD, we used the framework to identify                 
a subset of the secretory pathway components on which concerted suppression converged. We further              
demonstrated that an increase in endocytic activities in LOAD can be attributed to key AD risk genes via the                   
core support network.  
 
LOAD is a complex disease. The identification of three rare mutations in APP, PSEN1 and PSEN2 that occur                  
in early-onset familial AD and the discovery of APOE constitute our primary knowledge of the genetic                
landscape of LOAD. More recently, high-throughput technologies such as GWAS and whole exome             
sequencing have identified more than 45 genetic risk loci of LOAD. However, the additional risk loci exert only                  
very small risk effects ​56​, and the link between genetic risk variants and amyloid deposition remains                
incompletely understood. Despite the highly heterogeneous expression of APP and other key amyloidogenic             
components across AD and healthy subjects, we demonstrated concerted down-regulation of secretory            
machinery proximal to APP in AD patients. This highlights the secretory pathway as a determinant of amyloid                 
deposition, which had not been a major focus of AD research. Incidentally, the proteostasis network, with                
which the secretory pathway shares a significant overlap, has been an increasingly popular target of protein                
aggregation and aging studies. The human chaperone network, a major component of the proteostasis              
network, undergoes continual remodeling during an organism’s lifespan ​57–59​. However, in the aging AD brain,               
the directions of regulation of these chaperones are rather uncoordinated across different chaperone families              
and even within the same family ​58​. Our observations of concerted repression of key proximal secretory                
pathway components show that improper expression of the secretory pathway, of which the chaperone              
network is a subset, is associated with the deposition of amyloid.  
 
Even though the secretory pathway is in charge of post-translational processing and targeting of APP up until                 
its cleavage by the secretases, its implications in AD have been insufficiently researched primarily due to the                 
lack of AD risk genes in the pathway ​60​. Our results showed that genes contributing the most to the APP                    
support network in the secretory pathway are significantly enriched for targets of AD risk genes, suggesting a                 
mechanistic link between AD genetic variants and secretory pathway dysregulation, complementing previous            
systems-level approaches to understanding LOAD with a focus on immune- and microglia-specific modules ​25​.              
To further unravel the link, we examined the core support network consisting of secretory pathway components                
most proximal to APP. We noticed 3 AD risk genes that are also transcription factors showing regulatory                 
evidence over the core support network according to both curated and ​de novo pathway analyses. More                
importantly, we demonstrated a regulatory cascade originating from the 3 AD risk genes, mediated by the core                 
support network and into the endocytosis pathway. The endosome, where the β-secretase is localized to and                
where its acidic pH is optimal for enzymatic cleavage, is a major site of intracellular Aβ production. Our findings                   
thus offer a mechanistic view of amyloidogenesis involving the secretory pathway and the endosomes. This is                
in line with observations in embryonic cortical neurons that showed increased Aβ levels as a result of                 
increased endocytic pathway activities and reuptake in APP in aged cells​61​. We also observed significant               
enrichment of endosomal-localized proteins in the core support network for APP, further lending credence to               
the involvement of the secretory pathway in activating the endocytic pathway. 
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The dominant model of AD pathogenesis, the amyloid hypothesis​62–64​, posits that AD pathogenesis and the rest                
of the disease process such as tau tangle formation ​65,66 result from the accumulation of Aβ via the imbalance                   
between Aβ production and clearance. We examined the capacity of the secretory pathway in the context of Aβ                  
production and processing, where the secretory support of APP and β- and γ-secretases were analyzed. While                
the concerted dysregulation of the secretory support for these key amyloidogenic components in AD brains               
theoretically leads to increased Aβ production, the impact on Aβ clearance warrants further investigation. It is                
worth noting that detectable Aβ deposition can precede the onset of AD by more than 15 years​67,68​, which likely                   
coincides with the onset of the decline of the proteostasis network. Our findings highlight the roles of the                  
secretory pathway in amyloidogenesis, which open new possibilities for early diagnosis and treatment research              
on LOAD. Furthermore, our systems approach can be further applied to other diseases in which the secretory                 
pathway is perturbed, such as perturbed hormone secretion in endocrine disorders, changes in hepatokine              
secretion nonalcoholic fatty liver disease ​69,70​, and the secretion of diverse proteins in cancer​71​.   
 

Methods 

Calculation of secretory pathway support scores 

Random walk on interactome 
To contextualize the secretion of a given secP, we used network propagation to quantify the influence of gene                  
expression across neighboring genes. Let denote an undirected interactome with vertex set     (V , E)G          V  
containing proteins and an edge set the interactions between them. Let be the edge weight ( n       E   m      wij     wij = 1  
if is undirected) between edges and and be the adjacency matrix of where G      i   j   A       G   

. Let be the location of the walk at time . Note that given thew  if  {v , v } ; 0 otherwise}Aij = { ij i  j ∈ E    (t)x          t      
previous walk location at time , we can represent the probability of the walker moving from location to                    

in a single step as , where . Summing probabilities           

from all inbound locations we have . In matrix notation, this           
is , where W is the transition matrix where each entry denotes the aforementioned               
transition probability from to . In random walk with restarts ​72​, at each step the walk resets to the origin with                      
probability , and the last equation becomes , where         

denotes the initial distribution if the walker starts at . The restart parameter was set to 0.1, as                    
advised by the linear optimal model given the size of the network ​73​.  

Expression-guided random walk with restarts 
The transition matrix can be modified to incorporate gene expression into each step of the propagation. If we                  
let , where is the scaled expression corresponding to node , , the               

expression-adjusted transition matrix can thus be given by . We can normalize the             

adjusted transition matrix by adding in self-loop: , and the update           
rule, which we termed expression-guided random walk with restarts (eRWR), now becomes: 
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. 

Calculation of support scores and component scores 
We performed eRWR on each secP of interest for 20 iterations, and the final vector of probabilities                 

represent the support component score for each gene on the network . The support            (V , E)G     
score (σ) is the average of the support component scores of the secretory pathway proteins,               

. 

Context filtering of the secretory pathway support network 
We used the composite consensus human interactome PCNet v1.3 ​73 (NDEX UUID:            
4de852d9-9908-11e9-bcaf-0ac135e8bacf) to be the static, context-agnostic network ( ). For each       (V , )G0 0 E0    
secP, we create a subnetwork containing the secP and other essential secretory pathway genes by filtering the                 
network for human secretory pathway components ​7,9 and secretory pathway-resident proteins ​74 to constrain              
the network spatially, resulting in a vertex-induced subgraph        

.(V V secP ecM ecResident)}, uv|uv ∈ E  and u, v ∈ V })G = { 0 ⋂ ( ⋃ s ⋃ s { 0   

Transcriptomic and proteomic data processing and support scores calculation for normal human            
tissues 
To calculate support scores for the normal human secretome, we used two datasets, the Human Protein Atlas                 
(HPA) ​5​, and the deep proteome and transcriptome abundance atlas (deep proteome) ​75 for tissue-specific               
transcriptomes from healthy human donors in which matching proteomic data were also available. For data               
from the Human Protein Atlas, we downloaded the transcriptomic data-- “RNA HPA tissue gene data” and                
performed log- and sigmoid-transformation on the transcript abundance (TPM) data, resulting in transformed             
gene expression profiles in the range. For the HPA dataset, the support score was calculated based on     0, )( 1              
the tissue-median of the transformed gene expression profiles for each secP. We retained the              
semi-quantitative nature of the immunohistochemistry protein abundance reporting, and we calculated the            
support scores summary statistics for proteins belonging to each of the staining levels--"High", "Medium",              
"Low" & "Not detected" separately. 
With the fully quantitative proteomic data from the deep proteome ​75​, We calculated the support scores based                 
on the protein iBAQ values. The iBAQ abundance values were transformed in a similar fashion as the                 
transcript abundance from the HPA dataset. Namely, they were log- and then sigmoid-transformed into the               

range, before being median-summarized by tissue and subsequently used in the calculation of the0, )( 1                
support scores. 

Transcriptomic and proteomic data processing and support scores calculation for AD and healthy             
brains 
To calculate support scores for key amyloidogenic pathway components in AD and healthy brains, we used                
two major transcriptomic datasets from the ROSMAP project (Religious Orders Study and Memory Aging              
Project)-- single-cell ​29,76 (Synapse ID syn18485175) and bulk RNA-seq ​28 (Synapse ID syn3159438) data from               
individuals respectively with varying degrees of Alzheimer’s disease pathology. The single-cell transcriptomic            
dataset covers 80660 cells from the prefrontal cortex of 48 individuals. While annotations for major cell types                 
were given, we further classified astrocytes into reactive and non-reactive astrocytes based on GFAP              
expression ​45​. The bulk RNA-seq covers 4 brain regions (Brodmann areas 10, 22, 36, 44) of 364 individuals. 
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To transform the count data into appropriate expression inputs to the eRWR algorithm, count data from healthy                 
tissue-specific transcriptomes and the AD single-cell RNA-seq data were first log-transformed to compress the              
extreme values. The values were then standardized and passed through a logistic function, where the final                
transformed values have a range . For the AD bulk-RNA seq data, since the counts were already     0, )( 1             
normalized and transformed, they were standardized and transformed by a logistic function without first being               
log-transformed. 

Statistical analysis 

Relationship between support scores of secreted proteins and protein expression 
To examine the dependencies between support scores and the transcript and protein abundances of the               
human secretome, we calculated the support score for each secreted protein in the human secretome ​77                
across various human tissues. We first calculated the spearman correlation coefficients between the             
tissue-median support scores and the transcript and protein abundances across all secreted proteins. To              
further quantify the statistical significance of transcript abundance and protein level in determining overall              
protein abundance, a Bayesian hierarchical model was created (model equations shown below) where the              
abundance of each protein across the 29 tissues is drawn from a linear combination of mRNA levels and the                   
support scores weighted by their respective regression coefficients. ​We used the ​rethinking R package​78 to               
construct the model and sample the coefficients. 
  

 

Relationship between support scores of key amyloidogenic proteins and amyloid plaque densities 
We built a Bayesian hierarchical model (equations shown below) to determine the extent to which the support                 
scores for key amyloidogenic pathway components including APP and the secretases for each cell/ sample in                
the single-cell and bulk RNA-seq dataset affects the amount of amyloid plaque measured. We regressed the                
scaled amyloid plaque densities corresponding to the individual from which the single-cell/ bulk RNA-seq              
sample was collected against the gene expression and secretory pathway support scores of key amyloidogenic               
pathway components. ​To regularize the coefficients of interest, their Bayesian priors are all normally              
distributed around 0. The coefficients were sampled using the ​rethinking​ R package​78​. 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.10.243634doi: bioRxiv preprint 

https://paperpile.com/c/30jKHc/IU6l
https://paperpile.com/c/30jKHc/8yH2E
https://paperpile.com/c/30jKHc/8yH2E
https://doi.org/10.1101/2020.08.10.243634
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 
 

Characterizing the core support network 

AD risk genes and enrichment analysis of regulatory components 
We obtained 45 genome-wide significant risk loci identified by several AD GWAS studies as summarized in ​21​,                 
resulting in 176 high-confidence AD risk genes. We compiled a separate set of AD risk genes from GWAS                  
summary statistics ​22,23 for loci above the genome-wide suggestive threshold, where MAGMA ​79 was used to                
aggregate p-values for SNPs to the gene-level independently for each GWAS dataset. P-values from the two                
datasets for each gene were then combined using Fisher's method, resulting in 673 AD suggestive risk genes. 
The transcription factors and their targets were obtained from ENCODE ​80 and ChEA ​81 via the Enrichr portal ​82​.                   
To determine whether the core support network enriches for the regulatory targets of AD risk genes, we first                  
calculated the level of overlap between the core support network and the targets of each transcription factor                 
using Fisher's exact test, where significantly overlapping transcription factors were defined as those with              
p-values of less than 0.05. A secondary enrichment was performed to quantify the level to which the significant                  
transcription factors overlap with known AD risk genes. As mentioned earlier, two lists of AD risk genes were                  
used. For the 673 AD suggestive risk genes, a traditional FIsher’s exact test was performed. For the risk genes                   
originating from the 45 risk genome-wide significant risk loci, instead of calculating the direct overlap between                
the significant transcription factors and the 176 high-confidence risk genes, we mapped the significant              
transcription factors back to the 45 risk loci on which Fisher’s exact test was performed. This is motivated by                   
the fact that many risk loci contain multiple risk genes that cannot be further pinpointed due to complex linkage                   
disequilibrium patterns, a risk locus is considered hit if at least one of its mapped risk genes appears                  
significantly enriched as a transcription factor. We performed this two-stage enrichment analysis starting from              
the full static support network towards the core support network by pruning back proteins furthest from APP in                  
each iteration. 

Enrichment analysis of subcellular compartments  
We compiled lists of proteins for all subcellular structures consisting of proteins known to localize to the                 
compartment of interest within the cell ​74​. We ordered the proteins in the full support network by the extent to                    
which they deviate from their stationary support component score to control for network topology while               
accounting for secretory-resident proteins. To determine the degree to which the proteins from certain              
subcellular compartments are overrepresented in the core subnetwork, we applied Gene Set Enrichment             
Analysis (GSEA) ​83,84 with the subcellular localization gene-sets and the ranked core support network              
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components as input, eliminating the need for a hard significance cut-off. Subcellular compartments             
significantly enriched in the core subnetwork are defined as those with an FDR p-value of 0.05 or less. 

Causal gene network analysis 
To robustly define the core supporting subnetwork, we iteratively constructed subnetworks from proteins most              
proximal to APP and progressively include more distal proteins corresponding to different significance cutoffs.              
To robustly select the cutoff for the core supporting subnetwork, we performed the two-stage enrichment               
analysis on all subnetworks as detailed above (see “AD risk genes and enrichment analysis of regulatory                
components”). Additionally, we calculated the average differential expression between AD and healthy            
individuals for each subnetwork using fold changes from bulk and single-cell RNA Seq data depending on the                 
source expression from which the subnetwork is calculated. We selected 20 proteins most proximal to APP to                 
include in the final core subnetwork, where the cutoff coincides with the strongest enrichment of regulatory AD                 
risk loci and the suppression of the core subnetwork. 
 
To determine the regulator effects, we performed two network-based analyses. We first ran the upstream               
regulator analysis using the curated regulator networks from IPA ​50​. The algorithm took as inputs the core                 
subnetwork and the differential expression fold changes and p-values. Batch-corrected differential gene            
expression profiles between AD and healthy brains from the Mount Sinai study ​28​, the Mayo Study ​54 and the                   
ROSMAP study (Religious Order Study and Memory and Aging Project) ​55 were obtained from the AMP-AD                
Knowledge Portal (Synapse ID syn14237651). “Disease & functions” having considerable overlap with the core              
subnetwork were added, of which endocytosis is the most significant (p-value =2.34E-14).  
 

De novo​ TF binding site motifs discovery and known TF binding site identification  
We downloaded promoter sequences (version: GRCH38) from UCSC Genome Browser​85 for the core             
subnetwork. The promoter sequences are defined as sequences 1,000 bases upstream of annotated             
transcription start sites of RefSeq genes with annotated 5' UTRs. To conduct de novo TF binding site motifs                  
discovery, we first ran motif discovery using the MEME suite ​86 with default parameters to identify candidate TF                 
binding site motifs within the promoter sequences by using the entire APP support network serving as                
background control. Then, the MEME discovered TF binding site motifs were analyzed further for matches to                
known TF binding sites for mammalian transcription factors in the motif databases, JASPAR Vertebrates ​87​, via                
motif comparison tool, TOMTOM​88​. We summarized all the enriched GO terms using ‘Revigo’ ​89 (Figure S10) on                
the 81 GoMo identified specific enriched GO terms in the Biological Process (Table S2). 
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