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Abstract
Joint analysis of multiple genomic data types can facilitate the discovery of complex mechanisms of biological processes

and genetic diseases. We present a novel data integration framework based on non-negative matrix factorization that uses

patient similarity networks. Our implementation supports continuous multi-omic datasets for molecular subtyping and

handles missing data without using imputation, making it more efficient for genome-wide assays in large cohorts.

Applying our approach to gene expression, microRNA expression, and methylation data from patients with lower grade

gliomas, we identify a subtype with a significantly poorer prognosis. Tumors assigned to this subtype are hypomethylated

genome-wide with a gain of AP-1 occupancy in the demethylated distal enhancers. These tumors’ genomic profiles are

similar to Grade IV gliomas: they are enriched for somatic chr7 gain, chr10 loss, and other molecular events that have yet

to be used in the diagnosis of lower-grade gliomas as per the current WHO guidelines.

Introduction
Biotechnologies for large-scale molecular studies of genetic diseases have advanced significantly. High throughput assays

are now available to measure RNA expression, DNA methylation, and metabolite concentration in multiple tissues [1].

Given that each assay reveals a snapshot of certain cellular aspects of a disease, integrative analysis of multiple assays

is often necessary for a complete understanding of its molecular etiology and important for discovering the molecular

subtypes and biomarkers of the disease [2].

Molecular typing through clustering has traditionally focused on individual data types, primarily gene expression. In a few

studies with multiple data types, the subtypes were generated from the different data types individually and subsequently

integrated by domain experts [3–5]. Discordant results and disagreements in such analyses can be difficult to interpret

and resolve. Another popular strategy is to concatenate feature matrices from multiple data types and then operate on

the resulting matrix as a single data type. This approach allows the use of existing clustering techniques but requires

cross-data type normalization and feature selection in individual data types before concatenation, possibly biasing the

results. More sophisticated methods such as those implemented in iCluster [6], iClusterPlus [7], and Bayesian consensus

clustering [8] model the probabilistic distribution of each data type and infer subtypes by maximization of the likelihood of

the observed data. However, these methods require a feature selection step and make strong assumptions about the data.
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The more recent methods for clustering on multi-omic data focus on similarity or distances between samples in-lieu of

clustering on the feature matrices. For example, PINS [9] creates an average connectivity matrix based on the sample

connectivity observed in the different data types. It then clusters using a method that depends on the level of agreement

between the data types. Additionally, it perturbs the original data by adding Gaussian noise and chooses the number

of clusters such that the output clusters are robust to this noise. Another popular method, Similarity Network Fusion

(SNF) [10] creates a fused network of patients using a metric fusion technique and then partitions the data using spectral

clustering. A more recent method, NEMO [11] calculates an average similarity matrix and then detects the clusters

using spectral clustering. A comprehensive review of multi-omic and multi-view methods for the detection of subtypes is

presented in Rappoport and Shamir [12].

The existing approaches have a few limitations. First, all approaches mentioned above but NEMO require that data

be available for every sample and every data type, which is unlikely in most biological studies. For data with missing

values, these methods need to impute missing values. But the imputation process is often computationally challenging

for genome-wide analyses. Secondly, most of the methods rely on randomization to overcome computational challenges

in some portion of their algorithm. Though the randomization approach can assist in finding a solution that avoids

over-fitting, it also has implications for the robustness of the method. Different invocations of such a method on the

same input data may produce different clustering outcomes. Lastly, statistical methods have the advantage of being able

to include biological knowledge as priors. However, they often assume a parametric normal or gamma distribution of

the data to make the parameter estimation tractable. Such an assumption is often not realistic and again leads to poor

performance, as demonstrated in a recent comprehensive assessment of the methods for drug response prediction [13].

Here, we present a data integration framework based on non-negative matrix factorization (NMF) and showcase an

implementation called SUMO (https://github.com/ratan-lab/sumo) that can integrate continuous data from multiple

data types to infer molecular subtypes. SUMO handles missing data effectively and produces clusters that are robust to

perturbations. Throughout the study, whenever appropriate, we compare SUMO v0.2.5 to LRAcluster v1.0 [14], MCCA

v1.1 [15], NEMO v0.1 [11], PINSPlus v2.0 [9], and SNF v2.3 [10]. We use a recent benchmark [12] to show that SUMO

is consistently among the best methods in identifying groups of patients with significantly differential prognosis and

enrichment of clinical associations. Using simulation, we also compare SUMO to the other methods in the ability to

cluster noisy datasets, to respond to perturbations, and to handle missing information.

As an application of our approach, we apply SUMO to multi-omic datasets from patients diagnosed with lower-grade

glioma. Diffuse low-grade and intermediate-grade gliomas together make up the lower-grade gliomas (World Health

Organization grades II and III), a diverse group of primary brain tumors with highly variable clinical behavior. Mutations

in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been identified as

clinically relevant markers of lower-grade gliomas [16], and as of the 2016 edition of the WHO classification, gliomas

are classified based not only on histopathologic appearance but also on these molecular markers [17]. Several studies

have associated IDH mutations with a more favorable course of the disease, and have identified multiple subtypes with a

poor clinical course [16, 18]. We identify a single cluster of patients with a significantly differential prognosis with SUMO.

Patients of this cluster are enriched for genome-wide hypomethylation, somatic chr7 gain, chr10 loss, and other molecular

events that have yet to be used in the diagnosis of lower-grade gliomas as per the current WHO guidelines.

Results

Method overview

The NMF technique aims to explain the observed data using a small number of basis components by factoring the data

into the product of two non-negative matrices; one represents the basis components and the other contains mixture

coefficients [19, 20]. NMF has been successfully used as a clustering method in image and pattern recognition [21–24],

text-mining [25–28], and bioinformatics [29–34]. Symmetric NMF is a variant where the decomposition is done on a

symmetrical matrix that contains pairwise similarity values between the data points, instead of being done directly on the

data points [35]. Symmetric NMF improves clustering quality compared to the traditional formulation and forms the basis

of our approach [36].

Similar to NEMO and SNF, we preprocess, transform, and standardize the data before calculating the similarity between

the samples for each data type separately. If all data types are measured for all n samples, the similarity between samples
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of the ith data type form a n× n symmetric matrix Ai. We then tri-factorize Ai ≈ HSiH
T , where H is a non-negative

n× r matrix, Si is a r× r non-negative matrix, and r (� n) is the desired number of clusters. H in this decomposition is

shared among the various data types and is a representation of the n samples in a r-dimensional subspace accounting for

the adjacencies observed in all data types. Each row in H represents a sample, and each column in H denotes a cluster.

If H is sparse, as is typically the case in NMF, a sample is assigned to the cluster corresponding to the column in which

the sample has the maximum value.

Multiplicative updates are used to solve the above factorization. Since the solution is sensitive to the initial conditions, we

run the solver multiple times on several subsets of samples using different initial conditions and use consensus clustering

to assign the final labels and infer the optimal number of clusters (see Method section for details).

SUMO exhibits improved performance with noisy and incomplete data

We performed several simulations to compare the accuracy of the various methods on noisy datasets with varying sample

sizes and a varying fraction of missing data. We first generated a ‘ground truth’ feature matrix consisting of 200 samples

and 400 features, with two distinctly separable clusters. We then simulated feature matrices of two different data types by

adding different levels of Gaussian noise to this ground truth to conduct three sets of simulation experiments.

Fig S1 shows the experimental setup for the first simulation where we increase the noise in one data type while keeping a

moderate amount of noise in the other data type. We generate 100 datasets for each amount of added noise and run all

methods, comparing the resulting clusters to the ground truth using the adjusted Rand index (ARI). The results in Fig 1A

show that all methods exhibit a median decrease in accuracy with an increase in noise. SUMO has the highest median

ARI and the least variance (Fig S2) for all levels of noise.

Next, Fig S3 shows the experimental setup to study the impact of the sample size on the accuracy of the various tools.

We again created two data types, one with a small amount of Gaussian noise, and another data type with a higher amount

of Gaussian noise. Fig S4 shows the ARI of the resulting classification as an increasing fraction of samples are removed

from each data type. SUMO, LRAcluster, and MCCA all score a median ARI of 1.00 for all sample sizes studied in this

experiment.

Lastly, using the same setup as the second experiment, we compared SUMO to NEMO in their ability to classify samples

accurately with missing data. Other methods do not handle missing data, and so were not included in this comparison. In

this experiment, we removed a random fraction of samples from one data type, while preserving the data in the other

data type. SUMO shows a higher median ARI compared to NEMO for most data points (Fig 1B).

Performance of SUMO on a recent benchmark

We compared SUMO to several other methods using a recently published benchmark [12]. The benchmark consists of

methylation, gene expression, and miRNA expression data from 10 cancers sequenced as part of the TCGA project. As in

the original benchmark, we evaluate each method for its ability to identify a subtype that shows significantly differential

survival, and is enriched for clinical annotations. We chose or calculated parameters for the methods as suggested by the

authors, without considering the survival and clinical parameters that are used for assessment.

Fig. 2 depicts the performance of the various methods on the data from the different cancer types. With respect to

survival, SUMO had the total best prognostic value (sum of −log10 p-values = 18.88), with MCCA being the second

best with 17.48. However, the sum of p-values can be biased due to outliers, so we also counted the number of datasets

for which a method’s solution obtains significantly different survival (p-value < 0.05) (Table 1). As with the original

benchmark, we also evaluated if at least one of the clusters were enriched for at least one of the clinical labels. p-values

for the logrank test were calculated using permutation tests [37], enrichment for discrete parameters was calculated using

the χ2 test for independence, and enrichment for numeric parameters was calculated using the Kruskal-Wallis test. The

p-values for clinical enrichment were corrected using Bonferroni correction.

Based on the results in Table 1, SUMO outperformed the other approaches, finding at least one cluster with significantly

different survival in 7 out of the 10 cancers analyzed. For colorectal cancer and lung squamous cell carcinoma, none of the

methods identified a subtype that showed significant differential survival. Subtypes for those cancers may be confounded
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Figure 1: Accuracy of the six methods on noisy data and missing values. (A) Datasets were created by adding

different amounts of noise to a ‘ground truth’ to simulate two distinct data types. The first data type is simulated by

adding random noise from a Gaussian N (µ = 0, σ = 1.5) distribution, while the noise in the second data type is from a

Gaussian distribution (N (µ = 0) where the standard deviation is varied σ ∈ (0, 4)). We report the median ARI of the

classification at each data point for 100 repetitions. (B) Simulated datasets were created by removing the random fraction

of samples from a random data type while keeping corresponding sample data in the other data type. We plot the ARI for

100 repetitions at each data point.

due to unknown covariates or may not exist at all, as suggested in Ma et al. [38], who found no evidence to support

the existence of discrete transcriptional subtypes in colorectal cancer. SUMO is the only method to find a subgroup of

patients in ovarian cancer with a significant differential survival (Fig S5A). This group of patients with poor prognosis is

enriched for patients with mesenchymal tumors (Fig S5B) that are known to lead to worse outcomes [39].

All methods identified at least one cluster in Glioblastoma (GBM) with significantly differential prognosis. We used this

GBM dataset to investigate the reproducibility and robustness of the methods, i.e. whether the p-values for the logrank

test or the number of enriched clinical parameters would change if we changed the seed to the random number generator

used by the methods and the assessment calculations. We ran each method 10 times using random seeds and found that

the methods were stable to different extents on this data (Fig.S6). NEMO gave the same result in each of the 10 runs,

while SUMO showed small deviations in the p-values for survival, but the remaining methods showed variation in both the

p-value of the logrank test and the chi-square test used to assess the enrichment of clinical parameters. Specifically, the

Method Number of cancers Number of cancers

with differential survival with clinical enrichment

LRAcluster 5 9

MCCA 5 8

NEMO 6 8

PINSPlus 4 6

SNF 4 7

SUMO 7 7

Table 1: Summary of results from the benchmark analysis. We report the number of cancers for which at least one

cluster had significantly different prognosis (first column) and that had at least one enriched clinical label (second column).
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Figure 2: Benchmark results for the TCGA datasets. The vertical line indicates p-value= 0.05 for the logrank test,

which are shown on the x-axis. The y-axis shows the number of clinical labels that were found to be enriched in at least

one of the detected subtypes. SUMO results are shown using a triangle.

results for PINSPlus varied significantly in terms of survival and enrichment of clinical labels.

SUMO analysis of TCGA-LGG identifies a cluster of patients with poor-prognosis

Several integrative approaches have been applied to understand the molecular heterogeneity and subtypes in gliomas.

The largest study of diffuse grade II-III-IV gliomas to date used TumorMap [40] to integrate gene expression and DNA

methylation data from around 1000 patients and identified IDH status as the primary driver of two macro-clusters [41]. The

authors concluded that the IDH mutant gliomas were further composed of three coherent subgroups: (1) the Codel group,

consisting of LGGs with 1p/19q codeletion; (2) the G-CIMP-low group, including gliomas without 1p/19q codeletion

with relatively low genome-wide DNA methylation; and (3) the G-CIMP-high group, including gliomas without 1p/19q

codeletion with higher global levels of DNA methylation. They also concluded that the IDH wild type gliomas segregated

into three subgroups: (1) Classic-like, exhibiting classical gene expression signature, (2) Mesenchymal-like, enriched

for mesenchymal subtype tumors, and (3) PA-like, enriched for tumors with molecular similarity to grade I pilocytic

astrocytomas.

We decided to apply SUMO to subtype the lower-grade gliomas as a case study with the intent to evaluate the robustness

and relevance of known glioma subtypes. We ran SUMO on the processed Level 3 gene expression, DNA methylation, and

miRNA expression data for the TCGA-LGG cohort downloaded from the UCSC Xena platform [42]. We evaluated the

solutions with 2 to 19 clusters according to the proportion of ambiguously clustered pairs (PAC) [43] and the cophenetic

correlation [44] (See Methods for details). The PAC values suggest that the patients can be partitioned into 2 or 5

clusters, with both solutions being stable (Fig. 3A). Here, we compare our solution with 2 clusters to the findings in

Ceccarelli et al. [41], and then present the solution with 5 clusters in greater detail.

Fig 3B shows the Kaplan-Meier survival analysis for the 2 clusters identified by SUMO. Patients assigned to the group

with worse prognosis have a median survival of 1262 days compared to a median survival of 2988 days for patients
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Figure 3: SUMO detects a single cluster showing differential prognosis in TCGA-LGG. (A) shows the two metrics

used to decide the optimal number of clusters for LGG dataset. We use the proportion of ambiguously clustered pairs

(PAC) (lower is better) and the cophenetic correlation (CCC) (higher is better) to select 2 and 5 as the optimal number

of clusters. (B) and (C) shows the KM analysis of the subtypes detected by SUMO when 2 and 5 clusters are selected

respectively.

assigned to the other subtype. The cluster of patients that show better prognosis include a majority of IDH mutant LGGs

with 1p/19q codeletion and the majority of the IDH mutant LGG without 1p/19q codeletion with higher global levels

of DNA methylation. SUMO assigns all IDH wild type patients and a subset of the IDH mutants to the subtype that

exhibits a poor clinical course, and is significantly associated with higher aneuploidy (Wilcoxon rank sum test W=24243,

p-value=0.0003), lower global methylation (Wilcoxon rank sum test W=58218, p-value=2.2× 10−16), a higher age of

diagnosis (Wilcoxon rank sum test W=24674, p-value=2.92× 10−5) and a higher neoplasm grade based on histology (OR

2.45 (95% CI, 1.69 to 3.54)). Fig S7 summarizes the association of the 2 clusters with mutations, clinical phenotypes,

and existing supervised classifications.

Fig 3C shows the Kaplan-Meier survival analysis for the 5 clusters as identified by SUMO. Patients assigned to Subtype 2

show a significant differential prognosis with a median survival of 758 days. Subtype 2 includes most samples (76 out of

80) that were labeled as Classic-like, Mesenchymal-like and C-GIMP low, and reported to have a poor clinical course in

Ceccarelli et al. [41]. Subtype 2 also contains 18 of the 26 IDH wild type samples (labeled in Ceccarelli et al. [41] as

PA-like) that were identified as having a favorable clinical course compared to other IDH wild type samples based on

methylation analysis. To understand the reason for this difference, we compared the similarity between the PA-like samples

assigned to Subtype 2 to (a) other samples in Subtype 2, and (b) PA-like samples assigned to other subtypes by SUMO.

We determined that the PA-like samples in Subtype 2 are similar to the PA-like samples assigned to other clusters based

on methylation data, consistent with Ceccarelli et al. [41]. However, the PA-like samples assigned to Subtype 2 show

greater affinity to the other samples within Subtype 2 when the information from gene expression and miRNA expression

were used (Fig S8).

In order to investigate if the subtypes detected by SUMO were enriched for other clinical and molecular events, we

conducted enrichment analyses with the clinical phenotypes and GISTIC thresholded gene copy-number calls from UCSC

Xena, along with molecular data from Ceccarelli et al. [41] and the somatic variants generated by the MC3 working group

[45]. Subtype 2 is enriched for patients who are IDH wild-type and who were significantly older at the age of diagnosis

(Tukey HSD test; p-value < 0.05 for all pairwise comparisons). Subtype 2 is also enriched for grade III tumors (OR 6.28

(95% CI, 3.40 to 11.59)) and significantly enriched for anaplastic Astrocytomas (p-value < 10−5); it is also enriched for

samples with a high percentage of aneuploidy (Tukey HSD pvalues < 0.05 for all pairwise comparisons), high ESTIMATE

stromal score (Tukey HSD pvalues < 0.05 for all pairwise comparisons) and high ESTIMATE combined score (Tukey

HSD pvalues < 0.05 for all pairwise comparisons). This is consistent with results that suggest that the ESTIMATE

scores correlate with DNA copy number-based tumor purity and high ESTIMATE scores in LGG are associated with poor
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outcome [46, 47].

Fig 4 summarizes some of these associations in an oncoplot. Interestingly, Subtype 2 is enriched for point mutations and

amplifications of the epidermal growth factor receptor (EGFR) oncogene on Chromosome (Chr) 7. Somatic aberrations

in EGFR including amplification and activating point mutations occur in ∼ 57% of Grade IV gliomas but are relatively

uncommon in LGGs [48]. However, 55 of the 109 patients assigned to Subtype 2 show Chr 7 gain (and hence amplification

of EGFR) and Chr 10 loss, which leads to deletion of the PTEN gene, a known tumor suppressor. These chromosomal

aberrations together with global hypomethylation are features unique to this subtype. As per the WHO guidelines from

2016, Chr7 gain and/or Chr10 loss are not considered in the diagnosis of Grade II/III gliomas, though other studies

have suggested that these events are clinically relevant, and their inclusion in the diagnostic criterion could lead to the

reclassification of several LGGs into GBMs [49].
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Figure 4: Oncoplot showing enrichment of molecular and clinical features in the various subtypes.

Since tumors are a complex milieu of numerous cell types, we hypothesized that the microenvironment plays an important

role in the determination of these subtypes. To investigate this, we downloaded the xCell scores corresponding to

enrichment of 64 different immune and stromal cell types in these TCGA samples [50]. Hierarchical clustering of the

mean enrichment scores for the various cell types in Fig 5A shows that the cellular profile of Subtype 2 tumors is more

similar to GBMs than to the other LGGs. More importantly, astrocytomas assigned to Subtype 2 have higher enrichment

scores for astrocytes, similar to those calculated for GBM samples, and significantly higher than astrocytomas assigned

to the other subtypes (Fig 5B). xCell scores are calculated using gene expression, but we observe similar results on

analysis of methylation data using MIRA [51]. Subtype 2 samples show lower methylation and higher regulatory activity

at astrocyte-specific elements (Fig 5C) compared to the other subtypes. These differences in cellular population also

manifest in principal component analysis of gene expression and methylation data when we consider the LGG and GBM

samples together (GBMLGG dataset from UCSC Xena). In PCA analyses of expression and methylation (Fig S9), the

first principal component shows the similarities between Subtype 2 and the GBM samples. These findings along with the

observed chromosomal aberrations suggest that LGGs assigned to Subtype 2 should be treated more aggressively and
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Figure 5: Subtype 2 shows similarities to GBM, and Subtype 3 is enriched for neurons.(A) is a heatmap that

shows the mean xCell enrichment scores for the LGG subtypes and GBM corresponding to 64 cell types, with Subtype 2

and GBM sharing enrichment of several cellular populations. (B) Astrocytomas assigned to Subtype 2 show higher xCell

scores compared to astrocytomas that are assigned to the other LGG subtypes. (C) Tumors assigned to Subtype 2 show

lower methylation and higher regulatory activity at astrocyte-specific elements. The mean methylation levels are shown

using dark line. (D) Tumors in Subtype 3 are enriched for neuronal cells.

Our enrichment analyses show that global hypomethylation is a hallmark of Subtype 2 tumors. In order to investigate this

further, we used ELMER [52] in an unsupervised mode to compare Subtype 2 tumors to the other LGGs. ELMER identified

16,822 distal probes that were hypomethylated in Subtype 2 samples (adjusted p-value < 0.01 and methylation difference

between means of the groups > 0.3). For 382 of those probes, their methylation status was inversely proportional to

the expression of a putative target gene. These target genes are enriched for biological processes such as extracellular

matrix (ECM) organization and molecular functions such as kinase binding (Fig 6A). ECM is known to be an important

determinant of glioma invasion and kinase binding is activated in gliomas [53–55]. Fig 6B shows the motifs that are

enriched around the 382 probes that are identified as putative distal enhancers. The motifs that show the highest

enrichment correspond to the Fos and Jun transcription factor gene families. Fos genes encode leucine zipper proteins

that can dimerize with proteins of the JUN family, thereby forming the early response transcription factor complex AP-1.

As such, the FOS proteins have been implicated as regulators of cell proliferation, differentiation, and transformation

[56]. More specifically, we find that the expression of FOSL1, which contributes to regulation of placental development is

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.10.244343doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.244343
http://creativecommons.org/licenses/by/4.0/


significantly higher in Subtype 2 tumors, and higher expression of the gene is associated with worse prognosis [57]. These

results are in agreement with other published studies that show that AP-1 binds to demethylated regions in G-CIMP-low

tumors, but we find this to be true for all samples assigned to Subtype 2 [58].

Since members of a TF family have very similar DNA binding domains, it is challenging to identify the TF that binds

in-vivo to a region containing a motif. But we instead searched for cases where the motif occupancy of hypomethylated

enhancers accompanied an increase in expression for at least one member of that TF family. Furthermore, we checked to

see if the expression of the TF was significantly correlated with survival (logrank test, p-value < 0.00001). We again

found an enrichment of AP-1 containing enhancers, which is a common feature of many cancer types. Interestingly, we

found that TGIF1 expression was highly correlated with the degree of enhancer hypomethylation even for motifs where we

did not expect TGIF1 to bind. Fig 6E and Fig 6F show that expression of TGIF1 is higher for Subtype 2 tumors and

higher expression of the gene is predictive of worse prognosis. It is possible that these correlations are due to indirect

effects caused by TF networks. TGIF1 is involved in regulation of cell development and maturation, and other studies

have included TGIF1 in prognostic gene sets for Glioblastoma though the role of TGIF1 in gliomas is not clear [59].
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Figure 6: Hypomethylation in Subtype 2. (A) Enrichment of molecular function and biological processes in genes

which are regulated via hypomethylation of distal enhancers in Subtype 2. (B) Motif enrichment analysis of regions

around putative distal enhancers probes that regulate expression and are hypomethylated in Subtype 2 tumors. We show

the 95% confidence interval of the odds ratio, and only show motifs which have a lower odds ration > 1.5. FOSL1

occupied enhancer elements show significant hypomethylation in Subtype 2 tumors. FOSL1 gene is upregulated in Subtype

2 (C), and higher expression is associated with worse survival (D). TGIF1 expression is highly correlated to enhancer

hypomethylation. TGIF1 is upregulated in Subtype 2 and higher expression is associated with worse survival.

We also find significant enrichment of clinical and molecular features in other subtypes. Subtype 1 is enriched for

Oligodendrogliomas (p-value < 1.0× 10−5), mutations in the TERT promoter and high expression of TERT (Tukey HSD

test; p-value < 0.05 for all pairwise comparisons), high tumor purity (Tukey HSD test; p-value < 0.05 for all pairwise

comparisons), 1p/9q co-deletion, and mutations in CIC, a known tumor suppressor. 128 of the 130 patients in Subtype 1
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have a methylated promoter for MGMT (post hoc test of residuals for χ2 test, p-value: < 1.0× 10−5). MGMT promoter

methylation is associated with better response to alkylating chemotherapy, suggesting that patients assigned to Subtype 1

are more likely to respond to temozolomide [60] .

Subtype 3 is enriched for the neural (NE) subtype detected in previous gene-expression studies [61]. The NE subtype has

previously been related to the tumor margin where increased normal neural tissue is likely to be detected [62]. Consistent

with this hypothesis, we find that the tumors assigned to Subtype 3 have lower tumor purity (Tukey HSD test; p-value

< 0.05 for all pairwise comparisons except with Subtype 5) and high enrichment score for neurons (Fig 5C. Subtype 4 and

Subtype 5 are both enriched for G-CIMP high samples, although Subtype 5 is enriched for mutations in ATRX (post hoc

test of residuals for χ2 test, p-value: < 10−5), and shows a higher enrichment for Mast cells which are known to induce

release of selective inflammatory cytokines such as IL-4 with anti-glioma activity leading to improved prognosis [63].

Discussion

We present an approach to integrate multi-omic data and use it to subtype LGG through the integration of gene expression,

DNA methylation and miRNA expression data. Our method is based on symmetric NMF and can be easily extended for

various applications. For instance, we develop an implementation, SUMO, for unsupervised learning by regularization

of the cluster indicator matrix using the Frobenius norm. It can be modified into a semi-supervised learning to classify

samples after the inclusion of priors based on a phenotype of interest, as suggested in other studies [64, 65]. Additionally,

we find that the primary LGG tumors show a significant difference in survival based on histological grade within existing

subtypes (Fig S11). Such a semi-supervised framework will allow for integration of clinical observations with molecular

information.

SUMO improves on existing methods in its ability to handle noisy and missing data. We compared SUMO to several

existing methods for integrative clustering. SUMO produces consistently reproducible results on a recently published

benchmark. The benchmark uses differential survival and enrichment of a small number of clinical labels in the resulting

clusters as metrics for assessment of subtyping methods. However, it is important to remember that subtypes of a disease

that are biologically different can lead to similar survival. For example, we find that PA-like samples from Ceccarelli et al.

[41] get classified by SUMO primarily into two groups based on gene expression and miRNA-expression, even though

the two groups are not significantly different in terms of survival. SUMO focuses on the integration of continuous data

types such as expression, methylation, and metabolomics. Sparse and noisy data types such as somatic mutations can be

included for integration after limiting the features to those that have a known role in the disease. Alternatively, such data

types can be converted into continuous data types by use of network propagation techniques and then included as input

to SUMO [66].

We applied SUMO for the detection of subtypes in lower-grade gliomas, and identified a single subtype with differential

prognosis compared to the other subtypes. We show that this subtype includes all previously studied groups of patients

with features that are associated with a poor outcome. Like GBM, gain of chr7, loss of chr10 and global hypomethylation

appear to be hallmarks of this subtype, and our analyses suggest that LGGs assigned to Subtype 2 should be treated more

aggressively and potentially reclassified as GBM. This subtype should also be analyzed separately in clinical trials as its

molecular differences may make it susceptible to different drugs with respect to the other LGG subtypes. It is also an

open question as to whether or not this subtype regrows/recurs faster after neurosurgical resection compared to the other

subtypes. Additionally, we also found that the hypomethylated distal enhancers in this subtype are enriched for AP-1

binding. This has been shown to be a feature of G-CIMP-low tumors, but we find it to be characteristic of most Subtype

2 tumors. We also identified TGIF1 expression to be inversely proportional to the global hypomethylation, and predictive

of prognosis, even though its role in glioma is not clear.

A common post hoc analysis to molecular subtyping is identification of feature or sets of features that can be used as

markers or surrogates for the various subtypes. SUMO includes a mode to build a tree-based model that can predict the

importance of each feature for each of the detected subtypes. For example, we identified an clinically relevant subtype of

LGG with differential prognosis compared to the other subtypes. According to our analysis, the non-CpG island methylation

probes in the proximity to the gene CLCF1 are the best marker for the subtype. Fig S12 shows the beta values of the

samples for the three methylation probes that have the highest explanatory values for the classifier.
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In summary, SUMO is as a molecular subtyping method that can handle noise and missing data that commonly exist in

genomic datasets and can be extended for other applications. Our study suggests that NMF-based multi-omic integration

is a promising approach that can be applied to a wide range of biomedical datasets and can provide valuable biological

insight.

Methods
Our approach is based on non-negative matrix factorization, where the factorization is jointly performed on the similarity

matrices calculated for all data types separately. After removal of outliers and data normalization, we first transform

the feature matrix from the ith data type into a similarity matrix Ai between the samples and then tri-factorize Ai into

HSiH
T , where H is the cluster indicator matrix that is shared across all data types. The objective function used for

computing the tri-factorization accounts for the missing samples and the difference in sample size for the various assays.

Lastly, to produce a robust clustering, we run the solver multiple times and apply consensus clustering to obtain the final

clusters. Now, we describe these steps in details.

Data preprocessing

Data preprocessing involves (a) filtration, (b) transformation, and (c) normalization of each data type separately. The

filtering process removes features that are not informative; for example, we removed genes that had zero counts in most

samples. Even though our approach can handle missing values, removing features and samples with a large fraction of

missing values (> 10%) often speeds up computation and improves the classification if it does not remove a significant

fraction of samples.

The transformation process is data-dependent. We use a variance-stabilizing transform to convert abundance in count

datasets, for example as in RNA-seq, to yield a matrix of values that are approximately homoscedastic (with constant

variance along the range of mean values). This had an additional advantage of reducing the effect of outliers in the

dataset. We use M-values over beta values to transform methylation datasets [67]. If batch information is known, we use

ComBat [68] to adjust for batch effects in this step.

In the normalization step, we perform feature standardization to make the value of each feature in the data have zero-mean

and unit variance.

The construction of similarity networks and matrices

Let n be the number of patient samples s, that are found in the dataset of every data type and let t be the number

of data types e.g., gene expression or DNA methylation. In this step, we construct a similarity network N , which we

represent as a set of n× n similarity matrices {A1, A2, · · · , At}, where Ak(i, j) = (aij(k)) and k is used as an index for

the data type. aij(k) represents the similarity between two samples si and sj calculated from the features of the kth data

type , k = 1, · · · , t.

For each data type k, we assume its data is represented in a matrix (fij) containing n sample rows and p feature columns.

We calculate Ak as a radial basis function of the Euclidean distance ρ(i, j) =
∑p

m=1(fim − fjm)2 between the samples

xi and xj :

A(i, j) = exp

(
−ρ

2(i, j)

µεiεj

)
where µ is a hyperparameter with a default value of 0.5 and εi represents the average distance between xi and its K

nearest neighbors:

εi =

∑K
j=1 ρ(i, j)

K
.

We set the number of nearest neighbors K equal to 10% of the samples in the data type. The selection of this parameter

can effect the results, and we recommend setting it to # samples
# clusters if the number of clusters is known.
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The Euclidean distance is appropriate for normalized count datasets, such as those that arise from gene expression or DNA

methylation data. However, depending on the data type and the application, different distances or similarity metrics may

better represent sample relationships. For example, cosine similarity has been shown to be a better metric for calculation

of similarity between single cells in the single-cell sequencing for transposase accessible chromatin (scATAC-seq) [69].

Joint tri-factorization of the similarity matrices

Each matrix Ai of the multiplex network N is symmetric and non-negative. We tri-factorize A1, A2, · · · , At as follows:

Ai ≈ HSiH
T , i = 1, · · · , t,

in which H is a n × r matrix shared across the data types and r is the desired number of clusters such that r � n

(Fig S10B).

We compute the above tri-factorization by minimizing the following objective function:

L =
t∑

i=1

λi
∥∥Wi ◦ (Ai −HSiH

T )
∥∥2
F
+ η ‖H‖2F (1)

where ◦ denotes entry-wise multiplication for matrices, and H and Si are both constrained to be non-negative. The first

term of the objective function measures the divergences between Ai and HSiH
T using the Frobenius norm in each data

type. For each data type, measurements may be not available for all the n samples, thus leading to missing entries in the

matrix Ai. We use Wi to remove the missing values, where

Wi(x, y) =

{
1 if x is connected with y in data type i

0 otherwise

Then we add an another factor λi = n−2i to account for the imbalance in the number of entries among Ai(i = 1, ..., t) ,

where ni is the number of samples for the ith data type.

The second term of the objective function is used to enforce sparsity on the matrix H, hopefully leading to a non-overfitted

result and the hyperparameter η is used to balance the contribution of these two terms.

Note that the cost function in Eqn. 1 is convex in either but not both H and Si. The following multiplicative updates are

used to solve the optimization problem given in Eqn. 1 [70].

Si ← Si ◦
HT (Wi ◦Ai)H

HT (Wi ◦ (HSiHT ))H

H ← H ◦
∑

i λi(Wi ◦Ai)HSi∑
i λi(Wi ◦ (HSiHT ))HSi + 0.5ηH

As the algorithm iterates using the updates, H and Si converge to a local minimum of the cost function. We apply above

rules iteratively while alternating fixed matrices, keeping track of objective function value L(i) until it satisfies

|L(i+1) − L(i)|
L(i+1)

< ε

where ε is a predefined threshold, or the maximum number of allowed iterations are reached.

Since the solution is relatively sparse, we can assign each sample (represented by a row in H) to the cluster corresponding

to the column that contains the maximum value, as depicted in Fig S10C. In practice, the solution can be sensitive to the

initial conditions. We discuss the details of this in the implementation details, but briefly, we run the above solver multiple

times and then use consensus clustering to get the final assignments.
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Derivation of multiplicative-update rules

For the objective function Eqn. 1, when we update matrix Si, matrices H and Sj (j 6= i) should be fixed, thus it would

be an optimization problem about the matrix Si, that is,

min ‖Wi ◦ (Ai −HSiH
T )‖2F , subject to Si ≥ 0. (2)

The corresponding Lagrange function of Eq. (2) is

L(Si) = tr

((
W ◦ (Ai −HSiH

T )
)T (

W ◦ (Ai −HSiH
T )
))
− tr(BT

i Si),

where Bi ≥ 0 is the Lagrange multiplier for Si, and tr(·) represent the trace of matrix X. Then

∂L(Si)

∂Si
= −2HT

(
Wi ◦ (Ai −HSiH

T )
)
H −Bi.

Let ∂L(Si)
∂Si

= 0, thus

HT
(
Wi ◦ (HSiH

T )
)
H −HT (Wi ◦Ai)H =

1

2
Bi,

and

(Si)jk · (Bi)jk = 0,

thus Si satisfies (
HT
(
Wi ◦ (HSiH

T )
)
H −HT (Wi ◦Ai)H

)
jk

· (Si)jk = 0.

We obtain the update formula for Si as follows:

Si ← Si ◦
HT (Wi ◦Ai)H

HT
(
Wi ◦ (HSiHT )

)
H
,

where ◦ and ÷ denote entry-wise multiplication and division for matrices, respectively.

Similarly, when we update matrix H,

∂L(H)

∂H
= −4

t∑
i=1

λi
(
Wi ◦ (Ai −HSiH

T )
)
HSi + 2ηH −B0,

where B0 ≥ 0 is the Lagrange multiplier for H. Thus, H satisfies the following equations:( t∑
i=1

λi
(
Wi ◦ (HSiH

T )
)
HSi + 0.5ηH −

t∑
i=1

λi(Wi ◦Ai)HSi

)
jk
· (H)jk = 0;

Then, we obtain the following update formulas for H:

H ← H ◦
∑t

i=1 λi(Wi ◦Ai)HSi∑t
i=1 λi

(
Wi ◦ (HSiHT )

)
HSi + 0.5ηH

.

Implementation details

SUMO (https://github.com/ratan-lab/sumo) is specifically designed to integrate multi-omic data for molecular

subtyping. It consists of four subroutines. It allows the user to construct the multiplex network from normalized feature

matrices (sumo prepare), tri-factorize the multiplex network to assign samples to the desired number of clusters (sumo run),

compares the assignments to another classification using multiple metrics (sumo evaluate), and detect the importance of

each feature towards each cluster (sumo interpret), which facilitate the discovery of biomarkers and molecular signatures.

SUMO is available in the form of a command-line tool on GitHub (https://github.com/ratan-lab/sumo) and at The

Python Package Index (https://pypi.org/project/python-sumo/).
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Support for missing data

Biomedical studies measure a large number of molecular parameters. Almost every dataset has missing entries. Most

methods for molecular subtyping require perfect data. This implies that that both samples and features that have missing

entries have to be removed or the missing entries are imputed in the pre-processing stage. SUMO takes a different

approach. It scales the calculated distance between a pair of samples by the number of common features available for

both samples. If sufficient overlap (by default at least 10% of features) is not found, the distance is set to NA (not

available). A missing value in an adjacent matrix Ai is equivalent to a missing edge between two nodes in the multiplex

network and is masked during factorization as we describe in the last section.

Consensus clustering

As we mention in the last section, our iterative solution using multiplicative rules is sensitive to the initial conditions. Both

initialization and convergence speeds are important factors to consider when formulating the appropriate factorization

algorithms [71]. Our method utilizes an SVD based initialization approach to set the initial H to be the average similarity

matrix across all data types. This method reduces residual error and provides faster convergence than using random

initialization. However, we still have to set Si randomly; as such, the algorithm does not guarantee convergence to a local

minimum. Here, we set the diagonal entries of each Si to be absolute singular values, that are derived from the SVD

decomposition of the corresponding Ai matrix. We repeat the factorization n times, each time including 95% of the total

samples in calculating the cluster assignments from H and a residual error REi for that run. We create a consensus

matrix from these n assignments that is weighted to incorporate the residual error (RE) of each factorization in a dataset

with t data type as follows.

C =

∑n
x=1 C(x) ∗ weight(x)∑n

x=1 weight(x)
,

where

M = maxiRE(i), 1 ≤ i ≤ n

N = miniRE(i), 1 ≤ i ≤ n

weight(x) =
M −RE(x)

M −N

RE(x) =
t∑

i=1

λi
∥∥Wi ◦ (Ai −HSiH

T )
∥∥2
F

We use the Normalized Cut clustering algorithm [72] on this consensus matrix to assign the final cluster labels.

Estimating the optimal number of clusters

Estimation of an optimal rank for NMF is a challenging problem. It is common to compare several solutions based on a

clustering metric [73]. We implement two popular metrics that leverage the consensus matrix to help the user in the

determination of stable solutions to the factorization. The first metric is the cophenetic correlation coefficient (CCC)

[74]. It measures the Pearson correlation between sample distances and its hierarchical clustering. A higher CCC value is

considered better. The second metric is the proportion of ambiguously clustered pairs (PAC), which is defined as the

proportion of the consensus matrix values in (0.1, 0.9) range. Based on our experiments, we recommend investigating

factorization rank values for which the PAC score is less than 0.1, and the CCC value is high (typically > 0.95). Increasing

the number of repetitions of the solver can assist in identification of the optimal number of clusters, but as we show in

Fig S13 using the acute myeloid leukemia (AML) dataset from benchmark data [12], we can identify one of the stable

solutions in a small number of repetitions. Similarly, we use the same dataset to show in Fig S14 that the trends observed

in the PAC curve and the CCC curve are preserved for a wide range of values corresponding to the number of samples

that are removed in each iteration [0, 0.1]. In the current default setting, we run 60 repetitions of the solver. With each
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run we randomly remove 5% of the samples, while making sure that each sample will be clustered at least once. We then

use random subsets of 50 runs to create multiple weighted consensus matrices as described in previous section. While

only one of the matrices is utilized to call sample labels, the CCC and PAC metrics are calculated for every one of them,

providing a robust assessment of stability of factorization results.

Identification of biomarkers

Once the subtypes are assigned, a frequent challenge is to identify a set of features that correlate with the cluster

separation. These can be used as markers for the assignment of future samples and can aid in understanding the differences

between the groups. To this end, we first train a gradient boosting classifier implemented in LightGBM [75]. We use 80%

of the features for training this model while performing hyperparameter optimization of the model using a random search

with 5-fold cross-validation to avoid overfitting. When we have this model, we calculate the Shapley values of all features

for each identified cluster. The features with a Shapley value greater than 1 are considered to be important in driving

separation of that cluster.
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Supporting information
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Figure S1: Experimental setup to compare the accuracy of the various methods on noisy data. During simulation,

noise in one of the data types remains constant (generated from Gaussian distribution N (µ = 0, σ = 1.5)). Another data

type contains data with increasing noise, randomly generated from the Gaussian distribution as a function of standard

deviation, and constant mean. Here we show two sampling points for following sets of parameters (µ, σ) ∈ {(0, 1), (0, 4)}.
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Figure S2: Adjusted Rand Index (ARI) from running the various methods on simulated noisy datasets. Datasets

were created by adding either adding N (µ = 0, σ = 1.5) noise (constant layer) or N (µ = 0) with standard deviation

σ ∈ (0, 4) (layer with varying amount of noise). We report ARI of the classification at each data point for 100 repetitions.

Figure S3: Experimental setup to compare the accuracy of the various methods with varying sample size.

Cluster separability in stability simulations show here using tSNE. Data type shown in the left panel contains noise from

N (µ = 0, σ = 1.5) distribution, while the one on the right has noise from N (µ = 1, σ = 1) distribution.
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Figure S4: Effect of sample size on the accuracy of the various methods. Datasets were created by removing the

same random fraction of samples from both data type. We plot the ARI scores for 100 repetitions at each data point.
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Figure S5: SUMO identifies a subgroup of patients with significant differential survival in the TCGA-OV dataset.

(A) shows the KM analysis of the clusters identified by SUMO, and (b) shows the distribution of the patients based on

the subtypes identified by using mRNA dataset.
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Figure S6: Results of benchmark evaluation using GBM dataset. Vertical line indicates p-value equal 0.05. Each

method was run 10 times on this dataset using random seeds as input.
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Figure S8: PA-like samples in subtype 2 compared to other samples in subtype 2 and PA-like samples assigned

to other subtypes. (A) 18 of the 26 PA-like samples are assigned to Subtype 2 by SUMO. (B) The distribution of

pairwise similarity between samples, calculated from euclidean distances. Label A,B,C in the x-axis point to sets of samples

in (A). PA-like samples assigned to subtype 2 are more similar to other samples assigned to Subtype 2, when data from

mRNA and miRNA are included in the analysis.
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of TCGA-GBMLGG which shows the similarities between Subtype 2 and GBMs.

1st data type

final 
cluster labels

1

A

C

A1

A2

2nd data type

B

2

3

2

3

3

1 2 3

A1 H HTS1

cluster label extraction

A2 H HTS2

higher values lower values

Figure S10: Illustrative description of factorization. (A) Two similarity matrices A1 and A2 display complementary

sample-sample similarity in both data types. (B) Each similarity matrix is tri-factorized in such a way that H matrix

is shared across the data types and afterward used for cluster label extraction. Data type specific Si matrices display

relationships between clusters. (C) Final cluster labels for samples are extracted by inspecting columns containing row-wise

maximum values of H matrix.

27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.10.244343doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.244343
http://creativecommons.org/licenses/by/4.0/


++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++

+++++
+

+++
+

++
+ ++

+ +

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
++++

+
+

+
+
++

+

+p < 0.0001

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000

Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

A

+

+

++ +

+
++

+

+
++++

+

+

p < 0.0001

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000

Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

B +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++

++++

+ + +

++++++++++++++++++++++++++++++++++++++++++
+
+
+++++++

++
+++

+

+ +

p < 0.0001

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000

Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

C

+ +histologic_grade=G2 histologic_grade=G3

Figure S11: There is a significant difference in survival within the subtypes based on tumor grade Here we show

the samples assigned to (A) G-CIMP-high, (B) Mesenchymal-like, and (C) Codel subtypes and show that KM analysis

finds significant differences in survival based on the assigned tumor grade.
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Figure S12: The top three features with the potential to be biomarkers for Subtype 2. Here we show the violin

plot of the beta values for the probes with the highest predictive values, as identified on running the interpretation module

in SUMO.
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Figure S13: SUMO can identify one of the stable solutions after 20-30 repetitions. Here, each facet shows the

PAC and CCC curves (the minimum, median and the maximum value of those metrics are shown for each ”number of

clusters”) as the number of repetitions of the solver is increased. SUMO identifies either 10 or 11 as the optimal number

of clusters when a small number of repetitions are run. As the number of repetitions increase, both 10 and 11 emerge as

equally stable solutions. The horizontal lines correspond to values of 0.1 and 0.95.

29

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.10.244343doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.244343
http://creativecommons.org/licenses/by/4.0/


●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.09 0.1

0.05 0.06 0.07 0.08

0.01 0.02 0.03 0.04

4 8 12 4 8 12

4 8 12 4 8 12

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Number of clusters

m
et

ric

metric

●

●

CCC

PAC

Figure S14: SUMO is stable for a wide fraction of samples that are removed in a single repetition. Here, each

facet shows the PAC and CCC curves (the minimum, median and the maximum value of those metrics are shown for each

”number of clusters”) as the fraction of samples that are removed in each of repetitions of the solver is varied. SUMO

identifies either 10 or 11 as the optimal number of clusters as the fraction is change from 1% to 10% of the samples. The

horizontal lines correspond to values of 0.1 and 0.95.
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