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APPENDIX I. SUPPLEMENTARY METHODS

Origin of the experimental medaka populations

Our start medaka populations descended from 100 parents wild-caught in Kiyosu (Toyohashi, Aichi

Prefecture,  Japan)  in  June 2011. These 100 breeders  were brought  to  the Centre  de Recherche en

Ecologie  Expérimentale  et  Prédictive  near  Paris,  France  (CEREEP  –  ECOTRON  Île-de-France,

www.cereep.ens.fr), and maintained in groups of 20 individuals in five 20 L aquariums where they

mated randomly.  Eggs were collected from July to September 2011 and incubated in  Petri  dishes.

Hatched larvae were randomly assigned to 12 circular outdoor ponds (3.57 m diameter, 1.2 m deep) at

a density of about 160 larvae per pond which, we assumed, was sufficient to prevent founder effects.

Prior to medaka introduction, the 12 ponds were bottom-coated with a 5 cm layer of Loire River sand,

filled  with  tap  water  and  mildly  enriched  with  a  plant  fertilizer.  After  a  few  weeks  of  algal
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development, tanks were seeded with a diverse community of zooplankton collected from surrounding

water  bodies.  Medaka  introduction  was  performed  after  ponds  had  reached  a  clear-water  state

indicating algal control by zooplankton. After introduction, two pairs of floating plastic brushes were

placed in each tank to provide fish with a spawning substrate and shelter for larvae. Afterwards, ponds

received only rain water  and aerial  deposits.  Each pond was covered  with a  net  to  prevent  avian

predation, and outlets were secured with a stainless steel filter to prevent any fish or egg escapement. 

Monitoring medaka food in ponds

In 2012, we measured the effect of medaka fishing in March on zooplankton and filamentous algae,

which are primary food sources for medaka in ponds, during the following months. In each pond on 11

dates  (April  11th and  27th,  May 9th and  23rd,  June  6th and  13th,  July  4th and  18th,  August  22nd and

September 18th), zooplankton was sampled from twelve, 2 L water-column samples homogeneously

spread across the pond. The resultant 24 L were filtered on a 50 µm filter and the retained zooplankton

were  fixed  in  99%  ethanol  before  subsequent  enumeration  of  rotifers  (Asplanchna sp.  vs.  other

rotifers),  Copepod  nauplii,  copepodite  stages of calanoid and cyclopid Copepods,  and Cladocerans

using either a binocular microscope, the ZooScan (Gorsky et al. 2010) or the FlowCam (Sieracki et al.

1998). Percentage of pond surface covered by filamentous algae was visually estimated by multiple

observers on 5 dates in 2012 (May 9th, September 18th and 24th, October 9th and 23rd) and 2 dates in

2013 (May 22nd and July 12th). 

Feeding of F1 progeny in the laboratory

In  the  low-food  environment,  medaka  were  fed  once  every  second  day  with 2  mL of  a  solution

containing nauplii of Artemia salina (INVE Aquaculture SEP-Art cysts) providing 8.2 ± 0.7 (mean ±

SD) mg dry weight of  nauplii (assuming a 40% dry weight yield from cysts from INVE technical

sheets), alternated with dry food (Skretting Gemma Micro, see below). In the high-food environment,
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medaka  were  fed  twice  daily,  once  with  nauplii and  once  with  dry  food.  In  the  medium-food

environment, medaka were fed once daily alternating nauplii and dry food.

Dry  food  doses  (measured  with  volumetric  spoons)  and  pellet  sizes  were  adjusted  during  fish

development  to  fit  with  the  ontogenetic  increase  in  energy  needs  and  prey  size.  We  computed

theoretical daily needs in dry food mass per fish as M (a)×0.30 (M (a)/M b)
−0.25 , where M (a) is

individual fish body mass at age a (as estimated from previous laboratory data on mass-age relationship

in Renneville et al. 2020), M b is individual fish body mass at birth, and the -0.25 exponent follows

from the metabolic theory of ecology (Brown et al. 2004). To roughly follow these theoretical needs,

medaka received daily 2, 3 and 7 mg of dry food from ages 0 to 40, 40 to 60, and 60 days-post-hatch

(dph) onwards, respectively. Pellet size (µm) was 100% 150, 50% mixture of 150-300 and 100% 300

from ages 0 to 20, 20 to 40, and 40 dph onwards, respectively.

Statistical analyses

Fishery selection in ponds

We estimated  the  relationship  between individual  standard  body length  and  probability  to  survive

through the fishery using a Bernoulli GLMM with a logit link function:

y i∼B( p i)

ln(
pi

1−pi
)=α0+αk [i ]+(β0+βk [ i])Sdli

(
αk

βk )
∼N ((00) ,(σα ρσασβ

ρσβσα σβ ))
(2),

where  B is  the  Bernoulli  distribution,  subscripts i and k index  individuals  (n =  3970)  and

sampling events, respectively, to which individuals belong, and ln is the natural logarithm. There
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were n = 6 fished populations and n = 5 sampling years, yielding k=1,2…30  sampling events. Eq.

2 indicates that we modelled the intercept and slope of the survival-length relationship as normally-

varying  among  sampling  events k ,  including  a  correlation  parameter ρ between  intercept  and

slope. Parameter estimates α0  and β0  from Eq. 2 define a mean size-dependent survival function

as plotted in Fig. 3a in the main text.

Medaka aging and population dynamics in ponds

Medaka juveniles are too small to be tagged and, unlike in Japan (Terao 1985; Edeline et al. 2016), no

winter check was deposited in medaka otoliths in our experimental populations. We therefore relied on

an analysis of body length-frequency distributions to infer medaka age using model-based clustering in

the mclust R package (Scrucca et al. 2016). Medaka longevity ranges from one year in the wild in

Japan to five years in the laboratory (Edeline et al. 2016 and references therein). Therefore, we allowed

for one to five Gaussian component models and further allowed for different variances between the

Gaussian components. Then, we selected the optimal model and corresponding number of Gaussian

components according to Bayesian Information Criterion, as returned by the mclustBIC function (the

optimal model was that yielding the highest BIC value).

We  estimated  medaka  population  dynamics  in  ponds  through  their  stock-recruitment  relationship,

where stock in the total number of fish in March (i.e.,  number of age 0+ and 1+ individuals) and

recruitment is the number of age 0+ individuals in Autumn of the same year. To estimate recruitment,

we fitted a mixture of two Gaussian distributions to individual standard body lengths Sdl :
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Sdli∼∑
j=1

J

∑
k=1

K

π j , k N (μ j , k ,σ j
2
)

μ2, k∼N (μH [k ] ,σ
2
)

μ1 , k=δkμ2 , k

δk∼U (0,1)

(1a),

where i indexes individuals (n = 17908), j indexes age groups (age 0+ vs. 1+ such that J = 2),

k indexes a sampling event, i.e., indexes one population in a particular year and month ( K = 109

sampling events), N is the normal distribution, and U is the uniform distribution. H [k ] indexes

the harvest treatment (harvested  vs. non harvested) associated with sampling event k . π j ,k is the

proportion of age j individuals at each sampling event k such as for each k : 

π j≥0,∑
j=1

J

π j=1 (1b).

Indexes in line 1 in Eq. 1a show that our model estimated a mean standard body length separately for

each age group at each sampling event, while body length variance was assumed to vary only with age.

Line 2 in Eq. 1a shows that we assumed the mean standard body length at age 1+ at each sampling

event, μ2,k , to be a normally-distributed random variable with higher-hierarchical mean specific to

each harvest treatment, because harvesting was expected to restrict the maximum body size of medaka.

Lines 3-4 in Eq. 1a show that mean standard body length of age 0+ medaka at each sampling event,

μ1, k ,  was  estimated  as  proportional  to μ2,k with  a  proportionality  constant δk following  a

uniform distribution between 0 and 1. Model 1 provided us with MCMC (see below) age samples for

each individual fish in the dataset, allowing us to compute age-specific exploitation rates by the fishery

that  were on average 58% (95% credible interval 34-72 %) on age 0+ juveniles,  and 96 % (95%

credible interval 92-98 %) on age 1+ adults.
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Model (1) above allowed us to estimate the absolute number Rk of age 0+ medaka recruits at each

November sampling event k (n = 60 November sampling events). We then visualized the strength of

negative density-dependence in pond medaka populations by plotting (Fig. 3b in the main text) Ricker

“stock-recruitment” relationships between Rk and the number Sk of fish released in March (stock

of spawners):

R k∼P(λk )

ln(λk)=ln(Sk )+αYear [k ]+βYear[ k ]Sk

(3),

where P is the Poisson distribution and Year [k ] indexes indicate that one Ricker curve was fitted

for each year from 2012 to 2016. 

Larvae counts

Larvae  counts L were  highly  overdispersed  and  followed  a  zero-inflated  negative  binomial

distribution, which we modelled as (Ntzoufras 2009): 

Li∼NB(ϕi ,r H [i])

ϕi=
r H [ i]

r H [ i]+λ i(1−θi)

ln(λi)=αk [i]+βH [ i]+γH [i ]Dayi+δH [ i]Day i
2

αk[i ]∼N (0,σα
2 )

 (4a),

where NB is the negative binomial distribution with success probability ϕ and number of failures

r , and subscript i indexes counts from a given observer in a given population on a given sampling

day (n = 2004 counts). Lines 3 and 4 in Eq. (4a) show that we modelled positive (non-zero) counts λ
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as a harvest treatment-specific, 2nd order polynomial of the day of year (scaled to 0 mean), with a

normally-distributed random effect of k corresponding, as above, to a given population in a given

year (n = 36).

The θ latent variable for absence of larvae was modelled as a Bernoulli process being a 2nd order

polynomial of the day of year :

θi∼B(ψi)

ln(
ψi

1−ψi

)=ϵ+ζDayi+ηDay i
2  (4b),

where B is the Bernoulli distribution with probability of larvae absence ψ .

Line 2 in Eq. 4a shows that we allowed for the r parameter, which enters in the computation of the

variance of the distribution (Ntzoufras 2009), to be different among the two harvest treatments H .

Harvest  treatment-specific  mean  larvae  count  is  given  by E(LH)=λ̄H (1−θ̄) and  variance  by

var (LH )=λ̄H (1−θ̄)(λ̄H (1−θ̄)+rH ) . In Table S1, we computed the dispersion index in each harvest

treatment as DI H=E(LH)/ var (LH )  (Ntzoufras 2009).

Zooplankton and filamentous algae in ponds

We estimated the effect of medaka fishing on zooplankton abundances (n = 960 observations) using a

zero-inflated negative binomial GLMM (e.g., model 4 described above). The linear predictor was the

same for  both  positive  counts  and the  latent  variable  for  absence,  and included as  fixed effects  a

medaka fishing-by-zooplankton taxon interaction (n = 2*6 = 12 levels), and as normally-distributed

random intercepts the pond (n = 12 levels), sampling date (n = 11 levels), and enumeration method (n =

3 levels). We estimated an effect of medaka fishing on % of pond covered by filamentous algae (n =
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234 observations) using a negative binomial GLMM that included as fixed effect medaka fishing (n = 2

levels) and as random intercepts the pond (n = 12 levels), sampling date (n = 7 levels) and the observer

(n = 9 levels).

Somatic growth rates and trajectories of F1 progeny in the laboratory

We estimated harvest-by-food interactions on medaka growth trajectories using a 2nd order polynomial

regression of standard body length Sdl on age (measured in days-post-hatch):

Sdli∼N (μi ,σi
2
)

μi=αP [i]+βH [ i]+(γH [i] , F [i ]+δP [i])∗Agei+η Agei
2

αP [i ]∼N (0,σα
2
)

δP [i ]∼N (0,σδ
2
)

ln (σi
2
)=ΑH [i] , F [i ]+ΒH [ i] ,F [i] Agei

(5),

where i indexes length observations (n = 1144 observations from 104 individuals), H [ i] indexes

the  harvest  treatment  associated  with  observation i  (n =  2  levels), H [ i] , F [i ] indexes  the

interaction of harvest treatment and food environment (n = 2 * 3 = 6 levels), and P[ i] indexes the

parental breeding pair associated with observation i (n = 36 pairs), treated as a normally-distributed

random  effect  on  both  size-at-hatch α and  the  linear  somatic  growth  rate γ .  The  six  γ

parameters in Eq. 5 estimate the slope of the age effect on Sdl and provided somatic growth rates as

plotted in Fig. 5a of the main text. The random pair effects on somatic growth rate, δP , are shown in

Fig. S2.

In this model, we assumed both linear somatic growth rate γ and the regression of (ln-transformed)

residuals variance on age to be different among harvest treatments and food environments (lines 2 and
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5 in Eq. 5,  respectively).  In contrast,  size-at-hatch βH [i] was allowed to vary only due to harvest

treatment because food environments were applied only starting from 15 dph. 

Probabilistic maturation reaction norms of F1 progeny in the laboratory

Probabilistic maturation reaction norms (PMRNs) describe the probability that an immature individual

at a given age and size will mature during a given interval of time (Heino et al. 2002). Provided that

plasticity in the maturation process is captured by growth trajectories, PMRNs separate the effects of

evolution from plasticity on maturation. PMRNs have been extensively used to explore genetic effects

of exploitation on the maturation process in wild populations (Olsen et al. 2004; Heino & Dieckmann

2008). We fitted a Bernouilli model to individual medaka maturity (0 or 1) data y i , truncated so as to

keep only the first maturity event for each individual (Heino & Dieckmann 2008):

y i∼B(Μi)

ln(
Μi

1−Μi

)=αP[ i]+βH [ i]+γH [i ]Age i+δH [i ]Sdli

αP [i]∼N (0,σα
2
)

(6),

where Μ is maturity probability. Other subscripts or variables are as described in Eq. 5. The random

pair effects on maturation probability at an average age and length, αP , shown in Fig. S2.

Maturation rates of F1 progeny in the laboratory

Technically, the PMRN approach assumes that observations are made at regular time intervals and,

biologically, PMRNs assume that maturation is a discrete event. In the reality, however, observations

are often made at irregular intervals (e.g., we observed medaka at intervals ranging from 6 to 17 days,

10 days on average),  and maturation is  often the threshold phenotypic expression of a  continuous
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physiological  process  (Harney  et  al.  2013  and  references  therein).  To  bypass  these  problems,

maturation rate models were developed that are not sensitive to the periodicity of observations and can

more finely capture the physiological dynamics that underlie maturation  (Van Dooren  et al. 2005).

Harney  et  al.  (2013) have  shown  that  maturation  rate  models  may  be  approximated  by  fitting

maturation data to standard GLMs:

y i∼B(Μi)

ln(
Μi

1−Μi

)=ln(Δi)+αP [i ]+βH [i ], F [i ]+γ Agei+δ Sdli

αP [i]∼N (0,σα
2
)

(7),

where subscripts are similar to that described in Eq. 6, and the duration interval (days) between two

observations Δ is  included as  an offset  term.  We used this  approach to  estimate  harvest-by-food

interaction on medaka maturation rates, in complement with the PMRN approach described above. The

parameter β captures maturation rates (in logit of maturation probability day-1), as plotted in Fig. 5b

in the main text.

Predatory behaviour of F1 progeny in the laboratory

Counts Ci of number of prey eaten by individual medaka followed a zero-inflated negative binomial

distribution and were modelled similarly to larvae counts in model 4 above: 

Ci∼NB(ϕi , r H [ i] ,F [i])

ϕi=
r H [ i] , F [i]

r H [ i] , F [i]+λ i(1−θi)

ln(λi)=α I [i ]+βH [i] , F [i ]

α I [i]∼N (0,σα
2
)

 (8a),
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where number of failures r and positive (non-zero) counts λ were both modelled as being different

among harvest treatments H in each food environment F , while α I [i] was a normally-distributed

random individual effect on λ (n = 104 individuals). The θ latent variable was modelled as:

θi∼B(ψi)

ln (
ψi

1−ψi
)=γ+δ I [ i]

δI [i ]∼N (0,σδ
2
)

 (8b),

where δ I is a normally-distributed random individual effect. 

Analysis of deviance

We tested for the overall statistical significance of harvest-by-food interactions on somatic growth and

maturation in the laboratory using analyses of deviance. Specifically, we fitted the following models:

Sdli∼N (μi ,σ
2
)

μi=αH [ i]+(βH [i ]+γF [i ]+δH [i] , F [i ])Agei+ϵ Agei
2

(9), and

y i∼B (Μi)

ln (
Μi

1−Μi

)=αH [ i]+βF [i]+γH [ i] ,F [i]+(δH [i]+ϵF [i ]+ζH [ i] , F [i])Agei+(ηH [i ]+θF [ i]+ιH [i ], F [i ])Sdli

(10),

where variables and indexes are as in models (5) and (6).

Parameter estimation

Models  3,  9  and  10  were  fitted  using  maximum  likelihood  (glm function,  “quasibinomial”

distribution for Eq. 10) in R 3.6.1 (R Core Team 2019). Analysis of deviance for models 9 and 10 was

performed with the  anova function  using an F test  to evaluate the significance of each predictor
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separately  (Table  S3). Models  for  the  abundance  of  zooplankton  and  for  %  of  pond  covered  by

filamentous algae were fitted by maximum likelihood using the  glmmTMB library of the R software

(Brooks et al. 2017).  Other models were fitted by Markov chain Monte Carlo (MCMC) in JAGS 4.2.0

(Plummer 2003) through the jagsUI package (Kellner 2019). To ease model convergence and avoid

slope-intercept correlations, all numerical predictors were scaled to zero mean and, in case of Bernoulli

distributions with logit links, further standardized to 0.5 standard deviation (Gelman et al. 2008). For

each model, we ran three independent MCMC chains thinned at a period of 5 iterations until parameter

convergence was reached, as assessed using the Gelman–Rubin statistic (Gelman & Rubin 1992). 

Parameter estimates for models 4-6 and 8 are provided in Table S2. Statistical significance of harvest-

and food-treatment effects reported in the main text was assessed from the posterior distributions of

parameter differences in a test equivalent to a bilateral  t test. In these tests, the MCMC P-value was

twice the proportion of the posterior for which the sign was opposite to that of the mean posterior

value. Priors were chosen to be weakly informative. In model 1 we used a Dirichlet prior for π j ,k and

prevented label switching by assigning age class 0+ to fish shorter than 8 mm and age class 1+ and

older to fish longer than 35 mm (Chung et al. 2004). 

We assessed goodness of fit of our models by using a Bayesian P-value (Gelman et al. 1996). Briefly,

we computed residuals for the actual data as well as for synthetic data simulated from estimated model

parameters  (i.e.,  residuals  from  fitting  the  model  to  ‘‘ideal’’ data).  The  Bayesian  P-value  is  the

proportion of simulations in which ideal residuals are larger than true residuals. If the model fits the

data well, the Bayesian P-value is close to 0.5. Bayesian P values for our models ranged from 0.47 to

0.57 and were on average 0.51, indicating excellent model fit to the data.
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APPENDIX II. NATURAL SELECTION ON BODY SIZE IN MEDAKA

We suggest that natural selection favoured small-bodied medaka in the wild, but large-bodied medaka

in ponds. In the wild, medaka starve to death during their first reproductive bout while reaching age 1+,

suggesting  that  small-bodied  juvenile  medaka  exclude  their  large-bodied  parents  in  exploitative

competition  for  food  (Edeline et  al.  2016 and references  therein).  This  is  presumably  because the

complex  habitat  structure  and  relatively  low  population  densities  that  prevail  in  the  wild  reduce

interference and make competition to operate mainly through food exploitation, in which case a small

body size provides fish with a strong competitive advantage (Persson et al. 1998; Persson & De Roos

2006).  This  natural  selection  regime  in  the  wild  was  shifted  in  our  experimental  ponds,  where

overcompensating stock-recruitment curves mediated by increased juvenile mortality demonstrate that

large-bodied adults dominated small-bodied juveniles. Compared to the wild, ponds had drastically

reduced  habitat  complexity  and  probably  also  higher  population  densities.  These  environmental

changes likely shifted competition to operate mainly through interference, which was shown to favour

larger body sizes in multiple systems (Post et al. 1999; Calsbeek & Smith 2007; Reichstein et al. 2013;

Le Bourlot  et al. 2014). In fish, interference is often associated with cannibalism which also favours

larger body sizes (Claessen et al. 2000, 2004).
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APPENDIX III: SUPPLEMENTARY RESULTS

Table.  S1.  Inference of number of age classes in pond medaka populations from body length

distributions using model-based clustering. Models including one to five Gaussian components were

fitted to body-lengths separately for each year and harvest treatment. The optimal number of Gaussian

components was that corresponding to the model returning the highest BIC (Scrucca et al. 2016). 

Harvest treatment Year

Harvested

2012 2
2013 2
2014 2
2015 1
2016 2

Unharvested

2012 2
2013 2
2014 2
2015 2
2016 2

Optimal 
number of 
Gaussian 

components
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Table S2. Structure and MCMC parameter estimates for models 4-6 and 8. The MCMC P-value is

twice the proportion of the posterior for which the sign was opposite to that of the mean posterior

value. MCMC P-values are not relevant for variance parameters that are constrained to be non-zero. 

Continues on the next page.

Response N Distribution Link Effect

2004

logit
Int. -8.254 1.385 0.000
Slope of day -6.703 1.008 0.000
Slope of day squared 10.356 1.800 0.000

ln

Int. no-harvest 2.167 0.250 0.000
Int. harvest 1.250 0.251 0.000
Slope of day no-harvest 0.292 0.080 0.000
Slope of day harvest 2.211 0.141 0.000
Slope of day squared no-harvest -0.472 0.127 0.000
Slope of day squared harvest -1.638 0.182 0.000
Dispersion index no-harvest 5.372 1.125
Dispersion index harvest 3.996 0.780

0.977 0.133

1144 Gaussian Identity

Int. no-harvest 4.410 0.106 0.000
Int. harvest 4.548 0.099 0.000
Slope of age no-harvest low food 0.224 0.005 0.000
Slope of age harvest low food 0.210 0.005 0.000
Slope of age no-harvest medium food 0.250 0.005 0.000
Slope of age harvest medium food 0.231 0.005 0.000
Slope of age no-harvest high food 0.263 0.005 0.000
Slope of age harvest high food 0.248 0.004 0.000
Slope of age squared -0.001 0.000 0.000
Int. residual variance no-harvest low food -0.012 0.149 0.921
Int. residual variance harvest low food -0.547 0.123 0.000
Int. residual variance no-harvest medium food -0.605 0.149 0.000
Int. residual variance harvest medium food -0.377 0.138 0.007
Int. residual variance no-harvest high food -0.534 0.130 0.001
Int. residual variance harvest high food -0.296 0.151 0.063
Slope of age residual variance no-harvest low food -0.005 0.003 0.063
Slope of age residual variance harvest low food 0.011 0.002 0.000
Slope of age residual variance no-harvest medium food 0.000 0.003 0.985
Slope of age residual variance harvest medium food 0.010 0.002 0.000
Slope of age residual variance no-harvest high food 0.011 0.002 0.000
Slope of age residual variance harvest high food -0.011 0.003 0.001

0.014 0.002
0.303 0.069

Mean 
estimate

SD of the 
estimate

MCMC P-
value

Larvae 
count

Bernoulli in 
ZINB

Negative 
binomial in 

ZINB

SD of year by pond effect (random)

Standard 
body length

SD of parental pair effect on int. (random)
SD of parental pair on slope of Age effect (random)
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Table S2 continued.

Response N Distribution Link Effect

591 Bernoulli logit

Int. no-harvest low food -8.372 0.922 0.000
Int. harvest low food -6.477 0.723 0.000
Int. no-harvest medium food -6.009 0.685 0.000
Int. harvest medium food -5.905 0.626 0.000
Int. no-harvest high food -6.063 0.735 0.000
Int. harvest high food -6.544 0.676 0.000
Slope of age 1.554 0.908 0.090
Slope of length 7.247 1.164 0.000

1.469 0.355

Prey count 311

logit
Int. -1.960 0.541 0.000

0.903 0.534

ln

Int. no-harvest, low food 2.035 0.208 0.000
Int. harvest, low food 1.848 0.231 0.000
Int. no-harvest, medium food 1.928 0.245 0.000
Int. harvest, medium food 0.986 0.286 0.001
Int. no-harvest, high food 0.357 0.270 0.188
Int. harvest, high food 0.672 0.309 0.025
Dispersion index no-harvest, low food 2.388 0.722
Dispersion index harvest, low food 5.994 2.141
Dispersion index no-harvest, medium food 6.509 3.857
Dispersion index harvest, medium food 5.012 2.357
Dispersion index no-harvest, high food 2.033 0.710
Dispersion index harvest, high food 5.708 2.642

0.681 0.136

Mean 
estimate

SD of the 
estimate

MCMC P-
value

Maturation 
probability

SD of parental pair effect on int. (random)
Bernoulli in 

ZINB SD of individual effect (random)

Negative 
binomial in 

ZINB

SD of individual effect (random)

310



Table S3. Effect of medaka fishing on medaka food in ponds. Zooplankton abundances are counts

per liter and abundances of filamentous algae are % of pond surface covered. Predictions were obtained

from statistical models described in the SI Appendix I. There was a large variability in zooplankton

counts due to the effects of the pond, sampling date and enumeration method, and the positive effect of

medaka fishing was statistically significant on  Asplanchna sp. (probability of presence, p = 0.033),

copepodites of calanoids (non-zero abundances, p < 0.001) and Cladocerans (non-zero abundances, p <

0.001) before June but not after  (results not shown), probably because of medaka recruitment that

increased medaka density in unharvested ponds. The effect of medaka fishing on filamentous algae was

statistically significant (p < 0.002).

Taxa

Mean SE
Harvested 14.2 15.5
Unharvested 8.5 9.6
Harvested 161.6 150.0
Unharvested 85.2 79.1

Cladocerans
Harvested 51.4 48.1
Unharvested 18.1 17.1
Harvested 2.7 2.6
Unharvested 3.2 3.1
Harvested 213.3 197.6
Unharvested 215.2 199.8

Small rotifers
Harvested 7018.9 6537.0
Unharvested 6939.2 6458.5

Filamentous algae
Harvested 18.5 11.5
Unharvested 1.3 0.8

Medaka 
treatment

Predicted
Count / L (zooplankton) or

% pond surface cover 
(filamentous algae)

Asplanchna sp.

Copepodites of 
calanoids

Copepodites of 
cyclopoids

Copepod nauplii
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Table  S4.  Analysis  of  deviance  for GLMs testing for the  harvest-by-food interaction  on life-

history traits in laboratory-born F1 medaka progeny. The “Deviance” column gives the reduction in

the residual deviance as each predictor is added in turn into the model.  The P-values compare the

reduction in deviance to the residual deviance in an F test.

Trait Distribution Link Predictor Df Deviance Resid. DF Resid. Dev F P-val

Body length Gaussian Identity

Harvesting 1 163 1130 20588 155 <0.0001
Food 2 658 1128 19929 312 <0.0001
Age 1 18086 1127 1843 17124 <0.0001
Age^2 1 469 1126 1374 444 <0.0001
Harvesting x Food 2 2 1124 1372 1 0.3282
Harvesting x Age 1 22 1123 1350 21 <0.0001
Food x Age 2 167 1121 1183 79 <0.0001
Harvesting x Food x Age 2 1 1119 1182 0 0.7160

Maturation Bernoulli Logit

Harvesting 1 0 589 528 0 0.5758
Food 2 6 587 522 6 0.0041
Age 1 135 586 387 253 <0.0001
Length 1 57 585 329 107 <0.0001
Harvesting x Food 2 7 583 323 6 0.0022
Harvesting x Age 1 3 582 320 5 0.0195
Food x Age 2 11 580 309 11 <0.0001
Harvesting x Length 1 0 579 308 0 0.5630
Food x Length 2 2 577 307 2 0.2142
Harvesting x Food x Age 2 15 575 292 14 <0.0001
Harvesting x Food x Length 2 1 573 290 1 0.3197
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Fig. S1. Experimental design. In 2012, 12 independent populations of medaka were introduced in 12,

10 m2 outdoor ponds and maintained naturally with no added food. Each year from 2012 to 2016, the

12 populations were sampled (98% catch rate) in March and November, and each fish was individually

weighed. Each year in March in six populations (shaded), only the 19% smallest-bodied individuals

from  the  catch  were  released,  while  all  individuals  were  released  in  the  other  six  populations

(unshaded). Each year in November, all fish were released after weighing, except in November 2016

when a random sample of 6-10 fish (mean 9.6) from each population was kept and transferred to the

laboratory to serve as parents in a common garden experiment. In 2017, parents originating from the

same population were mated and their progeny was distributed in individual tanks under three food

environments  (Low,  Medium,  High),  where  we  measured  their  individual  somatic  growth  rate,

maturation trajectory, and foraging rate.

OUTDOOR
PONDS

Harvesting 6 out of 
12 populations

COMMON GARDEN IN 
THE LABORATORY

1-4 parental pairs sampled from 
from each pond population

LOW-FOOD ENVIRONMENT
1-2 individual F

1
 progeny from each pair

Feb. - May 2017

MEDIUM-FOOD ENVIRONMENT
1-2 individual F

1
 progeny from each pair

HIGH-FOOD ENVIRONMENT
1-2 individual F1 progeny from each pair

● individual growth trajectory 
● Individual maturation trajectory
● Individual foraging rate

2012-2016

Nov. 
2016
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Fig. S2. Random effects of breeding pairs on

the somatic growth rate (top) and maturation

probability (bottom) of F1 medaka progeny in

the  laboratory. Effects  were  estimated  by

MCMC from models 5 and 6, as described above.

Points show median MCMC estimates with 95%

credible intervals. Effects for somatic growth rate

are in mm day-1 and effects on maturation are in

logit  (probability).  Symbols  correspond  to  the

pond population  of  origin (coded on the x axis

from A to L).  Populations A, D, F,  G, J  and K

were  harvested  while  other  populations  were

unharvested.
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