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The resources and expertise needed to use Deep Learning (DL)
in bioimaging remain significant barriers for most laboratories.
We present ZeroCostDL4Mic, a platform simplifying access to
DL by exploiting the free, cloud-based computational resources
of Google Colab. ZeroCostDL4Mic allows researchers to train,
evaluate, and apply key DL networks to perform tasks includ-
ing segmentation, detection, denoising, restoration, resolution
enhancement and image-to-image translation. We demonstrate
the application of the platform to study multiple biological pro-
cesses.
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Despite the enthusiasm and innovations fuelled by DL tech-
nology, the need to access powerful and compatible re-
sources, install multiple computational tools, and modify
code to train neural networks all lead to a significant acces-
sibility barrier that is difficult to cross by scientists without a
strong background in computer science. This includes most
biologists, clinicians, pathologists and microscopy users. To
perform a specific bioimage analysis task, a typical DL
pipeline requires users first to train a neural network with ap-
propriate training data. Once trained, the DL network can be
applied to analyze images that are similar to those used dur-
ing training. Training is the crucial part of the DL pipeline
as it will dictate the specificity and performance of the DL
network (1, 2). However, it is also a challenging aspect of the
process as it requires specialized knowledge and access to
specialised computational resources. As a result, researchers
may find it easier to use pre-trained networks available on-
line to process their images. This approach may alleviate the

Fig. 1. Overview of ZeroCostDL4Mic. Workflow of ZeroCostDL4Mic, featuring
data transfer through Google Drive, plus training, quality control and prediction via
Google Colab. After running a network, both trained models and prediction results
can then be downloaded to the user’s machine.

onerous computational requirement of training and may even
produce visually appealing imaging data. However, it has
become clear that using pre-trained networks without appro-
priate additional training on the specific data of interest (a
process known as transfer learning (3)), can lead to artifac-
tual and misleading predictions (Supplementary Note 1).
Here, we present ZeroCostDL4Mic, an easy-to-use deploy-
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Fig. 2. Overview of the bioimage analysis tasks currently implemented within
ZeroCostDL4Mic platform. Datasets from top left to bottom right: U-Net – ISBI
2012 Neuronal Segmentation Dataset16, Stardist – nuclear marker (SiR-DNA) in
DCIS.COM cells, YOLOv2 – brightfield in MDA-MB-231 cells, N2V – actin label
(paxillin-GFP) in U-251-glioma cells, CARE – actin label Lifeact-RFP in DCIS.COM
cells, Deep-STORM – actin-labeled glial cell, fnet – brightfield and mitochondrial
label TOM20-AlexaFluor 594 in HeLa cells, pix2pix – actin label Lifeact-RFP and
nuclear labels in DCIS.COM cells, CycleGAN – tubulin label in U2OS cells. All
datasets are available through Zenodo or as indicated in the GitHub repository.

ment DL platform which considerably simplifies the use of
DL for microscopy (Supplementary Video 1). Importantly,

ZeroCostDL4Mic allows researchers with little or no cod-
ing expertise to train (and re-train), validate and use DL net-
works (Figure 1). In parallel, it guides researchers to ac-
quire more knowledge, to experiment with optimizing DL
parameters and generate the training data necessary for DL.
It uses Google Colab which provides the free, cloud-based
computational resources needed for each step in the DL
pipeline. We currently offer solutions to multiple powerful
bioimage analysis tasks made possible with DL within Zero-
CostDL4Mic (Figure 2 and Supplementary Video 2). These
include image segmentation and object detection (using U-
Net (4–6), StarDist (7, 8) and YOLOv2 (9)), image denois-
ing and restoration (using CARE (10) and, Noise2Void (11)),
super-resolution microscopy (using Deep-STORM (12)) and
image-to-image translations (using Label-free prediction -
fnet (13), pix2pix (14) and CycleGAN (15)) (see Supple-
mentary Note 2, Supplementary Fig. 2-7 and Supplementary
Video 2-11).
In practice, ZeroCostDL4Mic is a collection of self-
explanatory Jupyter Notebooks, featuring an easy-to-use
graphical user interface (GUI) (Supplementary Fig. 8) that
requires only a web browser and a Google Drive account for
a user to run any of our DL-based tasks. Jupyter Notebooks
can efficiently and interactively run Python code, currently
the default language to deploy DL applications. All calcu-
lations are performed in the cloud, circumventing the need
to purchase or install graphical processing units (GPUs) and
associated software.
Using ZeroCostDL4Mic does not require prior knowledge in
coding. Researchers can, in a few mouse clicks and aided
by a simple workflow, install all needed software dependen-
cies, upload their imaging data and run networks for training
and prediction (Supplementary Video 1). While the underly-
ing code is hidden by default, it remains accessible, allowing
users to learn, explore, and edit the notebooks’ programmatic
structure.
ZeroCostDL4Mic notebooks share a common workflow to
promote easy adoption and good practice in DL, encouraging
users to use models trained on their data. Indeed, before de-
ploying trained models on unseen data, users can easily test
their quality (see Supplementary Note 3 and Supplementary
Fig. 9 and 10). This is fundamental in optimizing the net-
work performance for a particular application, determining
its limitations and preventing the significant introduction of
artifacts, a commonly raised concern for DL applications in
microscopy (1, 2). In practice, we implemented a quantitative
quality control step in all notebooks, which allows the assess-
ment (discussed in Supplementary Note 3) and improvement
of model performance (Supplementary Fig. 11).
Additionally, we enabled several important functionalities
that facilitate and improve the applicability of our DL ap-
proaches. In particular, we implemented: (1) automated data
augmentation which can artificially expand the image diver-
sity of a dataset, especially beneficial when only small train-
ing datasets are available (Supplementary Note 4 and Supple-
mentary Fig. 12 and 13); (2) transfer learning (3), allowing to
take advantage of pre-trained networks (from so-called model
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“zoos”) by re-using previously learned features within these
models and therefore speeding up and improving the train-
ing process (see Supplementary Note 5 and Supplementary
Fig. 14 and 15); and (3) batch processing (predictions) of
unseen data to streamline analysis once a satisfactory model
has been obtained. It is important to note that trained models
can also be downloaded and used outside ZeroCostDL4Mic
(e.g., StarDist in Fiji(16)).

Via Google Colab, ZeroCostDL4Mic provides free access to
the high-performance computational resources needed to run
the large range of DL networks implemented here (Supple-
mentary Note 2 for networks and Supplementary Note 6 for
resources). For each featured network, we provide an exam-
ple dataset that researchers can use to test and learn the basis
of its workflow. For these datasets, we show that the corre-
sponding training sessions only take a few minutes to a few
hours (Supplementary Table 2), allowing the generation of
high-performance DL models, producing the inference out-
puts shown in Figure 2 and the Supplementary Figures and
Movies (Supplementary Fig. 2-6 and Supplementary Video
2-11. We also highlight the versatility and power of Zero-
CostDL4Mic by sequentially combining multiple DL tasks
such as image-to-image translation and tracking, and by inte-
grating it within larger image analysis pipelines to enable, for
instance, automated cell tracking(17) (Supplementary Fig.
7). Therefore, we envision ZeroCostDL4Mic constitutes an
easily accessible and adaptable starting point to the use and
deployment of DL-based bioimage analysis.

ZeroCostDL4Mic complements current community efforts to
simplify access to DL in microscopy, e.g., ImJoy (18) and
ilastik (19) or integration projects of DL into Fiji/ImageJ
(7, 8, 10, 16, 20) it also substantially differs from these so-
lutions by providing a single simple platform to carry out
the necessary end-to-end DL workflow: install the various
computational components, train a model using custom data,
quantitatively validate the performance of the model and de-
ployment on new data. By allowing training on custom data,
we provide an alternative to the use of inappropriate pre-
trained models, which often do not correctly represent the
types of data researchers will want to analyze (Supplemen-
tary Note 1 and Supplementary Fig. 1).

By bringing previously published methods into a streamlined
format that allows easy, cost-free access and customized use
of DL in microscopy, we believe this resource is an impor-
tant step towards widening the use of DL approaches be-
yond the community of computer scientists to the laborato-
ries that generate the imaging data. In parallel, it enables
researchers to improve their understanding of DL and experi-
ment with optimizing DL parameters and choosing appropri-
ate networks for a specific application. These steps are es-
sential to both exploit the benefits and understand the limita-
tions of DL approaches in research. We envision that the tem-
plates presented here can be used by DL developers to show-
case their own network architectures in a unified and repro-
ducible framework (Supplementary Note 7). This will ensure
the rapid dissemination of novel technologies and provide
consistent user experience for reproducible and comparative

studies of DL approaches. Altogether, ZeroCostDL4Mic has
the potential to dramatically accelerate the uptake of DL for
new users and promotes their capacity to use increasingly so-
phisticated and powerful imaging analysis strategies.

Availability. ZeroCostDL4Mic is available as Supplemental
Software or can be accessed from our GitHub page. This
resource is fully open-source, providing users with tutorials,
Jupyter Notebooks for Google Colab, and many real-life ex-
ample datasets for training and testing. The example datasets
are available for download in Zenodo (links provided in Sup-
plementary Table 1 and our GitHub page).
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