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Abstract

Bistability is a common mechanism to ensure robust and irreversible cell cycle
transitions. Whenever biological parameters or external conditions change such that a
threshold is crossed, the system abruptly switches between different cell cycle states.
Experimental studies indicate that the shape of the bistable response curve changes
dynamically in time. Here, we show how such a dynamically changing bistable switch
can provide a cell with better control over the timing of cell cycle transitions. Moreover,
cell cycle oscillations built on bistable switches are more robust when the bistability is
modulated in time. Our results are not specific to cell cycle models and may apply to
other bistable systems in which the bistable response curve is time-dependent.

Author summary

Many systems in nature show bistability, which means they can evolve to one of two
stable steady states under exactly the same conditions. Which state they evolve to
depends on where the system comes from. Such bistability underlies the switching
behavior that is essential for cells to progress in the cell division cycle. A quick switch
happens when the cell jumps from one steady state to another steady state. Typical of
this switching behavior is its robustness and irreversibility. In this paper, we expand
this viewpoint of the dynamics of the cell cycle by considering bistable switches which
themselves are changing in time. This gives the cell an extra layer of control over
transitions both in time and in space, and can make those transitions more robust.
Such dynamically changing bistability can appear very naturally. We show this in a
model of mitotic entry, in which we include a nuclear and cytoplasmic compartment.
The activity of a crucial cell cycle protein follows a bistable switch in each compartment,
but the shape of its response is changing in time as proteins are imported and exported
from the nucleus.

1 Introduction 1

Multistability is one of the clearest manifestations of nature’s inherent nonlinearity. A 2

multistable system can, under exactly the same conditions, be in different stable steady 3

states. Consider a ball moving on a hilly terrain under the influence of gravity, where 4

every valley corresponds to a stable state for the ball (Fig. 1A). When there are 5

multiple valleys, the ball’s initial position determines where it will end up. These valleys 6

can appear and disappear as the shape of the terrain changes. Another way of looking 7
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Fig 1. Bistability allows robust switching and is common in the cell cycle.
A) A clear example of bistability in a dynamical system occurs when a little ball moves
under the influence of gravity on a hilly terrain. Valleys correspond to stable steady
states. These can be created and destroyed under influence of an external parameter.
When a steady state disappears, the ball quickly transitions to another steady state. B)
Representation of the ball’s position as function of a parameter which determines the
shape of the terrain in Panel A. When the input increases beyond a threshold, the left
equilibrium position in Panel A disappears and the ball quickly moves to the other
stable position. C) In the cell cycle, bistable switches underlie some of the important
transitions and checkpoints.

at such a changing terrain is obtained by plotting the steady state position of the ball 8

(labeled output) in function of a parameter that determines the shape of the terrain 9

(labeled input) (Fig. 1B). Here, for low input, there is only one steady state (situation 10

1). By increasing the parameter, a new state appears and the system is said to be 11

bistable (situation 2). When the input crosses a threshold value, the initial stable valley 12

disappears and the ball is forced to move to the right valley (situation 3). This 13

transition is discontinuous, fast and irreversible. In between two stable states, there is 14

an unstable steady state (the maximum in Fig. 1A and the dashed line in Fig. 1B). The 15

points at which the stable and unstable steady state coalesce define the threshold values. 16

These points are also called saddle-node points in the language of bifurcation theory. 17

This simple mechanical example has equivalents in all sorts of physical and biological 18

systems, where Newton’s laws of motion and the hilly terrain are replaced by chemical 19

reactions, predator-prey interactions, heat transport or other mechanisms. In climate 20

and ecology studies, transitions to a new steady state are often called tipping 21

points [1, 2], and they are of special interest given current climate change. Bistability is 22

present on all scales, ranging from the global climate system [2] to a single cell [3]. The 23

genetic system involving the lac operon in an E. coli cell [4] allows bacteria to switch 24

between using glucose or lactose. Bistability in actin polymerization state enables a cell 25

to quickly and robustly switch between different migration modes [5]. Besides these in 26

vivo examples, bistable responses have also been observed in purified 27

kinase-phosphatase systems [6, 7] and are a common objective in the design of synthetic 28

genetic systems [8]. The concept of bistability and irreversible transitions also plays an 29

important role in cell differentiation. There, the image of balls rolling down valleys is 30

echoed in Waddington’s epigenetic landscape [9]. 31

On the molecular level, bistability is generated by the interplay of a large amount of 32

molecules participating in chemical reactions. The conditions under which these 33

reaction networks generate bistability have been extensively studied. Typically, one 34

needs highly nonlinear (ultrasensitive) responses and positive feedback loops [10,11]. 35

However, bistability can also be present in simple systems with a minimal amount of 36

components governed by mass-action kinetics. Finding the conditions under which such 37

systems generate multistability is one of the important questions asked in chemical 38

reaction network theory, where mostly algebraic methods are used to analyze these 39

systems (eg. [12–15]). 40

To survive and proliferate, a cell has to replicate its DNA and structural components, 41

and then distribute this material evenly to its daughters. This process is governed by 42

the orderly progression through different phases of the cell cycle. The eukaryotic cell 43

cycle contains various checkpoints and transitions in which bistability plays a role 44

(Fig. 1C), and can even be viewed as a chain of sequentially activated bistable 45

switches [16–18]. These switches provide robustness and directionality to the cell cycle 46

and ensure the genome’s integrity. Both the ‘commitment point’, where a cell becomes 47

committed to enter the cell cycle, and the transition from G1 to S phase have been 48
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associated to underlying bistable switches [19–22]. Later, after the cell has duplicated 49

its DNA, there is a sudden transition from G2 to mitosis, characterized by the prompt 50

activation of cyclin-dependent kinase 1 (Cdk1). This sudden mitotic entry has also been 51

shown to be controlled by two bistable switches [23–26]. Further in mitosis, the spindle 52

assembly checkpoint (SAC) controls the correct separation of sister chromatids at the 53

metaphase-anaphase transition [27]. Theoretical models have shown that there are 54

molecular mechanisms that can lead to bistability underlying this checkpoint [28–30]. 55

The standard view of all these cell cycle transitions is that the two states are 56

represented by two branches of a static bistable response curve. The transition happens 57

when a slowly changing input reaches a threshold, upon which the system jumps to the 58

other branch of the curve (Fig. 1B). Throughout this work we will focus on the bistable 59

switch in mitotic entry that has been arguably best characterized experimentally and 60

theoretically. Already in the early 1990s, mathematical models showed how biochemical 61

interactions could lead to cell cycle oscillations that switched between interphase and 62

mitosis [31, 32], and later predicted that bistability might be at the basis of the mitotic 63

entry transition [33,34]. This bistability was later verified experimentally [23,24]. The 64

kinase Cdk1 becomes active when bound to a Cyclin B subunit, and is involved in two 65

feedback loops: Cdk1 activates the phosphatase Cdc25, which removes an inhibitory 66

phosphorylation on Cdk1, thereby activating it and closing a double positive feedback 67

loop. Secondly, Cdk1 inhibits Wee1, a kinase responsible for inhibiting Cdk1 through 68

phosphorylation. This constitutes a double negative feedback loop. Due to 69

ultrasensitivity in these feedbacks, a bistable response of Cdk1 activity to Cyclin B 70

concentrations is generated. The shape of this switch depends, among others, on the 71

amounts of Wee1 and Cdc25 present [35] (for more details, see Section 2.1). 72

In many cell cycle transitions, however, the parameters which determine the shape of 73

the switch are also changing, either slowly or in a more sudden fashion. Typically the 74

shape of the bistable response curve depends on the total concentration of proteins 75

implicated in the feedback loops. These concentrations may change, either due to 76

production and degradation, or due to relocalization of proteins in space. We can 77

consider the cell as a set of compartments with slow fluxes between them. If each 78

compartment is well-mixed, it has its own bistable response curve. The shape of this 79

curve depends on the concentrations of proteins in that compartment, which can change 80

over time as proteins relocalize. Note that compartmentalization has been studied in 81

the context of bistability already: adding different compartments can be a mechanism of 82

generating a bistable response, where there is none in a single well-mixed system [36,37]. 83

In Section 2.1, we discuss how considering nucleus and cytoplasm as compartments can 84

alter the bistable switches governing mitotic entry. The importance of dynamically 85

changing the bistable response curve has been acknowledged before, mostly in the 86

context of lowering an activation threshold. For example, the threshold for mitogenic 87

signaling, which defines the commitment point, can be influenced by DNA damage, cell 88

volume or cell contacts [22,38]. This provides extra control over the timing of passing 89

the commitment point. At mitotic entry, Wee1 is known to be quickly degraded [39, 40], 90

which lowers the threshold for Cdk1 activation [41] and triggers a transition into mitosis. 91

Bistability also lies at the heart of an important class of oscillations which appear 92

time and again in chemical, biological and physical systems. These oscillations are 93

called relaxation oscillations, and consist of slow progress along the branches of a 94

bistable system, with sudden jumps between them. Eminent examples of relaxation 95

oscillators are the Van der Pol and FitzHugh-Nagumo type systems. Whereas they were 96

developed as models of electrical systems, either engineered, or in neurons, now they are 97

often used as generic oscillating systems which can exhibit different kinds of 98

dynamics [42]. Nonlinear oscillators generate many periodic phenomena in cell biology, 99

among which circadian rhythms, metabolic oscillations, and also the embryonic cell 100
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cycle (see the books [43,44] and review papers [45,46] for overviews of biological 101

oscillations). The embryonic cell cycle – in contrast to the somatic cycle – largely lacks 102

checkpoint control, gap phases and even growth. The cycle is driven forward as a true 103

oscillator by periodic production and degradation of proteins. 104

Here, we investigate how dynamically changing bistable switches affect transitions 105

and relaxation oscillations. To motivate our studies, we first show how including 106

different cellular compartments in a model of mitotic entry leads naturally to a 107

situation with bistable switches that change in time. Next, we explore the concept of 108

dynamically changing switches using a simple model. After introducing the model, we 109

discuss how a single transition, such as the crossing of a cell cycle checkpoint, is affected 110

by dynamically changing the activation threshold and the shape of the response curve. 111

Moreover, we describe a mechanism which may be at play in spatially extended systems. 112

There, bistability can lead to traveling fronts, whose speed depends on the shape of the 113

bistable response curve. Front propagation can therefore dynamically change as proteins 114

– which determine the shape of the response curve – are redistributed in space. We then 115

discuss how such a dynamically changing switch affects relaxation oscillations. At each 116

point we interpret our general results in the context of mitotic entry. 117

2 Results 118

2.1 A model for mitotic entry shows how dynamic switches 119

appear in two cellular compartments 120

Mitotic entry is triggered by the activation of the kinase Cdk1, which sets into motion 121

many of the changes a cell undergoes during mitosis. Cdk1 becomes active when bound 122

to a Cyclin B subunit. Additionally, Cdk1 activity is controlled by its phosphorylation 123

state, which is regulated by the kinase Wee1 and the phosphatase Cdc25 (Fig. 2A). In 124

turn, Cdk1 itself activates Cdc25 and inactivates Wee1. These feedback loops produce a 125

bistable response of Cdk1 activity as function of total Cyclin B levels [23,24], very 126

similar to the model we use in the rest of the paper. The different feedback loops have 127

been characterized in detail [47, 48]. Mitotic entry involves many other mechanisms, 128

such as a phosphatase switch [25] or the regulation of other kinases such as those from 129

the Polo or Aurora families. An excellent recent review of the mitotic entry transition is 130

given by Crncec and Hochegger [49]. 131

One particular source of additional regulation comes from the spatial localization of 132

the different proteins. In mitosis the Cyclin B-Cdk1 complexes accumulate in the 133

nucleus [36,50]. Cdc25 also translocates to the nucleus at mitotic entry [51]. Wee1, the 134

kinase inhibiting Cdk1, is mostly nuclear during interphase [52], possibly to make sure 135

that Cdk1 is not activated too early, i.e. before DNA replication – which takes place in 136

the nucleus – is complete. Spatial regulation of other mitotic regulators such as 137

Polo [53] and Greatwall [54, 55] has recently been shown to be important for correct 138

progress of mitosis as well. 139

All of these spatial translocations influence the behavior of the system, and here we 140

show that this can be interpreted in the framework of a bistable switch with 141

dynamically changing shape. To this end we extend the cell cycle model of Yang and 142

Ferrell [56] to include two different compartments: the nucleus and the cytoplasm. In 143

each compartment, Cdk1 activation is governed by the feedback loops through Wee1 144

and Cdc25. In addition, proteins can move into and out of the nucleus. The nuclear 145

import rates may depend on the concentrations of Cdk1, to include spatial feedback [36]. 146

In our simplified version, we assume that active cytoplasmic Cdk1 enhances import of 147

Cdc25 and nuclear Cdk1 enhances import of Cyclin B. These assumptions are 148

approximations of the experimentally known feedbacks [36,51,53]. We assume that 149
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Fig 2. A model for mitotic entry shows how dynamic switches appear in
two cellular compartments. A) The core protein interaction network involved in
mitotic entry with double positive and double negative feedback loops centered on the
Cyclin B-Cdk1 complex. Additional feedbacks act on the import rates of Cdc25 and
Cyclin B-Cdk1. B) Two cellular compartments can exchange proteins through import
and export. The total concentration of Cdc25 in each compartment determines the
shape of the bistable response, which changes over time. C) Simulation of mitotic entry
driven by Cyclin B production in the cytoplasm. Left: initially the activation threshold
in the nucleus lies to the far right, due to the dominance of Wee1 over Cdc25 there. The
activation threshold shifts left as Cdc25 is imported, which happens faster as Cdk1
activity rises in the cytoplasm. Middle: the activation threshold for Cdk1 activation is
first crossed in the cytoplasm. The sudden jump in Cdk1 activation effects a sudden
increase of Cdc25 import into the nucleus, which in turn quickly lowers the activation
threshold there. Right: the decrease of the threshold in the nucleus triggers activation
of Cdk1, leading to additional import of Cyclin B and a high Cdk1 activity. The black
dot denotes the position of the system, the red curve corresponds to the bistable
response at a given time point whereas the gray lines are snapshots of the bistable
response at times leading up to this point. An animation which more clearly illustrates
the dynamics can be found in S4 Video.

Wee1 concentrations are higher in the nucleus. If the import and export rates are slow 150

relative to the activation dynamics of Cdk1, we can consider each compartment to be 151

nearly in steady state. This steady state, in turn, follows the bistable response curve of 152

Cdk1 as a function of total Cyclin B. Due to translocation of Cdc25, the shape of these 153

curves varies (Fig. 2B). We do not aim to include all of the complexity of mitotic entry 154

described in the previous paragraph. Rather, we want to show how including a minimal 155

spatial component using plausible mechanisms leads to changed mitotic entry dynamics, 156

which can be interpreted using the dynamic bistable switches. More details and the full 157

set of equations used can be found in the Methods section. 158

Adding these compartments leads to a mitotic entry in different steps (Fig. 2C). 159

First, Cyclin B accumulates in the cytoplasm. At the start, the threshold for Cdk1 160

activation is lower in the cytoplasm than in the nucleus, due to the lower Wee1 161

concentration there. As a consequence, Cdk1 activation occurs first in the cytoplasm. 162

This activation triggers the import of Cdc25 in the nucleus, which lowers the activation 163

threshold there and allows Cdk1 activation in the nucleus. This triggers a translocation 164

of even more Cyclin B to the nucleus. These two effects ensure that the activation of 165

Cdk1 in the nucleus is very fast, irreversible, and happens after cytoplasmic activation 166

of Cdk1. Once Cdk1 is activated in the nucleus, nuclear import of Cyclin B stays high. 167

Most newly synthesized Cyclin B will be imported in the nucleus, further raising Cdk1 168

activity levels. Cdk1 activity in the cytoplasm settles at a nearly constant value. The 169

animation S4 Video makes the time evolution of the different switches more clear. 170

The key observation we want to stress with this illustration is that the activation 171

threshold is different in nucleus and cytoplasm, and importantly, that this threshold is 172

controlled by translocation of Cdc25. By spatially regulating Cdc25, the cell has an 173

additional layer of control over the timing of Cdk1 activation. The combined feedbacks 174

lead to quick Cdk1 activation in the nucleus, and an enhanced import rate makes sure 175

that Cdk1 activity in the nucleus increases further. 176

This example can be extended by including nuclear envelope breakdown (NEBD). 177

Cdk1 activation triggers this event, which effectively mixes the two compartments. In 178

turn, the two bistable response curves collapse to a single one. This provides another 179

example of dynamically changing bistable switches. Moreover, the translocation of other 180

proteins, such as the kinase Greatwall, will likely have a similar effect on the shape 181
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Fig 3. A simple model of protein activity shows bistability. A) Interaction
diagram of a model, consisting of single protein which can be active or inactive. Active
protein promotes its own activation and inhibits its inactivation. The basal activation
rate is given by the parameter a. B) Steady state response to total protein XT , for
different values of a. C) Steady state response to basal activation rate a, for different
values of total concentration XT . D) Two-parameter bifurcation diagram of the system.
The bistable region is shaded. The vertical orange curve, when followed from bottom to
top, corresponds to the orange response curve Panel B. The horizontal green curve,
followed from left to right, corresponds to the green response curve in Panel C.

changes of the second bistable switch in mitosis. The effect of Greatwall and NEBD on 182

the bistable response curves has been studied already in the context of mitotic 183

collapse [57]. 184

2.2 A simple model produces bistability in protein activity 185

The results of the previous section show that a dynamically changing switch can appear 186

naturally in a biochemical system. To investigate the consequences of such a changing 187

switch in more depth, we introduce a simple model. The model describes a protein 188

which can be in an active or inactive state (Fig. 3A). The protein is involved in two 189

feedback loops: it promotes its own activation and inhibits its inactivation. The 190

equation used to model this is 191

dX

dt
= f(X)(XT −X) − g(X)X, (1)

where X is the concentration of active protein and XT is the total amount of this 192

protein, XT = X +Xinactive. The functions f and g are given by 193

f(X) = a+ b
Xn

Kn +Xn
,

g(X) = a′ + b′
K ′m

K ′m +Xm
.

(2)

These response curves involve Hill functions, which are typically the outcome of 194

basic biochemical reactions that generate ultrasensitivity, such as substrate competition, 195

multisite phosphorylation, or others [58]. 196

The combination of the different feedback loops and the steep response functions is 197

known to generate bistability [11]. Indeed, this system shows bistable behavior, which 198

can be visualized in different ways (Fig. 3B,C). The steady state response of the active 199

protein level X can be bistable as function of the total amount of protein XT (Fig. 3B). 200

The shape of this response curve depends on the value of a, the basal activation rate of 201

the protein. High values of a correspond to high basal activation of X. This ensures 202

that any protein in the system will be directly converted into its active form, and X 203

increases nearly linearly with XT . For low values of a, there is bistability, and the 204

activation threshold becomes higher with lowering a. As a consequence, for very low a a 205

large amount of protein needs to be added to the system to initiate the feedback loops 206

that will lead to a full activation of the protein. If XT is continuously increased, for 207

example through a constant production of protein in the inactive state, at a certain 208

moment the threshold will be reached and the system will jump to the active state. 209

This representation is closely related to the cell cycle control system for mitotic entry, 210

where the total abundance of Cyclin B (∼ XT ) gradually increases until the threshold 211

for mitotic entry is reached and Cdk1 gets activated [23,24,33]. In this scenario, the 212

activity of the phosphatase Cdc25 plays the role of the parameter a [35, 48]. 213
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A different bistable response emerges when plotting X as a function of a, keeping XT 214

fixed (Fig. 3C). The shape of the response curve now depends on the value of XT . For 215

low values of XT , there is no bistability and the response is approximately hyperbolic. 216

Intermediate levels of XT lead to a bistable response curve. For high levels of XT , the 217

switch becomes irreversible. In the latter case, the left threshold occurs at a < 0, which 218

makes it impossible for the system to go back to its inactive state, since in biological 219

systems a corresponds to an activation rate, a positive quantity. In such an irreversible 220

switch, the system can transition from the low to high state, but it cannot go back. 221

Dynamically varying XT would provide a solution: by controlling the levels of XT , the 222

transition back to the low state can be made possible. We have previously explored this 223

mechanism in a model of the interaction between Cdk1 and the protein kinase Aurora 224

B, which plays an important role during chromosome segregation in mitosis [59]. 225

The effect of a and XT can be summarized in a two-parameter bifurcation diagram 226

(Fig. 3D). A response curve where only one of the two parameters is varied (Fig. 3B,C) 227

corresponds to a horizontal or vertical cut in this diagram. In the remainder of this 228

work, we will focus on the situation as in Fig. 3B: XT is the main parameter – the 229

input, as we previously called it – and we will explore the effects of having either a 230

constant value of a or a dynamically changing a. 231

2.3 Transition timing is more robust and accurate in a system 232

with a dynamic switch 233

In order to study the transition from low to high activity when protein is produced, we 234

study the following system of equations: 235

dX

dt
= ε−1

(
f(X)(XT −X) − g(X)X

)
dXT

dt
= kX ,

(3)

where the second equation corresponds to a constant increase in protein abundance 236

XT . The small parameter ε is added to model time-scale separation: the 237

activation-inactivation dynamics of the protein are much faster than its production. As 238

the total concentration increases, the system moves along the bottom branch of the 239

bistable response curve. When the concentration crosses the activation threshold, the 240

protein is rapidly activated (Fig. 4A). 241

We then set out to investigate how this activation is affected when the shape of the 242

bistable switch is changing while XT is increasing. We impose the following functional 243

form on a (Fig. 4B): 244

a = ā+ ∆a tanh(κ(XT −Xc)). (4)

The value of ā is the value around which a varies symmetrically. By tuning the 245

parameter ∆a we can control the extent of the shape changes: for ∆a = 0, the switch 246

does not change and a = ā is a constant. For ∆a = ā, a varies between extremes of 0 247

and 2ā. The parameter κ controls the abruptness with which the bistable shape changes 248

when XT crosses a threshold Xc. This threshold is chosen to be in the middle of the 249

bistable switch. For positive values of ∆a, the activation threshold of the switch moves 250

to the left while XT increases. The dynamics of such a system are illustrated in Fig. 4C 251

and in S1 Video. 252

One striking consequence of the dynamic switch is that the level of X is kept very 253

low until its activation, whereas if a is not changing, X already increases while the 254

system is approaching the threshold. Moreover, by lowering the activation threshold 255

while the system is approaching the transition point, the timing of activation can be 256
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Fig 4. A dynamically changing bistable switch enhances robustness and
accuracy of transitions in time and space. A) When XT increases at a constant
rate (here kX = 0.2), the activity of the protein will increase suddenly at the moment
XT crosses the activation threshold of the switch. B) Function used to make the shape
of the switch dependent on the total amount of protein, by coupling a to XT . The
switch variation depends on the value of ∆a, which controls the magnitude of possible
deviations of a from a mean value ā. The parameter κ controls how abruptly the system
switches between low and high a values. C) Time evolution of a system in which XT

increases at a constant rate, and a is coupled to XT . The gray response curves are
snapshots in time. The activation threshold starts out to the far right, and moves left as
XT , and with it a, increases. Here ā = 0.3,∆a = 0.2, κ = 5, kX = 0.2. D) Evolution of a
system in which noise is added to the X variable. The transition time tc is defined as
the time when X crosses a threshold value. Here
ā = 0.3,∆a = 0.2, κ = 5, kX = 0.2, σ = 0.6. E) Histogram of measured transition times
for a static switch (∆a = 0) and a dynamic switch (∆a = 0.3), with
ā = 0.3, κ = 5, kX = 1, σ = 0.6. The spread is lower for the dynamic switch. F)
Coefficient of variation (CV), defined as standard deviation divided by mean, of the
transition time, as function of the switch variation ∆a. Here ā = 0.3, κ = 5. G)
Coefficient of variation as function of κ, which defines the speed by which a changes.
Faster changing corresponds to smaller deviations. Here ā = 0.3,∆a = 0.3. H) Velocity
of a bistable front as function of a, for XT = 2. A positive velocity means that the
active protein state overtakes the inactive state (the front shown in panel I moves to the
right). At a ≈ 0.15, the front is stationary. I) A bistable front in the presence of an
inhomogeneous a profile in space. On the left, a = 0.27, which means the front moves to
the right. On the far right, a = 0.13 is low, which means that the front moves to the
left. The result is that the front is pinned in the middle where a ≈ 0.15. This pinning
can be lifted by a redistribution of a (see S2 Video). Other parameters used in all
simulations: a′ = 0.1, b = b′ = 1,K = K ′ = 1,m = n = 5, ε = 0.05. Histograms and
coefficients of variations where calculated over 200 simulations.
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controlled more precisely. To illustrate this, we add noise with magnitude σ to the X 257

variable (see Methods for details). As a result, noise can trigger the system to jump to 258

the high activity state even before the activation threshold is reached. We simulate the 259

system many times and measure the transition time, defined as the time the value of X 260

crosses a threshold (Fig. 4D). A dynamic switch shows less variation in the transition 261

time than a static switch (Fig. 4E). Increasing the amplitude (higher ∆a) and 262

abruptness (higher κ) of the dynamical shape changes help to further decrease the 263

variation in transition timing (Fig. 4F-G). 264

Noise is inevitable in biochemical systems, and can be a nuisance or something the 265

cell uses to its advantage [60]. Here, in the context of the cell cycle, premature 266

activation due to noise is to be avoided. We conclude that accurate control of the 267

timing of transition can be achieved by dynamically changing the switch and increasing 268

a as XT approaches the threshold. Note that a more realistic description of 269

stochasticity would require using a master-equation or Fokker-Planck approach. 270

However, our current approach, using a Langevin equation, is sufficient to demonstrate 271

the utility of a dynamically changing switch (see Methods section). 272

2.4 Transitions in space can be controlled by dynamically 273

changing the bistable switch 274

When bistable systems are coupled in space in the presence of diffusion, they may 275

produce traveling fronts. In our model with active and inactive protein, a traveling front 276

can arise when one region of space has a high X activity and an adjacent region has low 277

activity. The interface between these regions starts to move, depending on which state 278

is dominant. Such traveling fronts are omnipresent in biology, where they usually have a 279

signalling or synchronizing function [42,61]. 280

The speed and direction of traveling fronts depend on the parameters of the system. 281

Consider for example a traveling front that links regions of high and low activity of the 282

protein X, with XT = 2 fixed. The direction of the front depends on a: low a 283

corresponds to a dominant low activity state, high a to a dominant high activity state. 284

The front moves such that the dominant state overtakes the other one (Fig. 4H). 285

Let us assume that the parameters may vary in space, such that the front speed 286

itself varies in space. Consider a system where a is high in one region, low in another 287

and has a smooth transition between both regions. In this case, the front would move to 288

the right until it hits the transition region, where it slows down and comes to a halt 289

(Fig. 4I). This phenomenon is called pinning. Front pinning and localization – possibly 290

due to a spatial inhomogeneity, as here – occur frequently in physical systems [62]. In 291

biology, front pinning mechanisms have been studied in the context of cell 292

polarization [63], and in ecosystem transitions [64]. 293

The front comes to a halt due to a spatially heterogeneous profile of a. A pinned 294

front can then be released by redistributing a, and thus changing the bistable switch 295

and the dominant state (see S2 Video). Dynamically changing the parameters which 296

affect the shape of the bistable response curve can thus provide the cell with extra 297

control over spatial transitions. 298

Waves of Cdk1 activity spread throughout the cell at mitotic entry, as has been 299

observed in Xenopus cell-free extracts [65,66] and in the early Drosophila 300

embryo [67,68]. In the cell, and in extracts, spatial heterogeneities are present through 301

nuclei, which concentrate certain proteins [66]. In such systems, the effect of dynamic 302

bistability on front dynamics is likely present, all the more because the spatial 303

heterogeneity drastically changes at nuclear envelope breakdown. In Drosophila, 304

dynamic changes in the bistable switch have been shown to play an important role in 305

determining the nature of mitotic waves [68]. 306
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2.5 A dynamic switch promotes stable oscillations 307

Fast transitions between states form the basis of relaxation oscillations, such as those 308

observed in early embryonic cell cycles of Xenopus laevis, where the cell quickly 309

switches between interphase and mitosis. We asked ourselves how such oscillations are 310

affected by a dynamic bistable switch. We expanded our model to obtain oscillations in 311

protein activity and abundance by including production and degradation: 312

dX

dt
= ε−1(f(X)(XT −X) − g(X)X)

dXT

dt
= kX −XTX.

(5)

As before, kX is the protein production rate and the dynamics of activation and 313

inactivation are fast with respect to production and degradation, such that ε is small. 314

We assume that the active form of X promotes its own degradation through mass-action 315

kinetics (Fig. 5A). Note that we have simplified the set of equations by omitting a term 316

(−X2) from the first equation. In doing so, we ensure that the bistable response curve 317

we have used before appears as a nullcline of the system. This simplification does not 318

significantly change the system dynamics (see the Methods section). 319

For given functions f and g, this system only oscillates for a specific range of kX . If 320

kX is too small, the production rate is not high enough to push the system over the 321

activation threshold, and the system converges to a steady state with low activity. For a 322

high value of kX , degradation cannot compensate for production even when the protein 323

is mostly active, and the system converges to a steady state with large X. For 324

intermediate values of kX , the system switches between accumulation and degradation 325

with low and high X respectively. This is illustrated in the phase plane in Fig. 5B. If 326

kX is such that the two nullclines intersect in between the two saddle-node points, the 327

system converges to a stable limit cycle. This oscillation is marked by a slow increase 328

along the bottom branch of the bistable curve, a slow decrease along the upper branch, 329

and fast jumps in between (Fig. 5B,C). 330

As before, we allow the parameter a to depend on the total amount of protein 331

(Eq. (4)). In the previous section we found that, in the presence of noise, transition 332

times show less variation if the switch dynamically changes. In the case of oscillations, 333

we find that more accurate transition times are reflected in a more stable period. A 334

dynamic switch (∆a > 0) shows less variation in the period of the oscillation than a 335

static switch (Fig. 5D). Larger switch changes ensure smaller variation of the period 336

(Fig. 5E), and this effect is more pronounced for extreme values of kX , such that the 337

nullclines intersect close to the saddle-node point. For those values, stochastic 338

activation/inactivation is more likely, an effect which is mitigated by the dynamically 339

changing switch. In Xenopus laevis, early embryonic cycles have a remarkably stable 340

period [69]. Combined with an initial period difference between different cells in the 341

embryo, this shows as a wave of cell division. It is possible that dynamically changing 342

bistable switches contributes to such stability in periods. 343

Next, we expanded the model by also looking at negative values of ∆a, which 344

corresponds to an activation threshold which increases as XT increases. Moreover, we 345

model a biologically plausible phase shift to the relation between XT and a by including 346

a time delay τ : 347

a(t) = a(XT (t− τ)). (6)

As mentioned before, oscillations occur if kX lies in a given interval. This interval 348

becomes larger if ∆a increases, which indicates that larger changes of the bistable curve 349

produce a larger region of oscillations (Fig. 5F). This observation holds both with and 350

without time delay, but the effect is larger if time delay is included (Fig. 5G). The effect 351
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Fig 5. Dynamic switches promote oscillations. A) Interaction diagram. The
active form of protein X promotes its own degradation. B) Phaseplane of the system
given by Eq. 5 (static switch). The second nullcline depends on the value of kX . The
S-shaped nullcline has the same shape as the bistable response curve studied in the
previous section. The second nullcline is given by X = kX/XT and is shown for
kx = 1, 1.6 and 2.25. The blue limit cycle corresponds to kX = 1.6. C) Time series of
the oscillatory system with kX = 1.6. D) Histogram of the period for a static (∆a = 0)
and dynamic (∆a = 0.3) switch, with ā = 0.3, κ = 5, σ = 0.4. Simulation for a total
time of T = 2000. E) Coefficient of variation (standard deviation divided by mean) of
the period in the oscillatory system with noise added to the X-variable. Here
κ = 5, σ = 0.2. F) Period in color, as function of kX and ∆a with κ = 5, τ = 0, ā = 0.3.
G) Oscillatory region in the (kX ,∆a)-plane for different values of the delay time τ with
κ = 5, ā = 0.3. H) Period as function of kX and κ with ā = 0.3,∆a = 0.3 and τ = 0.1.
I) Fraction of parameter sets for which the system oscillates for 10000 randomly
sampled parameter sets. Other parameters used in all simulations except for Panel I:
a′ = 0.1, b = b′ = 1,K = K ′ = 1,m = n = 5, ε = 0.05.

of increasing time delay is most pronounced for low kX . Note that also for ∆a < 0, there 352

is an oscillatory region. When ∆a < 0, the switch changes in the opposite direction of 353

the change of XT , i.e. the activation threshold moves to the right as XT approaches it. 354

The speed by which the bistable response curve changes also plays a role: faster, more 355

abrupt transitions, which correspond to higher κ, promote oscillations (Fig. 5H). 356

As a final demonstration of how dynamically changing switches affect the occurence 357

of oscillations, we perform a random sampling of 10000 parameter sets. We sample all 358

the parameters affecting the Hill functions f and g, the timescale parameter ε, and kX . 359

For each parameter set we first detected whether the system is bistable, and if so, we 360

simulated the model with ∆a = ia, i = −1,−1/2, 0, 1/2, 1, for κ = 1, 5, 10 and 361

τ = 0, 0.1, 0.2. For each simulation we detect whether the system oscillates or goes into 362

a steady state. Generally, oscillations are quite rare, but in all cases, having ∆a > 0 363

increased the probability of obtaining oscillations (Fig. 5I and Figure in S1 Supporting 364

Information). Note that oscillations can also exist for ∆a < 0. In that case, however, 365

oscillations are less likely. 366

To conclude, we have found that making the bistable response curve dynamic 367

instead of static enhances the accuracy of the oscillation period in noisy systems, and 368

increases the region in parameter space where oscillations are found. This effect is larger 369

when the shape change lags the increase of XT . S3 Video shows an oscillation with a 370

dynamically changing bistable switch. 371

3 Discussion 372

Bistable switches play a crucial role in the cell cycle, providing a mechanism for quick 373

and irreversible transitions. They also lie at the basis of more complex behavior such as 374

spatial front propagation and relaxation oscillations. The classic viewpoint of a static 375

switch and fixed activation and inactivation thresholds does not take into account that 376

the factors that determine the shape of the response curve can vary over time. In a 377

biochemical system, these factors are typically protein concentrations. When those 378

concentrations change, the bistable response curve changes, and this happens all while 379

the system is proceeding along the branches of the bistable curve. 380

By making this dynamically changing bistability explicit in a simple model, we have 381

shown that such a mechanism allows more accurate control of the transition timing in 382

noisy systems. Additionally, by controlling protein levels in space, the location and 383

August 6, 2020 11/23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.11.246017doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.246017
http://creativecommons.org/licenses/by/4.0/


speed of propagating fronts of activity can be regulated. In oscillatory systems, a 384

changing bistable switch increases the robustness of the oscillations to parameter 385

variations. The control of transition timing and avoiding a premature transition can 386

play a role in cell cycle checkpoints, whereas the enhanced oscillations may be important 387

in embryonic cell cycles which behave like autonomous oscillators. These advantages 388

suggest that such dynamic regulation may have evolved as an extra mechanism in the 389

cell’s repertoire to ensure robust faithful genome replication and division. 390

Besides accuracy and robustness, a dynamic bistable switch may provide other 391

benefits to the cell. If there is an energetic cost associated to maintaining a bistable 392

switch at a certain level, dynamically controling the shape can be a way to more 393

efficiently use energy. This kind of temporal compartmentalization is widely seen in 394

biology. Circadian rhythms, for example, provide a means of compartmentalizing 395

processes to align with external light and temperature cycles and therefore optimally 396

use energy [70]. This energy-based view of dynamic bistable switches will perhaps 397

benefit from a thermodynamic description, which takes into account energy 398

consumption (e.g. [71]). 399

We have shown that not only temporal variation of the response curve, but also 400

spatial control can play a role. We demonstrated how the location of a traveling front 401

can be controlled by modifying the bistable switch in space and time. The biological 402

example of mitotic entry shows that compartmentalization in space can add dynamics 403

which are not seen in a well mixed system. Having two compartments with slow fluxes 404

between them essentially splits the system in two: two bistable response curves now 405

determine the evolution of the system, and their shape can be tuned by shuttling 406

proteins around. This can be used to obtain different activation thresholds in different 407

compartments and thereby add extra control over mitotic entry. 408

Spatial compartmentalization of biochemical reactions has recently become a topic of 409

interest for mathematical modelers, since it can add new dynamics to otherwise 410

well-mixed systems. A monostable system may become bistable by adding 411

compartments [37]. This increases the complexity and richness of the system under 412

study: by compartmentalizing chemical reactions, cells can locally increase 413

concentrations to speed up reactions, or inversely keep certain reactions from happening 414

by separating the reactants. Adding multiple compartments is also attempted in 415

synthetic biological systems by introducing artificial membranes [72,73]. 416

In experiments too, compartmentalization and spatial organization have been found 417

to introduce new dynamics. Santos et al. [36] showed that spatial feedbacks are present 418

in mitotic entry, which we used as one of the mechanisms in our biological example. 419

Recently Doncic et al. showed that compartmentalization of a bistable switch plays a 420

role in the commitment point, also referred to as the Start checkpoint in yeast [74]. 421

We believe that mathematical modeling of these spatial aspects of cell cycle 422

transitions is a fruitful way to extend our insights into cell cycle regulation. Numerous 423

mathematical models of the cell cycle already exist. Spatial regulation, however, is 424

mostly absent. Models that include a spatial component often focus on traveling waves 425

which can play a role in synchronizing large cells, such as Xenopus embryos [65] or 426

Drosophila syncytia [67]. In Xenopus cell-free extracts, nuclei play an essential role as a 427

pacemaker, possibly due to the fact that nuclei locally increase concentrations of key 428

regulatory proteins, in turn changing the bistable switch upon which mitotic entry is 429

built [66]. In Drosophila, changes to the bistable switch have been proposed as an 430

explanation of changing wavespeeds over different cycles [67], and bistable thresholds 431

play a crucial role in the so-called sweep waves [68]. New insights are likely to be gained 432

from models that also take into account the heterogeneity and spatial structures of a 433

real cell. A first step towards that goal is to consider the compartments of nucleus and 434

cytoplasm. Some models have done this already – e.g. in the context of cell growth [75] – 435
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but we believe there is a vast range of new biological insights to be gained by studying 436

new kinds of mathematical models in that direction. The viewpoint of changing bistable 437

switches may play a helpful role in analyzing such models. 438

From the mathematical standpoint, figuring out how such spatial heterogeneity is 439

best introduced poses an interesting challenge, where simplicity, computational 440

efficiency and realism have to be weighed against one another. The method we used in 441

the model of mitotic entry was ODE based. For each compartment, every chemical 442

species has its own ODE. This assumes that, inside a compartment, diffusion is fast and 443

the system is well mixed. Another option is to use fully spatial models consisting of 444

partial differential equations (PDEs). Here, boundary conditions should be used to 445

model fluxes between different compartments. Yet another type of model is hybrid: 446

some small compartments are considered to be well-mixed, and are modeled by ODEs, 447

whereas transport through the medium between the compartments is governed by a 448

PDE (see e.g. [76] for a recent example of such a model in a biological system). If 449

compartments are not bound by membranes, but instead generated by phase separation, 450

modeling may need to take into account the physics of the phase separation process, a 451

topic of current interest in cell biology [77]. 452

The implementation of the changing response curve we used here – with the 453

sigmoidal function a(XT ) and the time lag τ – is artificial but suitable for the message 454

we want to convey. However, in the future a more thorough theoretical study of such 455

simple models could replace the explicit dependence of a on XT by evolution equations 456

for the dynamics of the switch shape. It would be valuable to study a model of the form 457

dX

dt
= ε−1(f(X, a)(XT −X) − g(X)X)

dXT

dt
= kX −XXT

da

dt
= G(X,XT , a).

(7)

This equation takes the form of a two-slow, one fast dynamical system: the activation 458

dynamics of X happen on a faster scale than the production and degradation of XT and 459

the dynamics of a. Rigorous mathematical study of such multiple-timescale systems has 460

been done extensively in other areas, such as mathematical neuroscience [78,79]. 461

Connecting a more rigorous mathematical analysis to expected biological outcomes in 462

the cell cycle can provide important clues to uncover the underlying dynamics, and may 463

lead to new opportunities to connect mathematicians and cell biologists. 464

Experimental observations of dynamically changing bistable switches can take 465

different forms. One of the outcomes of a mathematical model such as the one we 466

studied here is a time series, which gives the evolution of concentrations of the main 467

proteins over time. By performing a more detailed analysis, we can find out which 468

qualitative features are specific to a timeseries derived from changing bistability. Next, 469

experiments can be set up to try to detect such features. Another approach would be to 470

measure the steady-state response curves to obtain activation thresholds, and perform 471

this experiment under different experimental conditions. 472

Mathematical modeling and concepts derived from nonlinear dynamics, such as 473

bistability and limit cycles, have been very influential on our understanding of many 474

biological phenomena, and will continue to be, as has been recently advocated by Tyson 475

and Novák [80]. In our discussion we have echoed some of their perspectives. 476

Additionally, in this paper, by adding an extra layer to the regulation of cell cycle 477

transitions we have attempted to push our dynamical understanding of this 478

fundamental process a little bit further. 479

Even though the simple model we studied in this paper was artificial, its main 480

conclusions will likely hold for more realistic mathematical models. In fact, we suspect 481
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that a dynamically changing bistable switch is already present in many published 482

models, but not recognized or described as such. Therefore, we propose that the 483

dynamically changing switches we described can be used as a means to interpret 484

existing models and perhaps inspire new ones. 485

4 Materials and methods 486

4.1 Sofware and algorithms 487

Simulations, data analysis, plotting and animations were all done in Python except for 488

the two-parameter bifurcation diagram in Fig. 3, which was created using the interface 489

to AUTO of the software XPPAUT [81]. The majority of our simulations use ODEs, 490

but some versions of the model are delay differential equations or stochastic differential 491

equations. To simulate all of these, we made use of the software packages JITCODE, 492

JITCDDE and JITCSDE for Python, which implement solvers for ordinary, delay and 493

stochastic differential equations respectively [82]. For parameter sweeps we used a 494

high-perfomance computing cluster. 495

To obtain the bistable response curve, we implemented a pseudo-arclength 496

continuation algorithm directly in Python (see, e.g., [83]). This gave us the flexibility to 497

compute response curves on the fly, as for the animations. 498

For the period detection in the oscillatory systems, we start from the time series X(t) 499

and detect the times tu,i and td,i when X crosses a certain threshold up and a certain 500

threshold down. The threshold up is the vertical coordinate of the leftmost saddle-node 501

point, the down threshold is the vertical coordinate of the rightmost saddle-node point. 502

Next, we compute the period as the difference tu,i+1 − tu,i. In the noisy system, this 503

gives a set of period Pi on which we can perform statistics. For the deterministic 504

systems this value is constant. This method ensures that we only track oscillations that 505

go around both branches of the bistable system, i.e. of sufficient amplitude. 506

To detect the contours of the oscillatory regions in Fig. 5F-H, we detected all points 507

in the heatmap where the period goes from zero to positive and then applied smoothing. 508

Note that this boundary is not strictly the same as the boundary between steady state 509

and oscillations, since we consider only oscillations of sufficient amplitude, that go 510

around both branches of the switch. 511

Our code and demo files that show how to use it are available at 512

https://github.com/JanRombouts/dynamicswitches. 513

4.2 Stochastic model 514

The stochastic equations we use are 515

dX = ε−1(f(X, a)(XT −X) − g(X)X)dt+ σdW

dXT = kXdt.
(8)

These equations are of Langevin type with noise only in the fast variable, which is 516

not a correct representation of molecular noise, but the simplest way to extend our ODE 517

model to include stochasticity. We include noise only in the fast variable to simplify the 518

system and only allow transition through ‘vertical’ deviations from the steady state 519

branch, in line with typical studies on stochastic switching [84]. Moreover, the ratio of 520

noise magnitude in fast and slow variable is high when stochastic differential equations 521

are derived from a discrete stochastic model [85], such that setting the noise on the slow 522

variable to zero is reasonable. To determine transition times, we detect the timepoint 523

when X crosses a threshold concentration. This threshold concentration is always the 524

average vertical coordinate of the saddle-node points of the static bistable switch. 525
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4.3 Removal of degradation term in the X-equation 526

In the oscillatory system, X degrades itself, both in active and inactive form. The set of 527

equations corresponding to this is 528

dX

dt
= ε−1(f(X)(XT −X) − g(X)X) −X2

dXT

dt
= kX −XTX.

(9)

We can rewrite this as 529

dX

dt
= ε−1(f(X)(XT −X) − (g(X) + εX)X)

dXT

dt
= kX −XTX,

(10)

and since ε is considered to be small, the shape of the bistable switch induced by 530

these equations is nearly the same as that induced by the one where ε = 0, which we use. 531

4.4 Spatial model 532

For the simulations in space, we use the equations 533

∂X

∂t
= DX

∂2X

∂x2
+ ε−1(f(X)Y − g(X)X)

∂Y

∂t
= DY

∂2Y

∂x2
− ε−1(f(X)Y − g(X)X).

(11)

here, Y is the inactive form of the protein. These equations allow more flexibility in 534

choosing, for example, different diffusion constants for active and inactive form. We 535

took DX = DY = 5 in our simulations for Fig. 4H,I. We simulated these equations using 536

a forward difference in time and centered difference for the space derivative. We use 537

zero-flux boundary conditions. For Fig. 4H, we detect the front position as function of 538

time and fit a linear function. Initial conditions are always a step function. 539

4.5 Sampling of parameters 540

Sampling of the parameter sets in Fig. 5I was done as follows: each parameter was 541

sampled uniformly and independently from a given interval. For ε we sampled the 542

logarithm. In S1 Supporting Information we provide a table with the intervals and 543

whether the parameter was sampled logarithmically or not. The system was simulated 544

with sampled parameters for a total time of T = 200. We considered a set of parameters 545

as oscillatory if the period is larger than 0.01. 546

4.6 Full set of equations for the biological example 547

We keep track of three different variables: total Cyclin B-Cdk1 complexes ([Cyc], active 548

Cyclin B-Cdk1 complexes ([Cdk1]) and Cdc25 levels ([Cdc25]). The model equations 549

are based on the equations used by Yang and Ferrell [56]. Note that Cdc25 is a scaled 550

variable: the value 1 would correspond to the level assumed by Yang and Ferrell. Each 551

variable has a nuclear and cytoplasmic version which are denoted by subscript n or c. 552

Cyclin B is constantly produced at a rate ks and binds immediately to Cdk1 to create 553

the complex. We assume that production only happens in the cytoplasm. The 554

activation rate of Cdk1 depends on Cdc25 levels and activity. The level is controlled by 555

the variable [Cdc25], the activity is a function of Cdk1, since Cdk1 is an activator of 556
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Cdc25. The inactivation rate of Cdk1 depends on Wee1 levels and activity. We assume 557

that total Wee1 levels are constant, but this level is higher in the nucleus than in the 558

cytoplasm. In the simulation used in Fig. 2, we used [Wee1]n = 1.3 and [Wee1]c = 1. 559

This variable is also scaled, [Wee1] = 1 corresponding to the model used by Yang and 560

Ferrell. As initial conditions for Cdc25, we use [Cdc25]n = 1, [Cdc25]c = 2. 561

Cyclin B-Cdk1 complexes and Cdc25 can be imported and exported from the 562

nucleus with certain import and export rates. We use the convention that the subscript 563

n or c for the rate denotes the compartment towards which the protein is moved. To 564

account for the observation that both Cyclin B-Cdk1 and Cdc25 import is increased at 565

mitotic entry, we introduce the functions ICyc and ICdc, which modify the import rates 566

of Cyclin B-Cdk1 and Cdc25 respectively. We use 567

ICyc([Cdk1]n) = 0.1 +
1

30
[Cdk1]n (12)

ICdc([Cdk1]c) = 1 +
1

60
[Cdk1]c. (13)

The equations are 568

d[Cyc]n
dt

= kn,CycICyc([Cdk1]n)[Cyc]c − kc,Cyc[Cyc]n (14)

d[Cyc]c
dt

= −kn,CycICyc([Cdk1]n)[Cyc]c + kc,Cyc[Cyc]n + ks (15)

d[Cdk1]n
dt

= kn,CycICyc([Cdk1]n)[Cdk1]c − kc,Cyc[Cdk1]n (16)

+ [Cdc25]n

(
aCdc25 + bCdc25

[Cdk1]mCdc25
n

KmCdc25

Cdc25 + [Cdk1]nCdc25
n

)
([Cyc]n − [Cdk1]n)

(17)

− [Wee1]n

(
aWee1 + bWee1

KmWee1

Wee1

KmWee1

Wee1 + [Cdk1]mWee1
n

)
[Cdk1]n (18)

d[Cdk1]c
dt

= −kn,CycICyc([Cdk1]n)[Cdk1]c + kc,Cyc[Cdk1]n + ks (19)

+ [Cdc25]c

(
aCdc25 + bCdc25

[Cdk1]mCdc25
c

KmCdc25

Cdc25 + [Cdk1]nCdc25
c

)
([Cyc]c − [Cdk1]c)

(20)

− [Wee1]c

(
aWee1 + bWee1

KmWee1

Wee1

KmWee1

Wee1 + [Cdk1]mWee1
c

)
[Cdk1]c (21)

d[Cdc25]n
dt

= kn,Cdc25ICdc([Cdk1]c)[Cdc25]c − kc,Cdc25[Cdc25]n (22)

d[Cdc25]c
dt

= kn,Cdc25ICdc([Cdk1]c)[Cdc25]c + kc,Cdc25[Cdc25]n (23)

The parameters can be found in S1 Supporting Information, and are mostly taken 569

from [56]. The import rates and the functions that influence those rates were chosen to 570

obtain a good example of the mechanism we propose. 571

Supporting information 572

S1 Supporting Information. File containing two tables and one extra 573

Figure. Table with parameter values used in the cell cycle model, table with the 574
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parameter bounds used in the sampling, figure with the fractions of oscillatory 575

parameter sets for different values of τ and κ. 576

S1 Video. Transition with a changing switch. This animation corresponds to 577

Fig. 4C. The protein is produced at a constant rate, while the activation threshold is 578

moving to the left due to an increase in a. The effect is a fast transition, and X activity 579

stays low until the transition. 580

S2 Video. Moving front with redistribution of a. 581

This animation illustrates the blocking of the front due to a heterogeneity in a, and 582

the release of the front due to redistribution of a (Fig. 4H,I). The a profile we use is a 583

smooth hyperbolic tangent function of x. The high value of a is 0.27, the low value is 584

0.13. The front gets stuck at the transition to low a, where a ≈ 0.15. At time t = 25, we 585

effect a smooth transition to the flipped profile which releases the front, after which it 586

continues moving to the right. 587

S3 Video. Oscillation with a changing switch. 588

This animation illustrates a system with production and degradation. We took 589

kX = 1., ā = 0.3, ∆a = 0.2, κ = 5, τ = 0. The bistable switch is changing while the 590

system oscillates. 591

S4 Video. Mitotic entry with two compartments 592

This animation corresponds to Fig. 2 in the main text. At first, Cyclin B 593

accumulates in the cytoplasm. The activation threshold for Cdk1 is lower there, so Cdk1 594

activity jumps to the upper branch first in the cytoplasm. this triggers nuclear import 595

of Cdc25, which lowers the threshold in the nucleus. Following this, Cdk1 activity in the 596

nucleus jumps up, which triggers an increased import of Cyclin B. Cdk1 activity in the 597

nucleus keeps increasing while in the cytoplasm it settles to a constant value. 598
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