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Abstract

Background: Metagenomic sequencing has led to the identification and
assembly of many new bacterial genome sequences. These bacteria often contain
plasmids: usually small, circular double-stranded DNA molecules that may
transfer across bacterial species and confer antibiotic resistance. These plasmids
are generally less studied and understood than their bacterial hosts. Part of the
reason for this is insufficient computational tools enabling the analysis of
plasmids in metagenomic samples.

Results: We developed SCAPP (Sequence Contents-Aware Plasmid Peeler) - an
algorithm and tool to assemble plasmid sequences from metagenomic sequencing.
SCAPP builds on some key ideas from the Recycler algorithm while improving
plasmid assemblies by integrating biological knowledge about plasmids.

We compared the performance of SCAPP to Recycler and metaplasmidSPAdes
on simulated metagenomes, real human gut microbiome samples, and a human
gut plasmidome dataset that we generated. We also created plasmidome and
metagenome data from the same cow rumen sample and used the parallel
sequencing data to create a novel assessment procedure. Overall, SCAPP
outperformed Recycler and metaplasmidSPAdes across this wide range of
datasets.

Conclusions: SCAPP is an easy to use Python package that enables the
assembly of full plasmid sequences from metagenomic samples. It outperformed
existing metagenomic plasmid assemblers in most cases, and assembled novel and
clinically relevant plasmids in samples we generated such as a human gut
plasmidome. SCAPP is open-source software available from:
https://github.com/Shamir-Lab/SCAPP.
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Background
Plasmids play a critical role in microbial adaptation, such as antibiotic resistance

or other metabolic capabilities, and genome diversification through horizontal gene

transfer. However, plasmid evolution and ecology across different microbial envi-

ronments and populations are poorly characterized and understood. Thousands

of plasmids have been sequenced and assembled directly from isolated bacteria,

but constructing complete plasmid sequences from short read data remains a hard

challenge. The task of assembling plasmid sequences from shotgun metagenomic

sequences, which is our goal here, is even more daunting.

There are several reasons for the difficulty of plasmid assembly. First, plasmids

represent a very small fraction of the sample’s DNA and thus may not be fully

covered by the read data in high-throughput sequencing experiments. Second, they

often share sequences with the bacterial genomes and with other plasmids, resulting
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in tangled assembly graphs. For these reasons, plasmids assembled from bacterial

isolates are usually incomplete, fragmented into multiple contigs, and contaminated

with sequences from other sources. The challenge is reflected in the title of a recent

review on the topic: “On the (im)possibility of reconstructing plasmids from whole-

genome short-read sequencing data” [1]. In a metagenomic sample, these problems

are amplified since the assembly graphs are much larger, more tangled and frag-

mented.

There are a number of tools that can be used to detect plasmid sequences includ-

ing PlasmidFinder [2], cBar [3], gPlas [4], PlasFlow [5], and others. There is also

the plasmidSPAdes assembler for assembling plasmids in isolate samples [6]. How-

ever, there are currently only two tools that attempt to reconstruct complete plas-

mid sequences in metagenomic samples: Recycler [7] and metaplasmidSPAdes [8]

(mpSpades). mpSpades iteratively generates smaller and smaller subgraphs of the

assembly graph by removing contigs with coverage below a threshold that increases

in each iteration. As lower coverage segments of the graph are removed, longer con-

tigs may be constructed in the remaining subgraph. Cyclic contigs are considered

as putative plasmids and then verified using the profile of their genetic contents.

The main idea behind Recycler is that a single shortest circular path through each

node in the assembly graph can be found efficiently. The circular paths that have

uniform read coverage are iteratively “peeled” off the graph and reported as pos-

sible plasmids. The peeling process reduces the residual coverage of each involved

node, or removes it altogether. We note that these tools, as well as our work, focus

on circular plasmids and do not assemble linear plasmid sequences.

Here we present SCAPP (Sequence Contents-Aware Plasmid Peeler), a new algo-

rithm that uses the peeling idea of Recycler and also leverages external biological

knowledge about plasmid sequences. In SCAPP the assembly graph is annotated

with plasmid-specific genes (PSGs) and nodes are assigned weights reflecting the

chance that they are plasmidic based on a plasmid sequence classifier [9]. In the

annotated assembly graph we prioritize peeling off circular paths that include plas-

mid genes and highly probable plasmid sequences. SCAPP also uses the PSGs and

plasmid scores to filter out likely false positives from the set of potential plasmids.

We tested SCAPP on both simulated and diverse real metagenomic data and

compared its performance to Recycler and mpSpades. Overall, SCAPP performed

better than the other tools across these datasets. SCAPP has higher precision than

Recycler in all cases, meaning it more accurately constructs correct plasmids from

the sequencing data. SCAPP also has higher recall than mpSpades in most cases,

and higher precision in most of the real datasets. We developed and tested a novel

strategy given parallel plasmidome and metagenome sequencing of the same sample.

We show how to accurately assess the performance of the tools on metagenome data,

even in the absence of known reference plasmids.

Implementation
SCAPP accepts as input a metagenomic assembly graph, with nodes representing

the sequences of assembled contigs and edges representing k-long sequence overlaps

between contigs, and the paired-end reads from which the graph was assembled.

SCAPP processes each component of the assembly graph and iteratively assembles

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.01.12.903252doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903252
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pellow et al. Page 3 of 16

Figure 1 Graphical overview of the SCAPP algorithm. A: The metagenomic assembly graph is
created from the sample reads. B: The assembly graph is annotated with read mappings, presence
of plasmid specific genes, and node weights based on sequence length, coverage, and plasmid
classifier score. C: Potential plasmids are iteratively peeled from the assembly graph. An efficient
algorithm finds cyclic paths in the annotated assembly graph that have low weight and high
chance of being plasmids. Cycles with uniform coverage are peeled. D: Confident plasmid
predictions are retained using plasmid sequence classification and plasmid-specific genes to remove
likely false positive potential plasmids.

plasmids from them. The output of SCAPP is a set of cyclic sequences representing

confident plasmid assemblies.

A high-level overview of SCAPP is provided in Box 1 and depicted graphically

in Figure 1; the full algorithmic details are presented below. For brevity, we de-

scribe only default parameters below, see Supplementary Information, section S1

for alternatives.

SCAPP is available from https://github.com/Shamir-Lab/SCAPP, and fully

documented there. It was written in Python3 and can be installed as a conda pack-

age, directly from Bioconda or from its sources.

The SCAPP algorithm

The full SCAPP algorithm is given in Algorithm 1. The peel function, which defines

how cycles are peeled from the graph, is given in Algorithm 2.

Read mapping

The first step in creating the annotated assembly graph (Box 1 step 1a) is to align

the reads to the contigs in the graph. The links between paired-end reads aligning

across contig junctions are used to evaluate potential plasmid paths in the graph.

SCAPP performs read alignment using BWA [10] and the alignments are filtered

to retain only primary read mappings, sorted, and indexed using SAMtools [11].
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Algorithm 1 SCAPP pipeline
Input: Assembly graph G = (V,E) and read set R of the sample
Output: P : potential plasmids, O: confident plasmid predictions
1: Create annotated graph G′ = (V ′, E′):

a: Initially G′ = G
b: Map R to V ′

c: score(v)← sequence plasmid probability ∀v ∈ V ′

d: w(v) = (1− score(v))/(len(v) · cov(v)) ∀v ∈ V ′

e: Vm = {v ∈ V ′|v contains a PSG}, w(v) = 0 ∀v ∈ Vm

2: V ′ ← V ′ \ {v ∈ V ′| deg(v) = 0 ∨ v is probable chromosome node
∨ v is a non-compatible self-loop with indeg(v) = outdeg(v) = 1}

3: P ← {v ∈ V ′|v is a compatible self-loop}
4: for each strongly connected component CC ∈ G′ do
5: for v ∈ Vm ∩ CC in decreasing order by len(v) · cov(v) do
6: Find lowest weight cycle C through v
7: if C meets coverage and paired-end read criteria then
8: P ← P ∪ {C}, G′ ← peel(G′, C)

9: for v ∈ {v ∈ CC| v is a probable plasmid node} in decreasing order by len(v) · cov(v) do
10: Find lowest weight cycle C through v
11: if C meets coverage and paired-end read criteria then
12: P ← P ∪ {C}, G′ ← peel(G′, C)

13: while V ′ changes do
14: S ← {}
15: for v ∈ V ′ ∩ CC in decreasing order by len(v) · cov(v) do
16: Find lowest weight cycle C through v
17: S ← S ∪ C
18: for C ∈ S in increasing order of coefficient of variation do
19: if C meets coverage and paired-end read criteria then
20: P ← P ∪ {C}, G′ ← peel(G′, C)

21: O ← {C ∈ P |(C contains a PSG ∧ plasmid score(C) > 0.5)
∨ (C contains a PSG ∧ C is self-loop ) ∨ (plasmid score(C) > 0.5 ∧ C is self-loop )}

Algorithm 2 peel(G,C)

Input: Assembly graph G = (V,E) annotated with node coverage,
cycle C ⊂ G

Output: Updated graph G′ = (V ′ ⊆ V,E′ ⊆ E) with cycle C peeled
1: G′ = G
2: µcov′ (C) =

∑
u∈C

f(u,C)cov′(u,C), the weighted mean of the discounted coverage of C in G

3: for v ∈ C do
4: cov(v)← max{cov(v)− µcov′ (C), 0}
5: if cov(v) = 0 then
6: V ′ ← V ′ \ v
7: E′ ← E′ \ {e|e = (u, v) ∪ e = (v, u) ∀u ∈ V }
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Box 1. Overview of SCAPP

1: Annotate the assembly graph:

a: Map reads to nodes of the assembly graph

b: Find nodes with plasmid-specific gene matches

c: Compute plasmid sequence scores of nodes

d: Assign node weights

2: for each strongly connected component do

3: Iteratively peel uniform coverage cycles through plasmid gene nodes

4: Iteratively peel uniform coverage cycles through high scoring nodes

5: Iteratively peel shortest cycle through each remaining node if it meets

plasmid criteria

6: Output the set of confident plasmid predictions

Plasmid-specific gene annotation

We created sets of PSGs by database mining and curation by plasmid microbiology

experts from the Mizrahi Lab (Ben-Gurion University). Information about these

PSG sets is found in Supplementary Information, section S2. The sequences them-

selves are available from https://github.com/Shamir-Lab/SCAPP/scapp/data.

A node in the assembly graph is annotated as containing a PSG hit (Box 1 step

1b) if there is a BLAST match between one of the PSG sequences and the sequence

corresponding to the node (≥ 75% sequence identity along ≥ 75% of the length of

the gene).

Plasmid sequence score annotation

We use PlasClass [9] to annotate each node in the assembly graph with a plasmid

score (Box 1 step 1c). PlasClass uses a set of logistic regression classifiers for se-

quences of different lengths to assign a classification score reflecting the likelihood

of each node to be of plasmid origin.

We re-weight the node scores according to the sequence length as follows. For a

given sequence of length L and plasmid probability p assigned by the classifier, the

re-weighted plasmid score is: s = 0.5+
p− 0.5

1 + e−0.001(L−2000)
. This tends to pull scores

towards 0.5 for short sequences, for which there is lower confidence, while leaving

scores of longer sequences practically unchanged.

Long nodes (L > 10 kbp) with low plasmid score (s < 0.2) are considered probable

chromosomal sequences and are removed, simplifying the assembly graph. Similarly,

long nodes (L > 10 kbp) with high plasmid score (s > 0.9) are considered probable

plasmid nodes.

Assigning node weights

In order to apply the peeling idea, nodes are assigned weights (Box 1 step 1d) so

that lower weights correspond to higher likelihood to be assembled into a plasmid.

Plasmid score and PSG annotations are incorporated into the node weights. A node

with plasmid score s is assigned a weight w(v) = (1−s)/(C ·L) where C is the depth
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of coverage of the node’s sequence and L is the sequence length. This gives lower

weight to nodes with higher coverage, longer sequence and higher plasmid scores.

Nodes with PSG hits are assigned a weight of zero, making them more likely to be

integrated into any lowest-weight cycle in the graph that can pass through them.

Finding low-weight cycles in the graph

The core of the SCAPP algorithm is to iteratively find a lowest weight (“lightest”)

cycle going through each node in the graph for consideration as a potential plasmid.

We use the bidirectional single-source, single-target shortest path implementation

of the NetworkX Python package [12].

The order that nodes are considered matters since in each iteration potential

plasmids are peeled from the graph, affecting the cycles that may be found in

subsequent iterations. The plasmid annotations are used to decide the order that

nodes are considered: first all nodes with PSGs, then all probable plasmid nodes,

and then all other nodes in the graph (Box 1 step 2). If the lightest cycle going

through a node meets certain criteria described below, it is peeled off, changing the

coverage of nodes in the graph. Performing the search for light cycles in this order

ensures that the cycles through more likely plasmid nodes will be considered before

other cycles.

Assessing coverage uniformity

The lightest cyclic path, weighted as described above, going through each node is

found and evaluated. Recycler sought a cycle with near uniform coverage, reason-

ing that all contigs that form a plasmid should have roughly the same coverage.

However, this did not take into account the overlap of the cycle with other paths

in the graph (see Figure 2). To account for this, we instead compute a discounted

coverage score for each node in the cycle based on its interaction with other paths

as follows:

The discounted coverage of a node v in the cycle C is its coverage cov(v) times the

fraction of the coverage on all its neighbors (both incoming and outgoing), N (v),

that is on those neighbors that are in the cycle (see Figure 2):

cov′(v, C) = cov(v) ·

 ∑
u∈C∧u∈N (v)

cov(u)/
∑

u∈N (v)

cov(u)


A node v in cycle C with contig length len(v) is assigned a weight f corresponding

to its fraction of the length of the cycle: f(v, C) = len(v)/
∑
u∈C

len(u). These weights

are used to compute the weighted mean and standard deviation of the discounted

coverage of the nodes in the cycle: µcov′(C) =
∑
u∈C

f(u,C)cov′(u,C),

STDcov′ =

√∑
u∈C

f(u,C)(cov′(u,C)− µcov′(C))2

The coefficient of variation of C, which evaluates its coverage uniformity, is the

ratio of the standard deviation to the mean:
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Figure 2 Evaluating and peeling cycles. Numbers inside nodes indicate coverage. All nodes in
the example have equal length. A: Cycles (a, e, f) and (c, e, g) have the same average coverage
(13.33) and coefficient of variation (CV, 0.35), but their discounted CV values differ: The
discounted coverage of node a is 6, and the discounted coverage of node e is 10 in both cycles.
The left cycle has discounted CV=0.22 and the right has discounted CV=0. By peeling off the
mean discounted coverage of the right cycle (10) one gets the graph in B. Note that nodes g, c
were removed from the graph since their coverage was reduced to 0, and the coverage of node e
was reduced to 10.

CV (C) =
STDcov′(C)

µcov′(C)

Finding potential plasmid cycles

After each lightest cycle has been generated, it is evaluated as a potential plasmid

based on its structure in the assembly graph, the PSGs it contains, its plasmid score,

paired-end read links, and coverage uniformity. The precise evaluation criteria are

described in Supplementary Information, section S3. A cycle that passes them is

defined as a potential plasmid (Box 1 steps 3-5). The potential plasmid cycles are

peeled from the graph in each iteration as defined in Algorithm 2 (see also Figure 2).

Filtering confident plasmid assemblies

In the final stage of SCAPP, PSGs and plasmid scores are used to filter out likely

false positive plasmids from the output and create a set of confident plasmid assem-

blies (Box 1 step 6). All potential plasmids are assigned a length-weighted plasmid

score and are annotated with PSGs as was done for the contigs during graph an-

notation. Those that belong to at least two of the following sets are reported as

confident plasmids: (a) potential plasmids containing a match to a PSG; (b) poten-

tial plasmids with plasmid score > 0.5; (c) self-loop nodes.

Results
We tested SCAPP on simulated metagenomes, human gut metagenomes, a human

gut plasmidome dataset that we generated and also on parallel metagenome and

plasmidome datasets from the same cow rumen microbiome specimen that we gen-

erated. The test settings and evaluation methods are described in Supplementary

Information, section S5.

Simulated metagenomes

We created seven read datasets simulating metagenomic communities of bacteria

and plasmids and assembled them. Datasets of increasing complexity were created
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Table 1 Performance on simulated metagenome datasets. The number of covered plasmids (#
covered) reports the number of the simulation plasmids that were covered by reads along at least
95% of their length. The set of covered plasmids is used as the gold standard in calculating the
performance metrics. The numbers in parentheses are the median plasmid lengths (in kbp). F1 score
is presented as a percent.

Recycler mpSpades SCAPP

Sample
#

genomes
#

plasmids
#

covered
#

plasmids F1
#

plasmids F1
#

plasmids F1

Sim1 10 9 (5.9) 9 7 (5.6) 50.0 1 (4.3) 20.0 5 (5.6) 57.1

Sim2 50 47 (19.3) 37 20 (3.8) 40.1 9 (5.0) 39.1 23 (5.5) 43.3

Sim3 200 210 (22.4) 136 61 (3.6) 32.8 27 (7.0) 32.3 48 (5.8) 42.9

Sim4 200 177 (25.4) 132 62 (4.1) 40.8 29 (6.0) 36.5 51 (6.2) 48.9

Sim5 300 318 (23.9) 253 115 (3.6) 35.2 53 (5.1) 33.8 100 (6.5) 47.5

Sim6 400 480 (13.5) 368 138 (3.0) 28.5 59 (5.5) 27.1 118 (5.5) 36.5

Sim7 500 571 (17.3) 410 132 (3.5) 31.1 69 (5.3) 28.1 141 (5.2) 40.5

as shown in Table 1. We randomly selected bacterial genomes along with their asso-

ciated plasmids, and used realistic distributions for genome abundance and plasmid

copy number. Further details of the simulation can be found in Supplementary In-

formation, section S4. 5M paired-end reads were generated for Sim1 and Sim2, 10M

for Sim3 and Sim4, and 20M for Sim5, Sim6, and Sim7.

Table 1 presents features of the simulated datasets and reports the performance

of Recycler, mpSpades, and SCAPP on them. For brevity we report only F1 scores;

precision and recall scores are reported in Supplementary Table 1, Supplementary

Information (section S6). SCAPP had the highest F1 score in all cases, followed by

Recycler. SCAPP consistently achieved higher precision than Recycler, allowing it

to perform better overall. mpSpades had the highest precision, but assembled far

fewer plasmids than the other tools and gained lower recall and F1 scores. This

suggests that mpSpades mostly assembled the easier plasmids. Indeed, most of the

plasmids assembled by mpSpades were also assembled by the other tools (see Figure

S1 in Supplementary Information).

Human gut microbiomes

We tested the plasmid assembly algorithms on data of twenty publicly available

human gut microbiome samples selected from the study of Vrieze et al. [13]. The

true set of plasmids in these samples is unknown. Instead, we matched all assembled

contigs to PLSDB [14] and considered the set of the database plasmids that were

covered by the contigs as the gold standard (see Supplementary Information, section

S5 for details). All tools were evaluated according to the same gold standard. We

note that this limits the evaluation to known plasmids. We chose the human gut

microbiome in this experiment and the next, as it is one of the most widely studied

microbiome environments so plasmids in gut microbiome samples are most likely to

be represented in the database.

Table 2 presents the results of the three algorithms averaged across all twenty

samples. The detailed results on each of the samples are presented in Supplementary

Table 2 and Figure S2, Supplementary Information (section S7). SCAPP performed

best in more cases, with mpSpades failing to assemble any gold standard plasmid

in over half the samples. We note that all of the cases where SCAPP had recall

of 0 occurred when the number of gold standard plasmids was very small and the
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Table 2 Performance on the human gut metagenomes. Number of plasmids, the median plasmid
length (in kbp), and performance measures for all tools are averaged across the twenty samples. The
average number of plasmids and median length of the gold standard sets of plasmids were 4.8 and
12.4 respectively

Tool # plasmids median length precision recall F1

Recycler 15.9 3.6 7.1 36.4 10.9

mpSpades 6.5 5.0 7.9 17.4 10.3

SCAPP 9.8 4.4 11.5 36.4 16.1

Table 3 Performance on the human gut plasmidome. Number of plasmids, the median plasmid
length (in kbp), and performance measures for all tools.

Tool # plasmids median length precision recall F1

Recycler 93 2.1 15.1 37.8 21.5

mpSpades 53 3.0 11.3 9.4 10.3

SCAPP 82 2.4 17.1 35.9 23.1

other tools also failed to assemble them. On the largest samples with the most gold

standard plasmids SCAPP performed best, highlighting its superior performance on

the types of samples most likely to be of interest in experiments aimed at plasmid

assembly. SCAPP consistently outperformed Recycler by achieving higher precision,

a result that is consistent with the other experiments.

Human gut plasmidome

The protocol developed in Brown Kav et al. [15] enables extraction of DNA from

isolate or metagenomic samples with the plasmid content highly enriched. The se-

quence contents of such a sample is called the plasmidome of the sample. This

enrichment for plasmid sequences increases the chance of revealing the plasmids in

the sample. The protocol was assessed to achieve samples with at least 65% plas-

mid contents by Krawczyk et al. [5]. We sequenced the plasmidome of the human

gut microbiome from a healthy adult male according to the plasmid enrichment

protocol. 18,616,649 paired-end reads were sequenced with the Illumina HiSeq2000

platform, read length 150bp and insert size 1000.

The gold standard set of plasmids, determined as for the gut metagenome samples,

consisted of 74 plasmids (median length = 2.1 kbp). Performance was computed as

in the metagenomic samples and is shown in Table 3. SCAPP achieved best overall

performance, while mpSpades had lower precision and much lower recall than the

other tools.

Notably, although the sample was obtained from a healthy donor, some of the

plasmids reconstructed by SCAPP matched reference plasmids found in potentially

pathogenic hosts such as Klebsiella pneumoniae, pathogenic serovars of Salmonella

enterica, and Shigella sonnei. The detection of plasmids previously isolated from

pathogenic hosts in the healthy gut indicates potential pathways for transfer of

virulence genes.

We used MetaGeneMark [16] to find potential genes in the plasmids assembled

by SCAPP. 294 genes were found, and we annotated them with the NCBI non-

redundant (nr) protein database using BLAST. 46 of the plasmids contained 170

(58%) genes with matches in the database, of which 77 (45%) had known functional

annotations, which we grouped manually in Figure 3A. There were six antibiotic

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.01.12.903252doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903252
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pellow et al. Page 10 of 16

Figure 3 Annotation of genes on the plasmids identified by SCAPP in the human gut
plasmidome sample. A: Functional annotations of the plasmid genes. B: Host annotations of the
plasmid genes. “Broad-range” plasmids had genes annotated with hosts from more than one
phylum.

and toxin resistance genes, all on plasmids that were not in the gold standard

set, highlighting SCAPP’s ability to find novel resistance carrying plasmids. 60 of

the 77 genes (78%) with functional annotations had plasmid associated functions:

replication, mobilization, recombination, resistance, and toxin-antitoxin systems. 29

out of the 33 plasmids that contained functionally annotated genes (88%) contained

at least one of these plasmid associated functions. This provides a strong indication

that SCAPP succeeded in assembling true plasmids of the human gut plasmidome.

We also examined the hosts that were annotated for the plasmid genes and found

that almost all of the plasmids with annotated genes contained genes with an-

notations from a variety of hosts, which we refer to here as “broad-range” (see

Figure 3B). Of the 40 plasmids with genes from annotated hosts, only 10 (25%)

had genes with annotated hosts all within a single phylum. This demonstrates that

these plasmids assembled and identified by SCAPP may be involved in one stage

of transferring genes, such as the antibiotic resistance genes we detected, across a

range of bacteria.

Parallel metagenomic and plasmidome samples

We performed two sequencing assays on the same cow rumen microbiome sample

of a four month old calf. In one subsample total DNA was sequenced. In the other,

plasmid-enriched DNA was extracted as described in Brown Kav et al. [15] and

sequenced (see Figure 4). 27,127,784 paired-end reads were sequenced in the plas-

midome, and 54,292,256 in the metagenome. Both were sequenced on the Illumina

HiSeq2000 platform with read length 150bp and insert size 1000.

This parallel data enabled us to assess the plasmids assembled on the metagenome

using the plasmidome, without resorting to PLSDB matches as the gold standard.

Such assessment is especially useful for samples from non-clinical environments such

as the cow rumen, as PLSDB likely under-represents plasmids in them.

Table 4 summarizes the results of the three plasmid discovery algorithms on both

subsamples. mpSpades made the fewest predictions and Recycler made the most. To

compare the plasmids identified by the different tools, we considered two plasmids

to be the same if their sequences matched at > 80% identity across > 90% of

their length. The comparison is shown in Figure S3, Supplementary Information

(section S8). In the plasmidome subsample, 50 plasmids were identified by all three
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Figure 4 Outline of the read-based performance assessment. Plasmidome (I) and metagenome
reads (II) are obtained from subsamples of the same sample. III: The metagenome reads are
assembled into a graph. IV: The graph is used to detect and report plasmids by the algorithm of
choice. V: The plasmidome reads are matched to assembled plasmids. Matched plasmids (red) are
used to calculate plasmid read-based precision. VI: The plasmidome reads are matched to the
assembly graph contigs. Covered contigs (red) are considered plasmidic. The fraction of total
length of plasmidic contigs included in the detected plasmids gives the plasmidome read-based
recall.

Table 4 Number of plasmids assembled by each tool and their median lengths (in kbp) for the
parallel metagenome and plasmidome samples.

metagenome plasmidome

Tool # plasmids
median
length # plasmids

median
length

Recycler 60 4.3 147 1.7

SCAPP 25 5.8 110 1.8

mpSpades 26 6.2 65 2.0

methods. Seventeen were common to the three methods in the metagenome. In both

subsamples, the Recycler plasmids included all or almost all of those identified by

the other methods plus a large number of additional plasmids. In the plasmidome,

SCAPP and Recycler shared many more plasmids than mpSpades and Recycler.

We also evaluated the results of the plasmidome and metagenome assemblies by

comparison to PLSDB as was done for the human gut samples. The metagenome

contained only one matching PLSDB reference plasmid, and none of the tools assem-

bled it. The plasmidome had only seven PLSDB matches, and mpSpades, Recycler,

and SCAPP had F1 scores of 2.86, 2.67, and 1.74, respectively. The low fraction of

PLSDB matches out of the assembled plasmids suggests that the tools can identify

novel plasmids that are not in the database.

In order to fully leverage the power of parallel samples, we computed the perfor-

mance of each tool on the metagenomic sample using the reads of the plasmidomic
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sample, without doing any contig and plasmid assembly on the latter. The rationale

was that the reads of the plasmidome represent the full richness of plasmids in the

sample in a way that is not biased by a computational procedure or prior biological

knowledge.

We calculated the plasmidome read-based precision by mapping the plasmidomic

reads to the plasmids assembled from the metagenomic sample (Figure 4). A plasmid

with > 90% of its length covered by more than one plasmidomic read was considered

to be a true positive. The precision of an algorithm was defined as the fraction of

true positive plasmids out of all reported plasmids. The plasmidome read-based recall

was computed by mapping the plasmidomic reads to the contigs of the metagenomic

assembly. Contigs with > 90% of their length covered by plasmidomic reads at depth

> 1 were called plasmidic contigs. Plasmidic contigs that were part of the assembled

plasmids were counted as true positives, and those that were not were considered

false negatives. The recall was defined as the fraction of the plasmidic contigs’ length

that was integrated in the assembled plasmids. Note that the precision and recall

here are measured using different units (plasmids and base pairs, respectively) so

they are not directly related. For mpSpades, which does not output a metagenomic

assembly, we mapped the contigs from the metaSPAdes assembly to the mpSpades

plasmids using BLAST (> 80% sequence identity matches along > 90% of the

length of the contigs).

There were 293 plasmidic contigs in the metagenome assembly graph, with a

total length of 146.6 kbp. The plasmidome read-based performance is presented in

Figure 5A. All tools achieved a similar recall of around 12. SCAPP and mpSpades

performed similarly, with SCAPP having slightly higher precision (24.0 vs 23.1) but

slightly lower recall (11.9 vs 12.2). Recycler had a bit higher recall (13.1), but at

the cost of far lower precision (11.7). Hence, a much lower fraction of the plasmids

assembled by Recycler in the metagenome were actually supported by the parallel

plasmidome sample, adding to the other evidence that the false positive rate of

Recycler exceeds that of the other tools.

We also compared the plasmids assembled by each tool in the two subsamples.

For each tool, we considered the plasmids it assembled from the plasmidome to

be the gold standard set, and used it to score the plasmids it assembled in the

metagenome. The results are shown in Figure 5B. SCAPP had the highest precision.

Since mpSpades had a much smaller gold standard set, it achieved higher recall and

F1. Recycler output many more plasmids than the other tools in both samples, but

had much lower precision, suggesting that many of its plasmid predictions may be

spurious.

Next, we considered the union of the plasmids assembled across all tools as the

gold standard set and recomputed the scores. We refer to them as “overall” scores.

Figure 5C shows that overall precision scores were the same as in Figure 5B, while

overall recall was lower for all the tools, as expected. mpSpades underperformed

because of its smaller set of plasmids, and SCAPP had the highest overall F1 score.

We detected potential genes in the plasmids assembled by SCAPP in the plas-

midome sample and annotated them as we did for the human gut plasmidome.

The gene function and host annotations are shown in Figure S4, Supplementary

Information (section S8). Out of 242 genes, only 34 genes from 17 of the plasmids
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Figure 5 Performance on the parallel datasets. A: Plasmidome read-based performance. B:
Performance of each tool on the plasmids assembled from the metagenome using as gold standard
the plasmids assembled from the plasmidome by the same tool. C: Overall performance on the
plasmids assembled from the metagenome compared to the union of all plasmids assembled by all
tools in the plasmidome.

Table 5 Summary of performance. Comparison of the performance of the tools on each of the
datasets. When multiple samples were tested, the number of samples appears in parentheses, and
average performance is reported. For the parallel samples results are for the evaluation of the
metagenome based on the plasmidome, and precision and recall are plasmidome read-based. Unless
otherwise stated, F1 score is used. Note that in the simulations, SCAPP � mpSpades.

Test Ranking

Simulations (7) SCAPP > Recycler > mpSpades

Human gut metagenomes (20) SCAPP � mpSpades > Recycler

Plasmidome SCAPP > Recycler � mpSpades

Parallel: within tool mpSpades > SCAPP � Recycler

Parallel: “overall”, across tools SCAPP > Recycler > mpSpades

Parallel: precision SCAPP ≈ mpSpades � Recycler

Parallel: recall Recycler > mpSpades ≈ SCAPP

had annotations, and only 18 of these had known functions, highlighting that many

of the plasmids in the cow rumen plasmidome are as yet unknown. The high per-

centage of genes of plasmid function (15/18) indicates that SCAPP succeeded in

assembling novel plasmids. Unlike in the human plasmidome, most of the plasmids

with known host annotations had hosts from a single phylum.

Performance summary

We summarize the performance of the tools across all the test datasets in Table 5.

The performance of two tools was considered similar (denoted ≈) if their scores

were within 5% of each other. Performance of one tool was considered to be much

higher than the other (�) if its score was > 30% higher (an increase of 5− 30% is

denoted by >).

We see that in most cases SCAPP was the highest performer. Furthermore, in all

other cases SCAPP performed close to the top performing tool.

Resource usage

The runtime and memory usage of the three tools are presented in Table 6. Recycler

and SCAPP require assembly by metaSPAdes and pre-processing of the reads and

the resulting assembly graph. SCAPP also requires post-processing of the assembled

plasmids. mpSpades requires post-processing of the assembled plasmids with the
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Table 6 Resource usage of the three methods. Peak RAM of the assembly step (metaSPAdes for
Recycler and SCAPP, metaplasmidSPAdes for mpSpades) in GB. Runtime (wall clock time, in
minutes) is reported for the entire pipeline including assembly and any pre-processing and
post-processing required. Human metagenome results are an average across the 20 samples.

Runtime (minutes)

Dataset RAM (GB) Recycler mpSpades SCAPP

Human metagenomes 21 115 103 130

Plasmidome 30 907 548 909

Parallel metagenome 148 2118 2132 2230

Parallel plasmidome 26 881 684 884

plasmidVerify tool. The reported runtimes are for the full pipelines necessary to

run each tool – from reads to assembled plasmids.

In almost all cases assembly was the most memory intensive step, and so all tools

achieved very similar peak memory usage (within 0.01 GB). Therefore, we report

the RAM usage for this step.

The assembly step was also the longest step in all cases. SCAPP was slightly

slower than Recycler as a result of the additional annotation steps, and mpSpades

was 5 – 40% faster. However, note that mpSpades does not output a metagenomic

assembly graph, so users interested in both the plasmid and non-plasmid sequences

in a sample would need to run metaSPAdes as well, practically doubling the runtime.

Performance measurements were made on a 44-core, 2.2 GHz server with 792 GB

of RAM. 16 processes were used where possible. Recycler is single-threaded, so only

one process was used for it.

Discussion
Plasmid assembly from metagenomic sequencing is a very difficult task, akin to

finding needles in a haystack. This difficulty is demonstrated by the low numbers

of plasmids found in real samples. Even in samples of the human gut microbiome,

which is widely studied, relatively few plasmids that have matches in the exten-

sive plasmid database PLSDB were recovered. Despite the challenges, SCAPP was

able to assemble plasmids across a number of clinically relevant samples. SCAPP

significantly outperformed mpSpades in simulation and on a range of human gut

metagenome and plasmidome samples. In simulation mpSpades achieved very high

precision at the expense of low recall, and SCAPP had higher combined F1 score.

The high precision was not observed in real data, which is more difficult than the

simulations. SCAPP was also consistently better than Recycler across almost all

tests. Though SCAPP and Recycler share the idea of cycle peeling, SCAPP was

shown to have higher precision, due to incorporating additional biological informa-

tion and better edge weighting.

Another contribution of this study is the joint analysis of the parallel metagenome

and plasmidome from the same sample. We show that this enables a novel way

to evaluate plasmid assembly algorithms on the metagenome data, by using the

coverage information from the plasmidome. This novel approach bypasses the need

to rely on known plasmids for evaluation, which is biased due to research focus. We

developed several evaluation metrics for such data, and think they can be useful

for future plasmid studies, especially in non-clinical and non-human samples where

plasmid knowledge is scarce.
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A key difficulty in evaluation of performance of plasmid discovery algorithms is the

lack of gold standard. The verification of reported plasmids is done either based on

prior biological knowledge, which is biased, or by experimental verification, which

is slow and expensive. Moreover, such verification evaluates precision but does not

give information on the extent of missed plasmids, or recall. While simulations can

evaluate both parameters accurately, they are inherently artificial, and necessitate

many modeling assumptions that are not fully supported by experimental data. For

that reason we chose here to focus primarily on real data, and preferred diversity

in the real data types over extensive but artificial simulations. The parallel samples

strategy is another partial answer to this problem.

SCAPP has several limitations. Like the other de Bruijn graph-based plasmid

assemblers, it may split a cycle into two when a shorter cycle is a sub-path of a

longer cycle. It also has difficulties in finding very long plasmids, as these tend to

not be completely covered and fragmented into many contigs in the graph. Note

however that it produced longer cycles than Recycler. Compared to mpSpades,

each algorithm produced longer cycles in different tests. Another limitation is the

inherent bias in relying on known plasmid genes and plasmid databases, which

tend to under-represent non-clinical samples. With further use of tools like SCAPP,

perhaps with databases tailored to specific environments, further improvement is

possible.

Conclusions
We introduced SCAPP, a new plasmid discovery tool based on combination of

graph theoretical and biological considerations. Overall, SCAPP demonstrated bet-

ter performance than Recycler and metaplasmidSpades in a wide range of real sam-

ples from diverse contexts. By applying SCAPP across large sets of samples, many

new plasmid reference sequences can be assembled, enhancing our understanding of

plasmid biology and ecology.
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S1 Alternatives for user set parameters

The SCAPP pipeline is highly flexible, and many of the options and parameters can be set by the user.
In most cases, we recommend using the default options and settings. Some of the alternatives that can be
chosen by the user are described below. All of the parameter settings that may be changed by the user are
fully documented at: https://github.com/Shamir-Lab/SCAPP.

Read mapping: The user has the option of providing a sorted and indexed BAM alignment file created by
any method.

Plasmid-specific genes: The user may add any set of PSGs or remove any of those included with
SCAPP.

Plasmid classification scores: The sequences may be classified using PlasFlow and the PlasFlow classi-
fication output file can be provided to SCAPP.

Algorithm thresholds: Thresholds for finding plasmid gene matches, defining probable plasmid and chro-
mosomal sequences, identifying potential plasmids, filtering them, and many more can all be user-defined.
The full software documentation at https://github.com/Shamir-Lab/SCAPP details all of these user op-
tions.

S2 Plasmid-specific genes

We created four sets of plasmid-specific genes (PSGs) by database mining and expert curation:

1. MOB genes: 890 amino acid sequences of plasmid maintenance genes curated by plasmid biologists
from the Mizrahi Lab (Ben-Gurion University) and filtered computationally (see details of filtering
below).

2. Plasmid ORFs: 4276 nucleotide sequences corresponding to ORFs annotated with ‘mobilization’, ‘con-
jugation’, ‘partitioning’, ‘toxin-antitoxin’, ‘replication’, or ‘recombination’ from a large set of putative
plasmids found by the Mizrahi Lab and then filtered computationally.

3. ACLAME plasmid genes: 4813 nucleotide sequences of genes that make up 96 gene families in the
ACLAME database [1] that were manually selected as possibly plasmid-specific. The set of genes was
deduplicated and filtered computationally.

4. PLSDB-specific ORFs: 94478 plasmid-specific sequences determined as follows: We used MetaGene-
Mark [2] to predict genes in the plasmid sequences from PLSDB (v.2018 12 05) [3]. We then counted
the number of BLAST matches (> 75% identity match along > 75% of the gene length) to these
genes in both PLSDB and bacterial reference genomes from NCBI (downloaded January 9, 2019 ). We

1
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considered each predicted gene that appeared in the plasmids more than 20 times and was > 20× more
prevalent in the plasmids than in the genomes to be plasmid-specific.

Sets 1–3 were filtered as follows: We counted matches between the sequences and PLSDB plasmids and
NCBI bacterial reference genomes as for the PLSDB-specific ORFs (set 4). We excluded any gene that had
more than 4 matches to bacterial genes and met one of the following conditions: (1) ≤ 4 matches to plasmid
genes and > 4× as many matches to bacterial genes as plasmid genes; or, (2) > 4 plasmid gene matches,
but ≤ 4× as many matches to plasmid genes as to bacterial genes.

S3 Potential plasmid cycle criteria

Once the set of lightest cycles has been generated, each cycle is evaluated as a potential plasmid based on its
structure in the assembly graph, the PSGs it contains, its plasmid score, paired-end read links, and coverage
uniformity. A cycle is defined as a potential plasmid if one of the following criteria is met:

1. The cycle is formed by an isolated “compatible” self-loop node v, i.e. len(v) > 1000, indeg(v) =
outdeg(v) = 1, and at least one of the following conditions holds:

(a) v has a high plasmid score s(v) > 0.9.

(b) v has a PSG hit.

(c) < 10% of the paired-end reads with a mate on v have the other mate on a different node.

2. The cycle is formed by a connected compatible self-loop node v, i.e.len(v) > 1000, indeg(v) > 1 or
outdeg(v) > 1, and < 10% of the paired-end reads with a mate on v have the other mate on a different
node.

3. The cycle is not formed by a self-loop and has:

(a) Uniform coverage: CV (C) < 0.5, and

(b) Consistent mate-pair links: a node in the cycle is defined as an “off-path dominated” node if the
majority of the paired-end reads with one mate on the node have the other mate on a node that
is not in the cycle. If less than half the nodes in the cycle are “off-path dominated”, then we
consider the mate-pair links to be consistent.

S4 Simulation of metagenomes with plasmids

To create the simulated metagenomes, we downloaded all completed whole genome bacterial reference se-
quences from RefSeq (RefSeq database updated on March 11, 2020). We first compiled a list of bacterial
strains or species that have been previously identified as prevalent in the human gut from three sources: (1)
The list compiled by Alneberg et al. [4] (Sup Table 1). (2) Species with abundance > 0.01 in at least one
human gut sample from the human microbiome project (HMP1) [5] as estimated by MetaPhLan (abundance
table available from https://www.hmpdacc.org/HMSMCP/#data). (3) The “dominant species” identified by
Forster et al. [6] (Sup Table 5) in the HGG (Human Gastrointestinal Bacteria Genome Collection). We
searched for the strains or species on this combined list in the RefSeq database, giving preference to strain
level matches. When multiple references appeared (for example, when a listed species has multiple reference
strains), we gave preference to those with longer plasmids (>10kbp), followed by those with any plasmid,
choosing randomly between references with the same preference. The list of human gut specific bacteria
used in the simulations contained 145 references, and is provided in Additional file 2.

For each simulation we first selected from the human gut specific bacteria and then supplemented with
randomly selected reference sequences to reach the desired number of genomes. Since the plasmids sequenced
with completed whole bacterial genomes are usually long, we also supplemented with a fixed number of shorter
(<10kbp) plasmids, selected randomly and associated at random with host genomes in the simulation. (5
short plasmids were added in Sim1, 15 in Sim2, 50 in Sim3 and Sim4, 100 in Sim5, 150 in Sim6, and 200 in
Sim7.)

2
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Genome abundance and plasmid copy number were assigned using realistic distributions. For genome abun-
dance we used the log-normal distribution (µ = 1.5, σ = 1), normalized so that the relative abundances sum
to 1. This long-tailed distribution mimics the abundance distribution of real microbiome samples. Plasmids
were assigned the same abundance as their hosts, and plasmid copy number was assigned according to one of
several geometric distributions according to the plasmid length. The parameter of the geometric distribution
of a plasmid of length L was set to be

p =


log10(L)/30, 1kbp ≤ L < 10kbp

log10(L)/20, 10kbp ≤ L < 100kbp

log10(L)/10, 100kbp ≤ L < 1Mbp

1, L ≥ 1Mbp

This makes it more likely for shorter plasmids to have higher copy numbers, in accordance with observed
plasmid copy number patterns.

Paired-end short reads were simulated from the genome references using InSilicoSeq [7] with the HiSeq error
model (default read length = 126bp). To reflect circularity of the plasmids and bacterial genomes, multiple
copies of the reference sequence were concatenated before generating reads.

S5 Experimental settings and evaluation

All metagenomes were assembled using the SPAdes assembler (v3.13) with the --meta option. The default
of 16 threads were used, and the maximum memory was set to 750 GB. metaplasmidSPAdes (mpSpades)
was run with the same parameters. mpSpades internally chooses the maximal value of k to use for the
k-mer length in the assembly graph. We matched the values of k used in SPAdes to these values for each
dataset. Defaults were used for all other options for Recycler and SCAPP. In practice, the maximum k
value was 77 for the simulations and human metagenomic samples, and 127 for the plasmidome and parallel
metagenome-plasmidome samples.

For a simulated metagenome, the set of reference plasmids included in the simulation that were covered
along > 95% of their length by simulated reads was used as the gold standard. Reads were mapped using
BWA [8], and coverage at each base of the reference plasmids was called using bedtools [9].

We used BLAST to match the assembled plasmids to the gold standard plasmid sequences. A plasmid
assembled by one of the tools was considered to be a true positive if > 90% of its length was covered by
BLAST matches to > 90% of a reference with > 80% sequence identity. The rest of the assembled plasmids
were considered to be false positives. Gold standard plasmids that did not have assembled plasmids matching
them were considered to be false negatives. Precision was defined as TP/(TP+FP ) and recall was defined as
TP/(TP +FN), where TP , FP , and FN were the number of true positive, false positive, and false negative
plasmids, respectively. The F1 score was defined as the harmonic mean of precision and recall.

For the human microbiome and plasmidome samples, the set of plasmids serving as the gold standard was
selected from PLSDB (v.2018 12 05) [3], a large curated plasmid database. After filtering duplicate plasmids,
the PLSDB contains 13469 reference plasmids. The contigs from the metaSPAdes assembly were matched
against the plasmids in PLSDB using BLAST. Matches between a contig and a reference plasmid with
sequence identity > 85% were marked and a contig was said to match a reference if > 85% of its length was
marked. Reference plasmids with > 90% of their lengths covered by marked regions of the matching contigs
were used as the gold standard.

The set of plasmids assembled by each method was compared to the gold standard set using BLAST. A
predicted plasmid was considered a true positive if there were sequence matches at > 80% identity between
the plasmid and a gold standard plasmid that covered more than 90% of their lengths.

Note that in the case of the real samples, if two assembled plasmids matched to the same reference gold
standard plasmid sequence(s), then one of them was considered to be a false positive. This strict definition
penalized methods for unnecessarily splitting potential plasmid genomes into multiple different plasmids. If
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Table 1 Full performance on simulated metagenome datasets. The gold standard is the number of plasmids
in the simulation that are covered by simulated reads (# covered).

Recycler mpSpades SCAPP

Sample # covered precision recall F1 precision recall F1 precision recall F1

Sim1 9 57.1 44.4 50.0 100 11.1 20.0 80.0 44.4 57.1

Sim2 37 60 32.4 40.1 100 24.3 39.1 56.5 35.1 43.3

Sim3 136 52.5 23.9 32.8 96.3 19.4 32.3 81.3 29.1 42.9

Sim4 132 62.9 30.2 40.8 100 22.3 36.5 86.3 34.1 48.9

Sim5 253 55.6 25.7 35.2 96.2 20.5 33.8 77.2 34.3 47.5

Sim6 368 51.4 19.7 28.5 96.6 15.8 27.1 72.9 24.4 36.5

Sim7 410 62.9 20.6 31.1 95.7 16.5 28.1 75.9 27.6 40.5

Figure S1 Plasmid overlap between tools in simulation. Overlap of the plasmids assembled by the
tools on each of the simulated metagenomes.

there were multiple gold standard reference plasmids that were matched to a single assembled plasmid, then
none of them was considered as a false negative. The precision, recall, and F1 score were calculated as for
the simulation.

For the parallel metagenome-plasmidome sample, plasmidomic reads were aligned to the plasmid sequences
and metagenome assembly contigs using BWA [8]. Coverage at each base of each metagenomic contig was
called using bedtools [9].

To compare the overlap between plasmids identified by the different tools, we considered two plasmids to
be the same if their sequences matched at > 80% identity across > 90% of their length. For visualization
purposes, when two plasmids in one tool match one plasmid in another, they are represented as one overlap
in the venn diagram (Figures S1 and S3).

S6 Extended results for simulated datasets

Table 1 reports the full precision, recall, and F1 performance results for all tools on the simulated metagenome
datasets. Figure S1 shows the overlap between the plasmids assembled by each tool in the simulated
metagenomes.

S7 Extended results for human metagenomes

Figure S2 presents the F1 scores of the plasmid assemblers across all human gut metagenome samples.
Table 2 reports the full results and the number of plasmids assembled by each tool and the median plasmid
length for each of the human gut microbiome samples.
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Figure S2 Results on 20 human gut metagenomes. F1 scores of the plasmids assembled by Recycler,
mpSpades and SCAPP in the human gut microbiome samples (accessions given on x-axis), calculated using
PLSDB plasmids as the gold standard. The dashed line shows the number of gold standard plasmids in each
sample. Where bars are omitted the F1 score was 0.
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Figure S3 Number of plasmids assembled by each tool on the parallel samples. A: Plasmidome sample.
B: Metagenome sample. Discrepancies between the numbers in the diagram and Table 4 are due to cases of
overlaps between two plasmids in one tool to one plasmid in another, which were counted as one.

S8 Extended results for parallel plasmidome-metagenome

Figure S3 shows the overlap between the plasmids assembled by the tools in the parallel cow rumen plas-
midome and metagenome samples.

Figure S4 shows the annotations of the gene functions and hosts for the plasmids assembled in the rumen
plasmidome.

Figure S4 Annotation of genes on the plasmids identified by SCAPP in the rumen plasmidome sample.
A: Functional annotations of the plasmid genes. B: Host annotations of the plasmid genes.
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