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Abstract

Genotype imputation is an indispensable step in human genetic studies. Large reference panels

with deeply sequenced genomes now allow interrogating variants with minor allele frequency < 1%

without sequencing. While it is critical to consider limits of this approach, imputation methods for

rare variants have only done so empirically; the theoretical basis of their imputation accuracy has

not been explored. To provide theoretical consideration of imputation accuracy under the current

imputation framework, we develop a coalescent model of imputing rare variants, leveraging the

joint genealogy of the sample to be imputed and reference individuals. We show that broadly

used imputation algorithms includes model miss-specifications about this joint genealogy that limit

the ability to correctly impute rare variants. We develop closed-form solutions for the probability

distribution of this joint genealogy and quantify the inevitable error rate resulting from the model

miss-specification across a range of allele frequencies and reference sample sizes. We show that the

probability of a falsely imputed minor allele decreases with reference sample size, but the proportion

of falsely imputed minor alleles mostly depends on the allele count in the reference sample. We

summarize the impact of this error on genotype imputation on association tests by calculating the r2

between imputed and true genotype and show that even when modeling other sources of error, the

impact of the model miss-specification have a significant impact on the r2 of rare variants. These

results provide a framework for developing new imputation algorithms and for interpreting rare

variant association analyses.
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1 Introduction

Emerging results from sequencing studies elucidate the impact of rare variants on the etiology of

complex diseases [20]. Genome sequencing studies with deep coverage allow directly assessing these

variants [10], but such studies are still expensive. As an alternative, array-based technologies can

be employed at a substantially lower cost. Commercial genotyping arrays cover a pre-selected set of

common variants, and in some cases low frequency variants known to be of interest from previous

studies. To recover high resolution genetic information, genotype imputation compares assayed

genotypes to a sequenced reference panel, thus leveraging the shared genealogy between genotyped

(target) individuals and reference panel to infer unobserved genotypes [16].

Modern imputation methods combined with large reference panels have achieved high accuracy

among even low frequency variants. For example, using the TOPMed data as reference, the average

imputation quality (r2) of variants with frequency 0.1% is over 0.90 for both African and European

ancestry genomes [23]. Such imputation with high resolution improves the power of genome-wide

association studies (GWAS) for low frequency and rare variants, and enables joint analysis across

studies with different sets of genotyped variants [4]: Recently, the TOPMed consortium identified

a new risk variant for breast cancer by imputing rare variants with minor allele frequency < 0.5%

into the UK Biobank [23]. Such discoveries are enabled by the advent of affordable whole genome

sequencing generating large collections of reference haplotypes. To account for the computational

challenges resulting from such large reference panels, recent development of imputation algorithms

features an efficient pipeline with pre-phasing followed by imputing into haplotypes [4].

Most of these modern imputation methods are based on the Li and Stephens’ model [11]. They

leverage that haplotypes from unrelated individuals share chromosome segments from a common

ancestor. These segments are more similar to each other if their common ancestor is more recent.

Among haplotypes in a large reference panel, the haplotype that has the most recent common ancestor

with the target haplotype probably also has very similar genotypes as the target. Using a Hidden

Markov Model (HMM), the Li and Stephens algorithm models each target haplotype in the study as
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an imperfect mosaic of haplotypes from the reference panel. The haplotypes making up this mosaic

are inferred to be the most closely related to the target, and thus provide information for unobserved

genotype information. The HMM framework is computationally tractable and naturally incorporates

recombination and mutation in its transition and emission probabilities.

Simulation studies have shown that imputation quality depends on the imputed variants’ allele

frequency, genomic context, the size of the reference panel and population demographics [6, 4].

Despite the significant improvements, imputation of rare variants still have high uncertainty. The

average squared correlation (r2) for variants with MAF 0.01% is below 0.5 even with the largest

reference from the same continental population [23]. Although simulation studies have the flexibility

to mimic a particular imputation setting, they are often hard to generalize and computationally

expensive. Alternatively, probabilistic models of the imputation process provide understanding of

the basic properties of the imputation process and are therefore easily generalised.

To develop such a probabilistic model for how the the reference provides information about unob-

served genotypes in target haplotypes, we need to account for the relatedness between reference and

target haplotypes. Kingman’s coalescent [9] provides a suitable theoretical framework for modelling

the shared genealogy of these haplotypes. The coalescent traces the genealogy back in time, modeling

a sequence of events where individuals find their common ancestors (Figure 1). The coalescent time

(the time it takes for two or more haplotypes to find their common ancestor) gives a measure of

expected genetic dissimilarity, since only mutations occurring more recent than the coalescent time

can result in different alleles among those haplotypes.

Some aspects of imputation accuracy have already been explored using coalescent theory. Jewett

et al. studied the scenario where the target and reference are sampled from two populations diverged

in the past, and derived expected imputation error rate as a function of reference size and divergence

time [8]. Huang et al. further included mutation rate and marker density as factors; and analyzed the

potential gain in accuracy by choosing the reference panel from a more closely related population[6].

Here we develop a coalescent approach to understand imputation accuracy within population,
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focused on rare variants. It is useful to recognize that imputation error has two types of sources:

(1) failure to identify haplotypes most closely related to the target as the template and (2) true

differences between the template and the target haplotype due to recent mutation events. While

improving imputation algorithms may reduce error of the first type, error of the second type is a

result of the underlying genealogical relation between the target and the reference sample and how

this relationship is modelled by Li and Stephens. Here we focus on modelling the second type of

error. Thus we determine the error that is immanent to the Li and Stephens model.

For this purpose, we consider one target haplotype with missing genotype and n fully sequenced

haplotypes as references. These n + 1 observed lineages form the leaves of a binary tree with their

(unobserved) ancestors as internal nodes. Intuitively, if the target first finds the most recent common

ancestor (MRCA) with a set of reference haplotypes, their genotypes are the most similar to the target

thus most informative for imputation. The Li and Stephens algorithm assumes that there is exactly

one such most closely related reference haplotype, but we show that this assumption is wrong with

probability 1/3.

We compute how often this misspecification leads to an ambiguous or wrongly imputed genotype,

assuming the imputation algorithm correctly identifies exactly those haplotypes that are most closely

related to the target sample in the reference. We provide the probability of generating a particular

imputed dosage conditional on allele frequency of the variant and the size of reference panel. We

also quantify the imputation accuracy in terms of the r2 between the imputed dosage and the true

genotype, and show that, as a result of this misspecification, the r2 largely depends on the allele

count in the reference panel, improving only marginally with increased reference size. We assess the

impact of population history on these results and use coalescent simulation to confirm our analytic

results. Our results provide the minimal size of the reference panel necessary to achieve the desired

imputation accuracy for a given allele frequency.

The model we develop here can also be leveraged to improve current imputation algorithms.

For example, most imputation algorithms assume that the distance between switching template
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haplotypes reflects recombination events and is exponentially distributed [13]. We derive the length

distribution of contiguous segments without observable recombination breakpoints, and show that it

differs substantially from the exponential assumption by having thicker tails for both very short and

long segments.
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2 Method

We consider imputing a single target variant for one target haplotype with a reference panel consisting

of n reference haplotypes. At each SNP site, all reference haplotypes and the target form a coalescent

tree with n+1 leaves. This tree is unknown but represents the complete information that imputation

can possibly use (Figure 1). For simplicity, we only discuss biallelic sites denoting the ancestral allele

as 0 and derived allele as 1. If the target’s most recent common ancestor with the reference sample

occurs on a branch that is ancestral to u ≥ 1 reference haplotypes, all u present day descendants

of that branch are the most closely related reference haplotypes. We assume that the imputation

algorithm identifies these most closely related reference haplotypes, then assigns the mean genotype

of them to the target haplotype as the imputation dosage.

Under this assumption, we consider three scenarios: (1) The mutation generating the target

variant is ancestral to the time to the most recent common ancestor (TMRCA) of the target haplotype

and all its most closely related reference haplotypes. In this case, it will be imputed correctly with

dosage 1. (2) The mutation occurred more recently than the TMRCA and the mutation occurred

on the branch to the target haplotype. Then the target variant is not polymorphic in the reference

sample and will always be falsely imputed to be the ancestral allele. (3) The mutation occurred more

recently than the TMRCA and the mutation occurred on the branches to the reference haplotype.

Then some or all of the most closely related reference haplotypes carry the derived allele while the

template haplotype carries the ancestral allele.

We focus on the third scenario where j of the u most closely related templates carry the derived

allele while the target does not. The Li and Stephens model assumes a single closest haplotype, and in

the HMM implementation the imputed fractional genotype (dosage) is a weighted average of multiple

reference haplotypes based on their posterior probabilities of being that right template. When the u

are equivalently close to the target, they are expected to have equal posterior probabilities. Thus the

imputed dosage ĝ is ĝ = j/u ∈ (0, 1] while the true genotype g is g = 0 (“false positive”), resulting

in loss of information in downstream analysis.
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In the following sections, we derive the probability for all possible (j, u) configuration, conditional

on observing the derived allele count j in the whole reference. For simplicity, we distinguish the one

target haplotype from the rest n reference ones, making the whole tree size n+ 1, although they are

exchangeable under the assumption of homogeneity and random mating. We will always consider

time backward with t = 0 being the current generation.

2.1 Number of most closely related templates

We first give the probability of having u equally good templates: P (u;n).

We leverage that the probability that a set of k lines coalesce before they coalesce with any line

among the rest n− k [21] is

qk,n−k =
2(k − 1)!(n− k)!

(k + 1)(n− 1)!
. (1)

The generative process can then be imagined as three steps: u templates coalesce first before their

MRCA meets the target; then the resulting branch of size u + 1 meets the rest of the tree. Finally

we sum over all possible sets of u templates.

P (u;n) = qu+1,n−u · qu,1 ·
(
n

u

)
(u < n)

=
2u!(n− u)!

(u+ 2)n!

2(u− 1)!

(u+ 1)u!

n!

(n− u)!u!

=
4

u(u+ 1)(u+ 2)
(1 ≤ u ≤ n− 1)

P (u = n;n) = qn,1 =
2

n(n+ 1)

(2)

The expected number of best templates is close to 2 when the reference is large:
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E[u;n] =
n∑
u=1

uP (u;n)

=
n−1∑
u=1

u
4

u(u+ 1)(u+ 2)
+ n · qn,1

=
2n

n+ 1
≈ 2

(3)

Symbol Meaning
g True genotype at the imputed locus.
ĝ Estimated genotype at the imputed locus.
n Number of haplotypes in the reference panel.
u Number of most closely related haplotypes (MCRH) in the reference panel.
j Number of the rare allele in the reference panel.
k Number of lines remaining on the tree just after all MCRH have reached their MRCA.
d Number of lines remaining on the tree when the target haplotype coalesces with one

ancestor of the reference haplotypes.
l Length of an internal branch.
m Number of mutation events on a particular branch.

Table 1: Notation for key quantities

2.2 High certainty error

We now derive the probability of imputing the target to carry the mutation with dosage ĝ = 1

while the truth is g = 0, conditional on the observed derived allele count in the reference panel:

P (ĝ = 1, g = 0|j;n). This happens when the target haplotype first coalesces with a branch (l) of

size j carrying a mutation (Figure 1a).
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(a) ĝ = 1, g = 0 (b) ĝ = 0.5, g = 0

Figure 1: Coalescent tree with one target haplotype (yellow line) and a reference panel with n haplotypes.
Red lines are haplotypes carrying a mutation that occurs on the blue branch, represented by the red dot.
Gray horizontal dashed line indicates the time interval where an event of interest occurs. a) The special case
where the target is imputed to have the derived allele, ĝ = 1 but g = 0, even in the best possible imputation
scenario. b) An example of the general situation: u = 4 reference haplotypes are equally close to the target,
j = 2 of which carry the mutation, resulting in ĝ = 0.5 but g = 0.

Throughout the following derivation, we use the number of ancestral lines for the current day

sample to keep track of coalescent time and to connect topology and branch lengths. We first

introduce some quantities useful for our derivation:

Let P (j, k;n) be the probability for j lines to reach their MRCA at the coalescent event that

reduces the overall number of ancestral lines from k + 1 to k, without any of the j lines coalescing

with any of the n − j other lines first. Let P0(n, d) be the probability for one line to encounter no

coalescent event for (at least) the first n − d events. Let P (m ≥ 1|l) be the probability of having

at least one mutation event on a branch with length l, and let P (L = l|k, d;n) be the probability

density function for the length of one internal branch starting when there are k lines left and ending

when there are d lines left, in a tree of size n. Using these terms, we can now calculate

P (ĝ = 1, g = 0|j;n) =
P (ĝ = 1, g = 0, j;n)

P (j;n)
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We calculate the joint probability P (ĝ = 1, g = 0, j;n) in the following three steps by conditioning

on d and k (Eq. 4, Figure 1a). We calculate P (j;n) by adapting the second step (Eq. 5).

1) To coalesce in the (n − d + 1)th coalescent event, when d lines remain on the tree, the target

haplotype cannot coalesce in the first n− d events: P0(n+ 1, d+ 1).

2) A branch of size j ancestral to all most closely related reference haplotypes arises in the reference

at the (n − k)th event (P (j, k;n)) and encounters a mutation before it coalesces with the target

branch in event n−d+ 1 (g(k, d;n)). Here the probability for a mutation to occur on that particular

branch is computed by integrating over all possible branch length l given k and d:. g(k, d;n) =∫ l=∞
l=0

P (m ≥ 1|l)P (L = l|k + 1, d;n+ 1)dl.

3) The size-j branch does not coalesce till the (n − d)th event and then coalesces with the target:

P0(k, d) · 1

(d+1
2 )

.

Multiplying the probabilities of these sequential events and summing over all possible values of d, k

give the joint probability:

P (ĝ = 1, g = 0, j;n)

=

n−j+1∑
k=2

k∑
d=2

P0(n + 1, d + 1) · P (j, k;n) ·
∫ l=∞

l=0
P (m ≥ 1|l)P (L = l|k + 1, d;n + 1)dl · P0(k, d)

1(
d+1
2

) (4)

P (j;n)

=

n−j+1∑
k=2

k−1∑
d=1

P (j, k;n) ·
∫ l=∞

l=0
P (m ≥ 1|l)P (L = l|k, d;n)dl · P0(k, d + 1)

d(
d+1
2

) (5)

To compute P (j, k;n), define H(n, k) :=
(
n
2

)(
n−1
2

)
· · ·
(
k+1
2

)
, the number of possible configurations

of the topological history for n lines to coalesce till there are k ancestral lines left. Then

P (j, k;n) =

(
n
j

)
H(j, 1)H(n− j, k − 1)

(
n−k−1
j−2

)
H(n, k)

=

(
n−k−1
j−2

)(
n−1
j

) (k − 1)k

j
.

(6)

Next we consider the integral corresponding to the mutation event g(k, d;n) (Eq. 7). Let E[Ti;n]
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denote the expected time for the number of ancestral lines to go from i to i − 1 in the coalescence

process for a sample of n current haplotypes , which depends on the population history model. Thus,

g(k, d;n) depends on mutation rate µ and expected coalescent time intervals E[Tk;n], which can be

numerically computed [14] or approximated by Monte Carlo.

g(k, d;n) =

∫ l=∞

l=0

P (m ≥ 1|l)P (L = l|k, d;n)dl

=

∫
l

(1− e−lµ)P (L = l|k, d;n)dl

=E[1− e−lµ|k, d;n]

≈µE[l|k, d;n]

=µ
i=k∑
i=d+1

E[Tk;n]

(7)

Substituting Eq.6,7 and P0(k, d) = d(d−1)
k(k−1) into Eq. 4,7, we now have the conditional probability

fully defined:

P (ĝ = 1, g = 0|j;n)

=

1
n(n+1)

∑n−j+1
k=2 P (j, k;n) 1

(k−1)k
∑k

d=2 d(d− 1) g(k + 1, d;n+ 1)∑n−j+1
k=2 P (j, k;n) 1

(k−1)k
∑k−1

d=1 d g(k, d;n)

(8)

Following similar logic as above, we then consider the conditional probability distribution for

fractional dosages. We derive P (ĝ = j/u, g = 0|j;n), the probability of having u equally closely

related best templates, j of which carry the mutation, for a target actually carrying the ancestral

allele, conditional on observing the derived allele count as j in a reference of size n (figure 1b). Details

of derivation are in the Appendix.

2.3 Modelling r2 as a function of miss-identification proportion

The above derivation fully characterizes the distribution of the imputed dosages assuming we perfectly

identify the optimal templates. While it is difficult to model all the possible sources of error in the
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real imputation process, we can use the total weight (q) attributed to haplotypes outside the set of

most closely related templates to measure the identification error. Here we derive its influence on

the square of correlation coefficient (r2) between the true genotype and imputed dosage.

Let g be the true genotype, 1 for the derived allele and 0 for the ancestral allele; let f be the derived

allele frequency, so E[g] = f . Let g̃ and ĝ be the imputed dosage with and without misidentification

respectively.

Let z be the random variable representing the proportion of carriers of the minor allele among the

sub-optimal templates contributing to the imputed dosage, so that g̃ can be modeled as a mixture

g̃ = (1 − q)ĝ + qz. If we assume that the sub-optimal templates are sampled at random from the

population and each of the suboptimal templates is given equal weight, z is the average genotype of

m random haplotypes, so E(z) = f and V (z) = V (g)/m = f(1− f)/m.

When the optimal templates for a target sample provide the perfect information (ĝ = g), misiden-

tified templates may be the alternate allele and therefore increase imputation error. However, where

the target sample carries the ancestral allele but some of its optimal templates carry the derived

allele, sub-optimal templates attenuate the resulting error. Nevertheless, here we show that in ex-

pectation imputation error will always reduce the correlation between the true and the imputed

genotype. Let’s express r2g,g̃ in terms of quantities regarding the theoretical imputed dosage ĝ.

g̃ = (1− q)ĝ + qz

=⇒ r̃2g,g̃ =
Cov(g, g̃)2

V (g)V (g̃)
=

((1− q)Cov(g, ĝ) + qCov(g, z))2

V (g)V ((1− q)ĝ + qz)

=
Cov(g, ĝ)2 + 2q

1−qCov(g, ĝ)Cov(g, z) + q2

(1−q)2Cov(g, z)2

V (g)V (ĝ) + 2q
1−qV (g)Cov(ĝ, z) + q2

(1−q)2V (g)V (z)

(9)

Comparing to the theoretical r2g,ĝ = Cov(g,ĝ)2

V (g)V (ĝ)
:

r̃2g,g̃
r2g,ĝ

=
(1− q)2 + 2q(1− q)Cov(g,z)

Cov(g,ĝ)
+ q2(Cov(g,z)

Cov(g,ĝ)
)2

(1− q)2 + 2q(1− q)Cov(ĝ,z)
V (ĝ)

+ q2 V (z)
V (ĝ)

. (10)
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Since ĝ is based on a few reference haplotypes and equal to g with large probability, we can

reasonably assume Cov(g, z) ≈ Cov(ĝ, z), Cov(g, ĝ) ≈ V (g) and Cov(g, z) < Cov(g, ĝ) (misidentified

haplotypes are more distant). Therefore the middle terms in the numerator and denominator of Eq.

10 are approximately equal; the difference between the r2’s is governed by the last terms, which have

a ratio strictly smaller than one: Cov(g,z)2

Cov(g,ĝ)2
V (ĝ)
V (z)

= Cor(g,z)2

Cor(g,ĝ)2
< 1.

If misidentified haplotypes are close to random draws from all reference haplotypes (Cov(g, z) ≈

0), the ratio simplifies to

r̃2g,g̃
r2g,ĝ
≈ (1− q)2

(1− q)2 + q2 V (z)
V (ĝ)

< 1. (11)

In practice, the sub-optimal templates contributing to the imputed dosage are more likely to be

from lineages closer to the target, so their effect on imputation accuracy would be smaller than that

from the above assumptions.

2.4 Length of haplotype before the next recombination breakpoint

Next we aim to derive the distance between consecutive recombination events on an external branch.

For the purpose of modelling imputation, these distances represent the lengths of segments that are

copied from the same haplotype. Let X be the genetic distance to the next observed recombination

event on the target, and T be the length of its corresponding external branch. We calculate fX(x) =∫
fX|T (x)fT (t)dt (we will use f(·) for continuous and P (·) for discrete distributions). Similar to

above, we compute the probability density function of T by considering it first coalesces at the

(n+1−k)th event. T |k is the sum of n+1−k coalescent time intervals, thus following a convolution

distribution as the sum of n + 1 − k exponential with different rates. Conditional on T , X follows

an exponential distribution with rate 2T since a recombination event on either the current template
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or the target haplotype results in a switch of template.

fX|T (x) = 2Te−2Tx

fT |k(t) = fTn+1+···+Tk+1
(t)

⇒ fX|K(x|k) =

∫ ∞
t=0

fTn+1+···+Tk+1
(t)fX|T (x|t)dt

= ET |k[2Te
−2Tx] (T |k ∼ fTn+1+···+Tk+1

)

(12)

When population size is constant, ET |k[2Te
−2Tx] = dMGFT (y)

dy
|y=−2x, where MGFT s the moment

generating function of the hypoexponential distribution T |k. When population size changes through

time so time intervals are correlated, we can approximate the expected value with 2E[T |k]e−2E[T |k]x

and compute E[T |k] with Monte Carlo.

The probability for a haplotype to first coalesce at the (n+ 1−k)th event is P0(n+ 1, k+ 1) k

(k+1
2 )

,

with P0(n + 1, k + 1) being the probability of not coalescing with any lineage in the first (n − k)

events (starting from total sample size n+ 1). Therefore we have the distribution of X is

fX(x) =
n∑
k=1

P0(n+ 1, k + 1)
k(
k+1
2

)fX|K(x|k) (13)

=
2

n(n+ 1)

n∑
k=1

k · fX|K(x|k) (14)

2.5 Simulation

We performed a standard Kingman coalescent simulation under population history models suggested

by recent studies (detailed in the Results). We simulate size-(n + 1) trees with n varying from 500

to 50k. For each generated tree, we keep track for all subtree configurations (1 + u(j)) (one exter-

nal branch first coalesces with a branch of size u, which contains a branch of size j) of interests,

and record the length of this size j branch. The sum of all such relevant branch lengths in the

tree divided by the number of present haplotypes n + 1 is one realization of the joint probability

P (ĝ = j/u, g = 0, j;n), which will then be approximated by averaging such realizations over all
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simulated trees. To approximate the probability of observing j derived alleles in the reference panel,

we simulated another independent set of trees of size n and summed over the lengths of all size j

branches to get sample frequency spectrum. We present results from 50k independent simulations

under each parameter setting throughout this article.
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3 Results

We derived an analytical approach to calculate the impact of model misspecification of the current

imputation framework with our coalescent model on rare variants (see the Method). Assuming a Li

and Stephens model[11] based imputation algorithm correctly identifies all and only those haplotypes

in the reference that are most closely related to the target sample, we calculated the theoretical error

rate as a function of reference size n and the derived allele count. Using coalescent simulations, we

confirm the analytical results, and incorporate general population models.

3.1 The number of closest template haplotypes

In the coalescence context, identifying a single reference haplotype that is most similar to the target

haplotype is equivalent to selecting the reference haplotype that has the most recent common ancestor

with the target haplotype or, equivalently, whose lineage is the first to coalesce with the target.

However, by the time this lineage coalesces with the target, it may be ancestral to multiple reference

haplotypes (Figure 1a). In this case, those reference haplotypes are equally closely related with the

target, each of them in expectation providing the same amount of information for imputing the target

sample. Thus, the model assuming one single best template is misspecified.

The probability for the target haplotype to first coalesce with a lineage having u reference de-

scendants is

P (u) =
4

u(u+ 1)(u+ 2)
, (1 ≤ u ≤ n− 1). (15)

This probability only depends on the topology of the coalescent tree, independent of the population

history (see the Method). Interestingly, the probability distribution of the number of best matches

does not depend on the size of the reference panel (n), except for the extreme case u = n, where

the entire reference has equal genetic distance to the target. In that case, P (u = n) = 2
n(n+1)

. The

expected number of most closely related reference haplotypes E(u) = 2− 2
n+1

, approaching 2 as the

size of the reference panel increases.
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From equation (15), we see that with probability 2
3
, the target haplotype first coalesces with

an external branch (u = 1) and the reference contains exactly one best match. Thus, the Li and

Stephens model of exactly one best template is misspecified with probability 1
3
. The probability of

u equally good templates drops rapidly with increasing u (Table 2). With probability 1
6
, the target

haplotype first coalesces with an internal branch with two descendants in the reference (u = 2), while

the probability is 0.0108 that the target haplotype first coalesces with an internal branch with more

than 10 descendants in the reference (u > 10).

No. Templates 1 2 3 4 5 6 7 8 9 10

Prob. 0.6667 0.1667 0.0667 0.0333 0.0190 0.0119 0.0079 0.0056 0.0040 0.0030

Table 2: Probability of having multiple reference haplotypes (No. Templates) most closely related to the
target haplotype. In expectation, each of these haplotypes provides the same amount of information for
imputation.

3.2 Impact on imputation accuracy

As we have just demonstrated, the model assumption that each target haplotype has a single most

closely related template haplotype is a model misspecification for 1/3 of the genome where multiple

template haplotypes are most closely related to the target haplotype. This model misspecification

contributes to imputation error beyond the typical source of error created by failing to identify the

most closely related haplotype. To isolate this additional error, we now evaluate the imputation

of a missing genotype assuming that all most-closely related haplotypes are correctly identified but

analyzed under a model that assumes a single best haplotype. In this scenario, imputation algorithms

will correctly impute all non-singleton variants if the target haplotype has a single most closely related

template haplotype. Imputation errors can only occur if the target haplotype has more than one most

closely related template haplotype; i.e. a model misspecification. In this case, imputation algorithms

consider all these template haplotypes to be equally likely to be the ”best” template. Accordingly,

it will interpret identifying multiple equally close templates as uncertainty in identifying the best

template. For variants that differ between these template haplotypes, the imputed genotype is then

usually the average of the derived allele counts (DAC) of those templates, a fractional genotype
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(dosage). Thus, for one given target haplotype carrying the ancestral allele to be imputed with a

non-zero DAC dosage (false positive), some of its templates have to carry the derived allele.

While the probability of this misspecification is independent of population history, the probability

of a mutation event causing an imputation error depends on the history of the population template

and target haplotypes are sampled from. In our primary analysis we consider a population history

model approximating European population history [19][18]. Starting from an ancestral population

with effective population size 104, it undergoes a bottleneck with Ne = 2 ·103 for 100k years (approx-

imately 3450 generations), then grows with an accelerated rate (faster than exponential growth [15])

to Ne = 107 during the most recent 10k years. The effect of the model parameters on the following

results is marginal within a model space reasonable for human population (Appendix B).

We first consider the special case where all template haplotypes that are most closely related to

target carry the derived allele, while the target haplotype carries the ancestral allele. In this case,

the imputed dosage of the derived allele is 1 when the truth is 0 (Figure 1A). By integrating over

all possible tree shapes and branching times (see the Method), we calculated the probability for

this configuration for reference sample sizes of 500, 5000, 20,000 and 50,000 individuals. We verified

all results using computer simulations. Across all considered reference sizes, the probability of this

completely wrong imputation for one imputed haplotype is small ranging from 10−3 to < 10−6 (Figure

2A, Table 3). Holding reference size constant, this probability decreases with rising DAC. Similarly,

holding DAC constant, this probability of imputation error decreases with increasing number of

templates.

To put these error rates in relationship with the number of true carriers of the derived allele, we

assume that the derived allele frequency in the target population is the same as the derived allele

frequency in the reference population. For instance, consider a site with two copies of the derived

allele in a reference of 500 individuals (MAF 0.002). For this site, we expect to impute one individual

as false carrier for every 1210 individuals (Figure 2). Among these 1210 individuals, we also expect

4.84 true carriers of this variant assuming the same MAF in the target population. Thus, for variants
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that are doubletons in a reference sample of 500 individuals, about one in six imputed rare alleles

will be a false positive (Table 3). More generally, for a fixed derived allele count in the reference,

the probability of falsely imputing the derived allele decreases with increasing reference size while

the number of true carriers of the derived allele also decreases. As a result, the proportion of falsely

imputed derived alleles decreases only moderately with increasing reference size. For example, for

variants that are doubletons in the reference, the proportion of false positive derived alleles decreases

only from 17.5% for a reference size of 500 to 14.7% for a reference size of 50,000.

If we now consider the more general case where at least one of template among the haplotypes

most closely related to the target carry the derived allele while the target carries the ancestral allele

(dosage 0). In this case the imputed dosage ĝ > 0 (Figure 2). Across reference sizes of 500, 5000,

20,000 and 50,000 individuals, we calculated the probability of ĝ > 0 for each imputed haplotype.

This probability is notably larger than the probability of falsely imputing dosage 1, ranging from

∼ 10−3 to ∼ 10−5 for doubletons (with DAC 2, Figure 2b). This probability decreases with rising

derived allele count and increasing reference size.

From these probabilities, we calculate the expected number of haplotypes carrying the ancestral

allele (g = 0) that are falsely imputed to have either a non-zero derived allele dosage (ĝ > 0) or

a dosage ĝ > 0.5 or a dosage of 1 for every million target individuals (Table 3). Haplotypes with

ĝ > 0.5 represent cases where a ”best-guess” imputation algorithm would infer the alternate allele.

Beyond the previously described impact of derived allele count and reference size, these results show

that for DAC < 5, about half of all falsely imputed derived alleles have a dosage > 0.5. This

observation can be explained by the fact that for a given DAC, observing a dosage < 0.5 requires

a larger number of equally good templates than observing a larger dosage. As large numbers of

equally good templates are rare (Table 2), the proportion of higher dosage among all falsely imputed

non-zero dosages increases with the DAC.
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Figure 2: Upper panel: False discovery rate among non-carriers. Given a target haplotype carrying the
ancestral allele, the probability (y-axis, in log scale) of having a) all the most closely related reference
haplotype in the reference panel carrying the derived allele thus an estimated dosage 1; or b) having non-
zero estimated dosage for the derived allele. Lower panel: false positive among all imputed carriers. For a
target sample, the proportion (y-axis) of c) non-carrier haplotypes having estimated dosage or d) haplotypes
with non-zero dosage among all haplotypes with imputed dosage falling in the corresponding category. Both
results are conditional on the derived allele frequency in the reference (x-axis); color indicates the size of
reference panel, in the number of individuals. Results for reference size below 20,000 are from analytical
calculation while those for 20,000 and 50,000 are from coalescence simulations.
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(a) Average theoretical r2. (b) r2 and MSE changes with identification error.

Figure 3: a) The upper bound of squared correlation (r2) (y-axis) between imputed and true genotype
dosages, conditional on the derived allele frequency in the reference (x-axis). Color indicates the size of
reference panel. b) The r2 (top) and MSE (bottom) when a certain proportion of weight (x-axis) is attributed
to sub-optimal templates. The impact depends on the absolute number of sub-optimal templates, we show
examples of 1, 5 in the left and right columns. Here we fix the reference size to 20k. Results are from 50k
independent coalescence simulations, each data point is an average of over 107 loci.

Ref. Size
(Individuals)

Derived allele count in the reference panel
2 3 5 10 20

Imputed dosage for the derived allele
> 0 > 0.5 = 1 > 0 > 0.5 = 1 > 0 > 0.5 = 1 > 0 > 0.5 = 1 > 0 > 0.5 = 1

500 2145 1122 848 1802 1006 653 1361 815 420 840 541 153 435 292 57
5000 214 109 80 179 97 60 136 78 41 84 52 23 49 32 13
20000 53 27 18 44 24 15 34 19 11 21 13 7 12 7 4
50000 21 10 7 17 9 6 13 8 4 8 5 3 5 3 2

Table 3: Consider imputing a sample dataset with one million individuals using a reference panel containing
500 to 50000 individuals from the same population as the sample, the expected number of individuals who
are homozygous for the ancestral allele (g = 0) but have an imputed genotype dosage ĝ as ĝ > 0, ĝ > 0.5
or ĝ = 1. Each combined column represents one derived allele count in the reference. Results are from 50k
independent coalescence simulations, each data point is an average of over 107 loci.

To summarize the impact of this error on association tests, we calculated the squared correlation

coefficient (r2) between the imputed dosages and the true genotypes using simulations, both under

the assumption that model misspecification is the only source of error and under the assumption that

some reference haplotypes are falsely identified as being most closely related. r2 is a commonly used

measure for imputation quality, as it is directly related to statistical power in downstream association

tests [5, 7, 22].

Still assuming that most closely related haplotypes are identified perfectly, we generated the

distribution of expected r2 for a range of minor allele counts and reference sizes using simulations
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(see the Method). The expected r2 increases monotonically with derived allele frequency in the

reference and reference size (Figure 3). If we consider the increase with DAF across reference sizes,

we observe that the curves of expected r2 values look very similar for each reference panel size, only

shifted by a factor of 1/panel size. In other words, r2 of variants with the same minor allele count

remains almost the same across all considered reference sizes. For example, the average r2 among

doubletons is 0.822 in a reference size of 500 and 0.831 in a reference sample size of 50,000, where its

frequency is only 1/100 of the former. For variants observed ten or more times in the reference, the

expected r2 is > 0.97 regardless of the size of the reference, as model misspecification do not play a

mayor role for the imputation quality of these variants.

To include other sources of error in the imputation process, we model the false identification of

reference haplotypes that are more distantly related to the target as templates. Those distantly

related haplotypes are less likely to carry the same allele as the target haplotype and thus introduce

an additional source of error. We parameterize this identification error as the sum of all probabilities

assigned to falsely identified templates, denoted as q (see the Method). In practice, this imputation

error depends on the choice of imputation algorithm, marker density, quality of genotyping and

statistical phasing; detailed modeling of these factors is beyond the scope of this paper.

As expected, imputation error of the variant increases with increasing q shown as the mean

squared error (MSE) of the imputed genotype (Figure 3b). As the imputed genotype for all indi-

viduals converges to the allele frequency f as q goes to 1, the MSE increases faster with higher f .

Similarly, the r2 between the true genotype and the imputed genotype decreases with increasing

q. However, including some suboptimal haplotypes only has a small effect for rare variants. If we

assume a single sub-optimal template, q < 10% only has marginal effect on r2, when q increases

beyond this threshold the decrease of r2 becomes almost linear. This threshold depends on the

number of sub-optimal templates: with a larger number of templates, the variance of the imputed

genotype decreases and the effect of including suboptimal templates is more deterministic (see the

Method). Accordingly, if the number of suboptimal templates is larger, the threshold where r2 starts
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to decrease with q is larger while the MSE is lower (Figure 3b). For example, consider imputing a

variant that is a doubleton in the reference with 20k haplotypes. Assuming no identification error,

r20 = 0.83. If we identify one sub-optimal templates with posterior probability 0.3 as well as all

most closely related haplotypes, the expected r2 is 0.70 and the MSE is 1.80 × 10−5. If we instead

identify 5 sub-optimal templates with total posterior probability 0.3 as well as all most closely related

haplotypes, the expected r2 increases to 0.80 while the MSE decreases to 1.44× 10−5.

For variants with derived allele count < 5 in the reference, the error caused by model misspeci-

fication dominates for a wide range of q; while for variants of derived allele count over 20 the error

caused by model misspecification is negligible and the r20 with perfectly identified optimal templates

is above 0.99 regardless of the reference size (Table 4), thus the identification error dominates the

empirical imputation error.

Ref. Size Derived allele count in the reference
(Individuals) 2 3 4 5 10 20

500 0.822(0.089) 0.885(0.067) 0.919(0.051) 0.940(0.041) 0.979(0.017) 0.995(0.0055)
2000 0.823(0.089) 0.886(0.066) 0.920(0.051) 0.940(0.040) 0.979(0.016) 0.994(0.0054)
5000 0.826(0.088) 0.887(0.065) 0.921(0.050) 0.941(0.040) 0.979(0.016) 0.994(0.0055)
20000 0.828(0.087) 0.889(0.065) 0.922(0.050) 0.942(0.040) 0.980(0.016) 0.994(0.0053)
50000 0.831(0.087) 0.891(0.065) 0.923(0.050) 0.943(0.039) 0.980(0.016) 0.994(0.0053)

Table 4: The maximal squared correlation can be achieved. Numbers in the parentheses are standard
deviation summarized over 107 loci, representing the variation among variants in a population sample.
Results are from 50k independent coalescence simulations.

3.3 Length between template switches

We now consider another potential source of error in current imputation model: the switch be-

tween templates. When we model the target haplotype as a mosaic of templates from the reference,

switching between templates can be interpreted as a historical recombination event that breaks the

genealogical bond between the target and its current template, i.e., the branches connecting the two

leaves in a coalescent tree. The two haplotypes will become practically independent beyond the

recombination break point.

Conditional on a known local genealogy, the length to the next recombination break point follows

24

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.10.245043doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.245043
http://creativecommons.org/licenses/by-nc/4.0/


an exponential distribution, with the rate proportional to twice the time to the most recent common

ancestor (TMRCA) between the target and the template. In practice, the genealogy is unknown,

and the length to the next recombination break point is a combination of the distribution of the

conditional length and the time to the TMRCA (detailed in Method). Here we compare this mix-

ture distribution with the exponential distribution that is typically assumed in current imputation

methods [11, 2].

Comparing the mixture distribution to an exponential distribution with the same mean shows

that with genealogy and population history aware modeling, the distribution of length between

switches is very similar for small reference samples (n = 500) (Figure 4). For larger reference

samples (n = 20, 000) the mixture distribution has larger variance, with higher density in both

extremely short and long intervals but lower density for intermediate ones. If the excess of short

no-recombination intervals is not well captured due to model misspecification, we expect to have

more suboptimal templates thus higher imputation error rate. When the reference size increases,

switches are less frequent as it is more likely to find a template sharing a very recent MRCA with

the target.
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Figure 4: Distribution of the distance before the next recombination event breaking the relation between
a pair of haplotypes. The x-axis shows the length in genetic distance (cM). Solid line is predicted by our
coalescent model, the dashed line is an exponential distribution with the same mean as we predicted. Colors
represent different reference sizes (n) in the number of individuals. The average lengths with reference being
n=500, 20000, 50000 are 0.26, 1.59 and 3.41 cM respectively.
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4 Discussion

The empirical performance of imputation methods has been extensively studied [3, 23, 17, 4], while

the theoretical behavior and limit of the underlying framework has not been well characterized,

especially for rare variants. We formulate this problem of imputation accuracy into a coalescent

model, considering imputing the missing genotypes on one target haplotype by copying from a set

of reference haplotypes that share the most recent common ancestor (MRCA) with the target. Our

approach identifies two model misspecifications in modern imputation algorithms and explores their

impact on our ability to impute rare variants.

First, most imputation algorithms model a single best template as the hidden variable to infer.

We show that, in 1/3 of the cases, multiple haplotypes are equally good templates for imputing

one target in any given reference panel, independent of reference sample size or population history.

The resulting model misspecification leads to imputation error when genetic variants are shared

by some of the optimal templates but not with the target. We develop analytical expressions for

the imputation error resulting from this model misspecification as a function of the derived allele

frequency and reference size.

For this purpose, we assume that the imputation algorithm correctly identifies the most closely

related haplotypes so that this model misspecification is the only source of error. In this idealized

scenario, we observe that for variants observed five or less times in the reference panel, > 8% of

variants with non-zero dosage are non-carriers; up to minor allele count 10, the mean r2 between the

imputed dosage and true genotypes < 0.98. Conditional on the derived allele count, this effect is

broadly independent of reference panel size: although the probability of falsely imputing carriers of

the rare allele decreases as the reference panel size becomes large, the number of true carriers also

decreases and the proportion of false carriers over true carriers stays about the same. Including other

sources of error that occur in practice further decreases imputation accuracy. Thus the expected r2

we present here designate the upper bound of achievable mean imputation accuracy for rare variants

in current imputation framework.
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Such imputation error substantially reduces the power for detecting novel risk variants in an

association study based on imputed genotypes. Two scenarios can be considered here: First, single-

marker tests of imputed rare variants can be powerful if the case-control data set is much larger than

the imputation panel [23]. In this scenario, inaccurately inferred genotypes at a disease-related locus

attenuate the allele frequency difference between cases and controls, and r2 is directly related to this

loss of information that compromises the statistical power in association tests. Imputation error rate

of 2% ∼ 6% leads to 10% ∼ 60% increase in required sample size in a single marker test [7]. As

a second scenario, imputed rare variants can be aggregated into a single test statistic [10]. In this

study design, poorly imputed variants will have an attenuated signal, potentially diluting the signal

from better imputed variants. This loss of power can be limited by focusing on imputed variants

where misspecification will not impede imputation accuracy, e.g. variants that occur more than five

times in the reference.

We consider a second model misspecification: the use of exponential distributions to model the

length of contiguous haplotypes without template switches. The true distribution of this length is

driven both by the recombination rate and the relationship between the template haplotype and the

target haplotype. For small reference sample sizes such as 1000 genomes[1] this model misspecification

has a negligible effect, but for reference samples of the scale of TopMed[23] or the Haplotye Reference

Consortium[12], the length distribution of shared segments between the target and a single template

has a much heavier tails than modelled. This misspecification penalizes both extremely short and

extremely long switching intervals, decreasing the probability of finding the optimal templates. This

in turn reduces imputation accuracy, especially for low frequency variants beyond the effect of the

first model misspecification described above.

Results we present here are broadly robust to assumptions about population size history in a

range reasonable for major human populations. We assume that the imputed region is evolutionary

neutral; for loci under selection the impact of the described model misspecifications would likely

depend both on the selection model and on the population history. Further, we assume that the
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reference is from the same homogeneous population as the target sample. If we instead modeled a

diverse reference sample, results would depend on the frequency distribution of the imputed variant

among the reference samples. For rare alleles, which are typically private to a single population, only

members of that single population among the reference would affect imputation accuracy. Our results

can be extended to including migration, admixture or selection, as the mathematical derivation and

simulation scheme in this work are general for coalescence at a single locus.

Overall, we identify that the model misspecifications in imputation algorithms limit our ability

for imputing rare variants, reducing the power of single marker tests in studies that impute rare

variants into very large target datasets. Moreover, rare variant aggregation tests of imputed rare

variants may lose power, especially if they focus on alleles that are observed only a few times in the

reference panel. Beyond improving our understanding of the performance of imputation algorithms,

these results should allow us to improve imputation algorithms and thus identify new risk variants.

Our results suggest that potential improvement of the imputation framework may lie in more detailed

modeling of the underlying genealogy, especially for extremely rare variants where only a small subset

of the reference contribute information about the imputed genotype.

Software Availability

Codes used to perform analytical calculation and coalescent simulation are available from https:

//github.com/Yichen-Si/ImputationBound.
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A Probability distribution of fractional dosages

In the Method section, we derived the probability of having even the best possible evidence sug-

gesting a wrong allele type. Here we will generalize it to the cases where the most closely related

templates have different allele types, resulting in a fractional estimated dosage (figure 1b).

Let P (ĝ = j/u, g = 0|j;n) be the probability of having u equally good optimal templates, j

of which carrying the mutation, for a target actually carrying the ancestral allele; conditional on

observing the derived allele count as j. Let (k′, d′) denote the numbers of ancestral lines within the

size u subtree when the branch carrying the mutation starts and ends; (k′′, d′′) denote the numbers

of lines in the whole tree at the corresponding time point.

We will outline the calculation of the joint probability (the numerator), while the denominator is the

same unfolded frequency spectrum as before. We proceed by the following steps, each subsequent

probability is conditional on the previous one, in parallel with that for the special case in the Method.

1) The target haplotype does not coalesce in the first (n− d) events: P0(n+ 1, d+ 1).

2) A branch of size u arises in the reference at the (n−k)th event, then remains alone till the (n−d)th

event to coalesce with that external branch: P (u, k, d;n)P0(k, d+ 1) 1

(d+1
2 )

.

3) The subtree of size u contains a branch of size j: P (j|u;n) =
∑

(k′,d′) P (j, k′, d′|u;n). (This step

only concerns the topology within the subtree)

4) The size-j branch encounters a mutation:P (m ≥ 1|j, k′, d′, u, k, n) =
∑

(k′′,d′′) P (m ≥ 1|k′′, d′′;n +

1)P (k′′, d′′|k′, d′, u, k, n). (Here we need to put the subtree back to the whole size-(n+ 1) tree to get

the branch length and introduce mutation)

Step 1-2) are similar to the three steps in the previous section except for not involving mutation

events, we combine them to P (ext, u, k, d;n): an external branch first coalesces at the (n−d)th event

with an internal branch of size u which starts at the (n − k)th event. In step 3), P (j, k′, d′|u;n) is

similar to P (u, k, d;n) in step 2), as P (j, k′, d′|u;n) = P (j, k′, d′;u): the probability for a branch of
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size j to start at the (u− k′)th event and end at the (u− d′)th event.

P (ĝ = j/u, g = 0, j;n)

=
∑
(k,d)

P (ext, u, k, d;n)P (m ≥ 1, j|u, k, d;n)

=
∑
(k,d)

P (ext, u, k, d;n)

∑
(k′,d′)

P (j, k′, d′|u, k;n)
∑

(k′′,d′′)

P (m ≥ 1|k′′, d′′;n+ 1)P (k′′, d′′|k′, d′, u, k, n)


(
∑
(k,d)

=
n−u+1∑
k=2

k∑
d=1

;
∑
(k′,d′)

=

u−j+1∑
k′=2

k′−1∑
d′=1

;
∑

(k′′,d′′)

=
n−u+k′∑
k′′=k′+1

k′′−1∑
d′′=d′+k−1

.)

(16)

The only component left is P (k′′, d′′|k′, d′, u, k, n), the link between the topology within the subtree

and the branch lengths, which is relative to the whole sample and involves the population size history

model. Since coalescent time intervals are measured for the whole tree, (k′′, d′′) tells us when the

branch of size j starts and ends, which leads to the probability for a mutation to occur.

We divide the coalescent process among the whole reference from n lines to k lines into three

parts: n→ k′′ → d′′ → k. There are (n−k′′−1)+(k′′−d′′−1)+(d′′−k−1) unfixed events (since we

are conditioning on the three time points, (k′, k′′), (d′, d′′) and (k)). Within each part, we consider

the number of events that has to happen inside the subtree: (u− k′ − 1), (k′ − d′ − 1), (d′ − 1− 1).

With the number of lines fixed, P (k′′, d′′|k′, d′, u, k, n) is calculated by considering the possible ways

to arrange those events in the three time intervals.

P (k′′, d′′|k′, d′, u, k, n) =

(
n−k′′−1
u−k′−1

)(
k′′−d′′−1
k′−d′−1

)(
d′′−k−1
d′−2

)(
n−k−1
u−2

) (17)

The denominator in (10) comes from removing the constrains introduced by the mutation event.

Conditional on (u, k), there are in total (n−k−1) unfixed events in the whole tree, including (u−2)

in the subtree. Since (k′′, d′′) defines the coalescent time in the whole size-(n+ 1) tree, we can calcu-

late the length of the branch carrying mutation by (6): P (m ≥ 1|k′′, d′′;n+1) = µ
∑k′′+1

i=d′′+2E[Ti;n+1].
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B Population growth model does not make qualitative dif-

ference

Figure 5: Effect of population growth model on false discovery rate among non-carriers, from analytical
calculation. Given a target haplotype carrying the ancestral allele, the probability (y-axis, in log scale) of
having all the most closely related reference haplotype in the reference panel carrying the derived allele thus
an estimated dosage 1, on the derived allele frequency in the reference (x-axis). Each sub-figure represents
one reference size (in individual); each color represents a population growth model. FTE(EXP) 10M 2K:
faster-than-exponential (exponential) growth with current day effective population size 10 millions, and a
bottleneck with effective population size 2 thousands.
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Figure 6: Effect of population growth model on imputation accuracy upper bound (r2), from coalescent
simulation. Y-axis is the average r2 between imputed dosages and true genotypes without identification
error; error bars represent one standard deviation. Each sub-figure represents one reference size (in in-
dividual); each color represents a population growth model. FTE(EXP) 10M 2K: faster-than-exponential
(exponential) growth with current day effective population size 10 millions, and a bottleneck with effective
population size 2 thousands.
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