
 

Supplementary Figure 1: Performance of machine learning methods on out-of-distribution 

cross validation experiments, related to Figure 2 



(A) For cross validation experiments, we used a dataset of compound-kinase Kds among 

all pairs of 72 compounds and 442 kinases from Davis et al. The dataset was partitioned such 

that portions of the test set would have compounds not seen in the training data (“drug 

discovery”), kinases not seen in the training data (“drug repurposing”), and entire compound-

kinase pairs not seen in the training data (“de novo”). (B) Performance within each out-of-

distribution test set quadrant (A) was measured with average-case metrics (Spearman correlation, 

Pearson correlation, or mean square error between model predictions and ground truth Kds). Bar 

height indicates mean. (C) Scatter plots show the relationship between predicted Kd and model 

uncertainty, colored by the ground truth Kd, for all items in the test set. GP uncertainty scores 

(scaled to be between 0 and 1, inclusive) that are lower also correspond to better separation of 

active and inactive interactions. A normal MLP does not output uncertainty estimates. Without 

quantifying uncertainty, predictions may be overconfident. 

  



 

Supplementary Figure 2: Lead prioritization statistics from cross validation experiments, 

related to Figure 2 

(A) Performance within each out-of-distribution test set quadrant was measured based on lead-

prioritization (the true Kd of the top 5 acquired compounds in each random seed). Bar height 

indicates mean; statistical significance was assessed with a one-sided Welch’s t-test P-value 

(FDR < 0.05). (B) The true Kd of the top 5 acquired compounds for each uncertainty model with 

(β = 1) and without uncertainty (β = 0). Bar height indicates mean; statistical significance was 

assessed with a one-sided Welch’s t-test P-value (FDR < 0.05). 

  



 

Supplementary Figure 3: Visualization of ZINC/Cayman acquisition priority, related to 

Figure 2 

Each compound in the ZINC/Cayman library is visualized as a two-dimensional t-SNE of the 

chemical embedding space, colored according to acquisition priority for high predicted binding 

affinity (and, if available, low uncertainty) to four kinases. GP-based acquisition prioritizes 

regions of the compound space close to available training data (Figures 2F and 2G). In contrast, 

MLP-based acquisition consistently prioritizes compounds that are out-of-distribution, indicating 

potentially pathological predictions. CMF predictions appear to lack any meaningful structure 

with regards to the compound landscape. PknB visualizations are the same as in Figure 2 and 

reproduced here for comparison.  



 

Supplementary Figure 4: Axenic Mtb growth dose-response, related to Figure 4 

(A) Growth of axenic Mtb measured via alamar blue absorbance normalized to untreated 

condition after five days of incubation in the presence of PknB-inhibiting compounds (K252a, 

SU11652, and TG101209), a known antibiotic (Rifampicin), and a vehicle control (DMSO). (B) 

Growth of axenic luciferase-expressing Mtb measured as luminescence after five days of 

incubation in the presence of PknB-inhibiting compounds (K252a, SU11652, and TG101209), a 

known antibiotic (Rifampicin), and a vehicle control (DMSO). 

  



 

Supplementary Figure 5: Prediction uncertainty distributions and true values, related to 

Figures 3 and 4 

Violin plots and box plots correspond to the GP output for a given compound/kinase pair; the 

box extends from the first to third quartile, the whiskers extend from the min to max, and the 

white dot indicates the median. Horizontal red lines correspond to the true experimentally 

determined Kd. Note that uncertainty in addition to the prediction value adds interpretability; for 

example, the GP-outputted distributions corresponding to p110δ/K252a and PknB/Phenylacetic 

acid have similar means but different variances, with greater tolerance for a false positive 

prediction in the latter.  



 

Supplementary Figure 6: Comparison of model acquisition of avGFP mutants, related to 

Figure 6 

(A) Scatter plots showing true log-fluorescence versus acquisition ranking for benchmarked 

machine learning methods; compare to the same plot for our GP model in Figure 6D. Neural 

network-based models (without GP augmentation) have low correlation between acquisition 

ranking and fluorescence, perhaps due to overfitting. OLS has comparable correlation to GP, but 

significantly worse performance compared to GP-based models among the top ranked examples 

(Figure 6C). Each point corresponds to a unique avGFP mutant; the green dashed line indicates 

median log-fluorescence of wild-type avGFP. (B) Each point corresponds to a test set mutant 

sequence. At lower uncertainty scores, the GP separates truly bright fluorescing sequences from 

truly dark fluorescing sequences; a similar pattern was observed for the GP + MLP. OLS 

regression does not compute uncertainty scores, leading to overconfident predictions among top-

acquired sequences. (C) The true log-fluorescence of the top 50 acquired mutant sequences for 



each uncertainty model with (β = 1) and without uncertainty (β = 0). Bar height indicates mean; 

statistical significance was assessed with a one-sided Welch’s t-test P-value (FDR < 0.05). 

  



Property 
Number of 

Samples 
Minimum Median Maximum Mean 

Standard 

Deviation 

Exact molecular 

weight (Da) 
10,833 61.0 352.2 994.5 367.9 140.3 

SSSR 10,833 0 2 12 2.4 1.7 

Balaban J 10,833 0.7 2.0 6.3 2.2 0.8 

Bertz CT 10,833 17.2 661.3 2850.1 734.0 399.1 

Tanimoto similarity 

(RDK Fingerprint, 

2048 bits) 

58,671,528 0.00 0.18 1.00 0.20 0.11 

Tanimoto similarity 

(Morgan 

Fingerprint, 2048 

bits, radius = 2) 

58,671,528 0.00 0.09 1.00 0.11 0.07 

 

Supplementary Table 1: Statistics for ZINC/Cayman dataset, related to Figure 2. 

Various statistics computed over the 10,833 chemicals in the ZINC/Cayman dataset, namely, 

exact molecular weight in Daltons (Da), the size of the smallest set of smallest rings (SSSR), and 

measurements of molecular complexity (Balaban’s J value and Bertz’s CT value). Statistics of 

chemical similarity, namely Tanimoto similarity of fingerprints produced by two different 

fingerprint methods, were computed over all 58,671,528 combinations of chemicals.  



Compound PknB IRAK4 c-SRC p110δ 

(1'S,2'S)-Nicotine-1'-oxide >10000    

3-O-methyl-N-acetyl-D-Glucosamine   >10000  

8-iso Prostaglandin E2   >10000  

AB-BICA >10000    

Abacavir  >10000   

AD57    >10000 

ALK-IN-1 620 13   

AP26113 1300 83 370  

Atracurium >10000    

AVL-292 5500    

CAY10625    >10000 

Epinastine >10000    

Evodiamine   >10000  

GLYX 13   >10000  

GP-NEPEA    >10000 

HM61713    5100 

IKK-16 22    

K145 >10000    

K252a 11 0.85 500 3700 

Lovastatin >10000    

LY2886721 >10000    

Mevastatin >10000    

NVP-TAE226 9900    

Oxymatrine >10000    

Phenylacetic Acid >10000    

PI-3065    0.36 

PX 1 >10000    

Ro 4929097 >10000    

Ro 67-7476   >10000  

S-(5'-Adenosyl)-L-methionine chloride >10000    

Stauprimide   670  

SU11652 76    

TG101209 71 810 79  

Toceranib 1000 37   

WAY-161503  >10000   

WS3   4  

ZSTK474 >10000    

 



Supplementary Table 2: Summary of tested interactions, related to Figures 3 and 4 

All Kds determined in this study in units of nM. Blank cells indicate interactions that were not 

acquired. “>10000” indicates a Kd greater than the top concentration of 10,000 nM. Cells with a 

Kd of 100 nM or less are highlighted in blue. 

  



Compound MIC (μM) 

K252a 25 

Rifampicin 1.25 

SU11652 25 

TG101209 >50 

 

Supplementary Table 3: MIC values from axenic culture experiments 

MIC values determined by assessing bacterial growth in the presence of compounds at 1.25, 2.5, 

5, 10, 25, and 50 μM via an alamar blue assay.  



Acquired compound 
Target 

(Kd < 100 nM) 
Closest compound 

Morgan fingerprint 

Tanimoto similarity 

IKK-16 PknB Imatinib 0.31 

PI-3065 p110δ GDC-0941 0.46 

ALK-IN-1 IRAK4 TAE-684 0.55 

TG101209 PknB, c-SRC TG-101348 0.68 

Toceranib PknB, c-SRC Sunitinib 0.72 

AP26113 IRAK4 TAE-684 0.73 

WS3 c-SRC AST-487 0.73 

K252a PknB, IRAK4 CEP-701 0.77 

SU11652 PknB Sunitinib 0.81 

 

Supplementary Table 4: Closest original training set compounds, related to Figure 4 

For each acquired compound involved in a potent binding interaction (Kd < 100 nM; see Table 

S2), the third column from the left reports the most similar compound in the training data and the 

fourth column reports the Tanimoto similarity. 


