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Abstract 21 

Soil is an important factor that contributes to the uniqueness of a wine produced by vines grown in 22 

specific conditions. Recent data shows that the composition, diversity and function of soil microbial 23 

communities may play important roles in determining wine quality and indirectly affect its economic 24 

value. Here, we evaluated the impact of environmental variables on the soil microbiomes of 22 Barossa 25 

Valley vineyard sites based on the 16S rRNA gene hypervariable region 4. In this study, we report that 26 

environmental heterogeneity (soil plant-available P content, elevation, rainfall, temperature, spacing 27 

between row and spacing between vine) caused more microbial dissimilarity than geographic distance. 28 

Vineyards located in cooler and wetter regions showed lower beta diversity and a higher ratio of 29 

dominant taxa. Differences in microbial community composition were significantly associated with 30 

differences in fruit traits and in wine chemical and metabolomic profiles, highlighting the potential 31 

influence of microbial communities on the phenotype of grapevines. Our results suggest that 32 

environmental factors affect wine terroir, and this may be mediated by changes in microbial structure, 33 

thus providing a basic understanding of how growing conditions affect interactions between plants and 34 

their soil microbiomes.  35 

 36 
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1 Introduction 37 

Wine price differs considerably depending on its quality (e.g., flavor, color and typicity), which is 38 

largely determined by the interactions between the grape and the growing conditions including climate, 39 

soil, topography, agricultural management, and the wine making process (Bokulich et al., 2016). These 40 

interactions influence the expression of wine’s terroir (Bokulich et al., 2016; Jullian Fabres et al., 41 

2017). Research on the drivers of terroir have predominantly focused on abiotic environmental factors, 42 

such as climate, soil, viticultural management and wine making process, studied individually (Mira de 43 

Orduña, 2010; Romero et al., 2016; Vega-Avila et al., 2015) and simultaneously (Van Leeuwen et al., 44 

2004). However, little research has been done, in the context of terroir, on whether soil microbiomes 45 

exhibit distinct patterns of distribution at small geographic scales (e.g. neighboring vineyards), and 46 

whether vineyard microbiomes are associated with a wine’s terroir (Burns et al., 2015; Bokulich et al., 47 

2016).   48 

Soil microbiomes, especially bacterial species, have been found to be qualitatively and quantitatively 49 

different between vineyard systems (Vega-Avila et al., 2015). Environmental factors, such as 50 

topography, climate, soil properties, cultivars and agricultural management, combine to affect soil 51 

microbial communities (Reeve et al., 2010; Castro et al., 2010; Lamb et al., 2011). It has been shown 52 

that climate and topography, including rainfall pattern and temperature, affect these communities 53 

through their impacts on soil (Burns et al., 2015). Soil properties such as soil texture, nitrogen (N) 54 

content, phosphorus (P) content, carbon to nitrogen (C:N) ratio, water content, and pH show significant 55 

effects on the diversity and composition of microbial communities (Girvan et al., 2003; Frey et al., 56 

2004; Rousk et al., 2010; Fierer and Jackson, 2006). Plant genotypes exert an influence on the structural 57 

and functional diversity of soil microbiomes by varying root exudates and rhizodeposition (Broeckling 58 

et al., 2008; Dias et al., 2013; Philippot et al., 2013). Management practices, land use and varying 59 

degrees of stress and disturbance influence the soil microbiome markedly due to specific management 60 

objectives (Crowder et al., 2010; Lumini et al., 2011; Reeve et al., 2010; Sugiyama et al., 2010).  61 

Soil microbiomes interact with the vines, and thus affect wine quality (Bokulich et al., 2016; Burns et 62 

al., 2015). The interaction between soil microorganisms and plants includes the facilitation of nutrient 63 

uptake/utilization, stabilization of soil structure, reduction of disease prevalence by out-competing soil-64 

borne pathogens or increase of disease prevalence by microbial pathogen invasion (Edwards et al., 65 

2014; Zarraonaindia et al., 2015). Soil microbiomes also contribute to the wine fermentation flora, 66 

ultimately affecting wine quality (Barata et al., 2012; Compant et al., 2011; Martins et al., 2013). 67 

However, microbial assemblage function is intrinsically difficult to measure and define because of its 68 

highly changeable nature (Nannipieri et al., 2003). Additionally, due to the complex interactions 69 

between soil microbes, the influence of certain microbial communities can be substituted by other 70 

microorganisms with the same ecological function (Nannipieri et al., 2003; Crowder et al., 2010; Lamb 71 

et al., 2011; Wittebolle et al., 2009). 72 

The primary aim of this project was to assess if there is a relationship between soil microbiomes and 73 

terroir. To achieve this, we asked the following questions: 74 

(i) Do wine sub-regions have distinct soil bacterial communities?; 75 

(ii) What environmental conditions and agricultural practices shape soil bacterial community 76 

of vineyards?; and 77 

(iii) Do differences in the soil bacterial community correlate with berry and wine 78 

characteristics? 79 
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In order to answer these questions, we undertook a soil microbiome survey in an iconic wine region, 80 

the Barossa in South Australia. The Barossa has a winemaking history of over 160 years and because 81 

of its importance as a growing region, has been chosen as a model to investigate terroir previously ( 82 

Wolf et al., 2003; Edwards et al., 2014; Xie et al., 2017). Besides, the environmental characteristics of 83 

the Barossa, including climate, soil and topography have been previously characterized in detail 84 

(Robinson and Sandercock, 2014). However, to date, no study has analyzed the soil microbiomes of 85 

the Barossa wine region or the possible influence on wine properties. Thus, determining how soil 86 

microbiome diversity and composition are influenced by environmental factors, and how microbiome 87 

differences correlate with differences in fruit/wine composition, will provide a starting point from 88 

which to better understand the (potential) functional role of soil microbial communities in terroir. 89 

2 Materials and methods 90 

2.1 Experimental design and plant material 91 

Twenty-two Barossa vineyards (Figure S1), planted with own-rooted Shiraz (Vitis vinifera L.) and 92 

representative of the climate, soil and management practices of six Barossa sub-regions (i.e. Eden 93 

Valley, Northern Grounds, Central Grounds, Eastern Edge, Western Ridge, Southern Grounds) were 94 

selected for this study. Three to four vineyards per sub-region were included and nine vines from three 95 

rows from each vineyard were selected for measurement and sampling. Vines within the same row 96 

were adjacent to each other. Vines adjacent to missing vines, end of row vines and border rows were 97 

excluded from the selection.  98 

2.2 Soil sampling protocol 99 

Three soil cores (0-10cm soil layer) were collected using a (20 mm diameter) soil auger from around 100 

each individual plant (approximately 10cm from the trunk) and combined, giving a total nine soil 101 

samples per row. A total of 594 soil samples were collected (27 soil samples from each vineyard) on 102 

the 2nd of November (Austral Spring) 2015. Soil samples were immediately stored at 4˚C and returned 103 

to the laboratory on the same day of collection. Soil samples from the same row were thoroughly mixed 104 

to obtain three samples per vineyard, and a total of 66 samples across the study. Coarse debris was 105 

removed from each soil sample using a 2mm sieve, and each sample was then divided into three sub-106 

samples (approximately 850 cm3 each). The first subsample (approx. 20 g) was used for determination 107 

of soil gravimetric moisture content. The second was air-dried until a constant mass was achieved and 108 

used for analysis of soil texture, pH, electrical conductivity, and plant-available (Colwell) P 109 

(phosphorus), as described previously (Cavagnaro, 2015)). The third soil subsample was stored at -110 

80˚C for DNA extraction and downstream genomic analysis (see below).  111 

2.3 Vineyard physical characterization 112 

In this study, the climate was characterized on the basis of rainfall and temperature. The influence of 113 

topography was studied through elevation above sea level and vineyard orientation. Soil texture was 114 

determined following (Giddings, 2015). Soil pH and electrical conductivity were determined on a 1:5 115 

soil/water mixture and then measured using pH/salinity meter (WP-81 Conductivity-Salinity-pH-mV 116 

Meter, v6.0, TPS Pty Ltd). Plant-available phosphorus was extracted and measured using Colwell P 117 

method (Rayment and Higginson, 1992) (Table S1). The remaining soil, topographic and climatic data 118 

was obtained from the Barossa Grounds project (Robinson and Sandercock, 2014), while vineyard 119 

management information was collected from participating growers (Table S2). 120 

2.4 Fruit and wine chemical analysis 121 
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Fruit juice pH and total acidity (TA) was measured using an autotitrator (Crison instruments Barcelona, 122 

Spain) (Iland et al. 2004). Total soluble solids (TSS) of juice samples were tested with a digital 123 

refractometer (BRX-242 Erma inc. Tokyo, Japan). A sample of 50 berries from random bunches on 124 

selected vines were collected and frozen at -20°C for anthocyanin, phenolic and tannin analyses. Total 125 

grape tannins were measured by the methyl cellulose precipitable (MCP) tannin assay (Sarneckis et al. 126 

2006) using the protocol of Mercurio et al. (2007). Total anthocyanin and phenolics were determined 127 

according the method of Iland et al. (2004) (Table S3). 128 

One bottle of commercial wine per vineyard was used for the chemical analysis. Wine pH and TA was 129 

determined as described by Iland et al. (2004). Final alcohol levels were determined using an Alcolyzer 130 

Wine ME (Anton Paar, Graz, Austria). Wine colour was determined using the modified Somers assay 131 

using a high throughput method in 96 well plates [98]. Wine tannin concentration was determined 132 

using the methyl cellulose precipitable (MCP) tannin assay of Mercurio et al. (2007) and is expressed 133 

as epicatechin equivalents (mg/L) using an 8-point epicatechin standard curve Sarneckis et al. (2006). 134 

The modified Somers assay was used to determine; wine colour density (WCD), SO2-corrected WCD, 135 

degree of anthocyanin ionisation, phenolic substances and anthocyanins (in mg/L) (Table S4).  136 

Non-targeted metabolomic analysis of the wine samples was performed using LC-MS/MS. The 137 

metabolites were isolated from bottled wine samples using solid-phase extraction (SPE) with 138 

Phenomenex Strata-X 33 um 85Å polymeric reverse-phase 60mg/3mL cartridges. A 2 mL aliquot of 139 

each sample was evaporated to dryness under nitrogen at 30°C. SPE conditions are presented in Table 140 

S5. A pooled mix of all samples was prepared and used to monitor instrument performance. The 141 

analysis was performed on an Agilent 1200SL HPLC coupled to a Bruker microTOF-Q II in ESI 142 

negative mode. The operating conditions are described in Table S5 (Table S6-7).  143 

Following data acquisition, mass calibration was performed on each file using Bruker Daltonic’s 144 

DataAnalysisViewer4.1 “Enhanced Quadratic” calibration method (Bruker Singapore, The Helios, 145 

Singapore). Each file was exported from DataAnalysis in the mzXML generic file format for further 146 

processing. The files were processed using R (statistical programming environment) v3.1.0 and 147 

Bioconductor v2.14 under a Debian Linux 64-bot environment. Molecular features were extracted for 148 

each file using xcmx package and features that possessed a common mass and retention time across 149 

samples were grouped together.  150 

2.5 16S rRNA Gene Next Generation Sequencing library preparation 151 

DNA extractions from soil 66 samples were carried out at the Australian Genome Research Facility 152 

(AGRF) (Adelaide node) using MoBio Powersoil kit (MoBio Laboratories, Inc) following the 153 

manufacture’s protocol. DNA concentrations were estimated using a Nanodrop 2000 154 

spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and normalized to 5 ng/µl using 155 

nanopure water. 156 

Primers 515F and 808R (Bates et al., 2011; Caporaso et al., 2011) specific for the Bacterial 16S rRNA 157 

gene hypervariable “V4” region were used for PCR amplification of extracted DNA and to prepare 158 

amplicon libraries. 515F worked as a universal forward primer for all the samples and 808R included 159 

12-base sample specific barcodes to allow downstream de-multiplexing (Table S8).  160 

Three replicated PCR reactions were performed for each of the 66 samples. Each of these runs included 161 

one negative control as ‘sample67’ with no template DNA added. PCR reactions included 10ng of 162 

extracted DNA, 12.5 µl Q5 high-fidelity 2*master mix (New England Biolabs), 8.5 µl dH2O, 1µl 163 

forward and reverse primers (10 µM) in 25µl reaction system. The PCR thermocycler (Bio-Rad T100) 164 
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program was 95°C for 6min, followed by 38 cycles of 95°C for 30sec, 50°C for 30sec and 72°C for 165 

1m30sec.  166 

Success of PCR reactions was verified by agarose gel (1.5% w/v) electrophoresis. Samples exhibiting 167 

weak bands were reamplified by adjusting the amount of DNA template. The triplicate reactions were 168 

then pooled into 67 pools. Individual pools were quantified by Qubit fluorometric double stranded 169 

DNA assay (Invitrogen, Carlsbad, CA, USA) and then mixed on an equimolar base to generate six 170 

pools each with 11 samples (each containing 5 ul of the water control pool). Pools were size-selected 171 

to remove unused primers using Agencourt® AMPure® XP (Beckman Coulter, Brea, CA, USA) 172 

following the manufacturer’s protocol and mixed to equimolar concentrations to make one final pool. 173 

Library concentration and fragment size were estimated using TapeStation (Agilent, Santa Clara, CA, 174 

USA) and sequenced on the Illumina MiSeq platform (300 bp PE) (Illumina, San Diego, CA, USA) at 175 

the Australian Genome Research Facility-Adelaide node (AGRF).  176 

2.6 Bioinformatics analysis  177 

Raw Illumina sequencing data was quality filtered and demultiplexed at AGRF-Adelaide node. 178 

Forward and reverse sequences passing QC filter were merged using bbmerge (Bushnell, 2016). 179 

Merged reads were analyzed using Quantitative Insight Into Microbial Ecology (QIIME) (QIIME 180 

version 1.8.0) (Navas-Molina et al., 2013). Operational taxonomic units (OTUs) were clustered using 181 

open-reference picking with the default uclust method (Edgar, 2010) based on 97% sequence similarity 182 

to the 16S rRNA Greengenes database (McDonald et al., 2012; DeSantis et al., 2006). OTUs were 183 

aligned to the Greengenes core reference database using PyNAST (Caporaso et al., 2010). Ribosomal 184 

Database Project (RDP) classifier was used to assign taxonomy (Wang et al., 2007). Both closed-185 

reference OTU picking and open-reference OTU picking were performed for later analyses.  186 

A BIOM file was generated after OTU picking, then OTUs identified in the negative control samples 187 

were removed from soil sample OTUs, leaving between 37,176 and 114,777 OTUs per sample (mean 188 

= 60,147 OTUs). Data with and without rarefaction were used for alpha diversity and beta diversity 189 

analyses. 37,176 OTUs (the lowest amount of OTUs in one sample) were randomly selected from each 190 

sample for rarefaction.  191 

Alpha diversity (within-sample species richness and evenness) was measured using non-phylogenetic 192 

(including the observed number of OTUs and the Chao 1 estimator of the total number that would be 193 

observed with infinite sampling) and phylogenetic (Faith’s Phylogenetic Diversity) indices (Faith, 194 

1992). Phylogenetic beta diversity (between-sample diversity) was calculated using both weighted and 195 

unweighted UniFrac (Lozupone and Knight, 2005) and three-dimensional principal coordinates 196 

analysis (PCoA) plots were built through Emperor (Vázquez-Baeza et al., 2013). We then constructed 197 

a neighbor joining ultrametric tree in QIIME from the beta diversity UniFrac distance matrix. The 198 

generated tree file, as well as the Barossa Valley geographical map, vineyard locations and taxa 199 

summary files, were input into GenGIS (Parks et al., 2009, 2013) to visualize the relationship between 200 

soil bacterial beta diversity and vineyard location. The statistical significance of this relationship was 201 

determined using the Mantel test based on 9,999 random permutations and implemented on GenAlex 202 

v6.5 (Peakall and Smouse, 2012). 203 

To identify the association of environmental variables and grape and wine properties (Table S1-S7) 204 

with soil bacterial microbiome, bacterial community dissimilarities were visualized with non-metric 205 

multidimensional scaling (nMDS) plots. Variables were fitted to the ordination plots using the function 206 

envfit in the package Vegan version 2.5-2 (Oksanen et al., 2013) implemented in R version 3.5.0 (Team, 207 
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2013). Spearman’s rank correlation coefficients were measured between individual taxon abundance 208 

and fruit and wine traits using the function rcorr in the package Hmisc. Grape traits included those 209 

from sensory, basic chemistry analyses, while wine traits included basic chemistry, wine fermentation 210 

products and amino acids concentration. Those traits and taxa with a significant (p-value <0.05) 211 

correlation coefficient larger than 0.80 or lower than -0.80 were deemed as significantly associated.  212 

To identify which variables are important in explaining the composition of the soil microbial 213 

community, we performed distance-based redundancy analysis (dbRDA), a form of multivariate 214 

multiple regression that we performed directly on a Bray-Curtis dissimilarity matrix of OTUs using 215 

the ADONIS function in Vegan. We used automatic model building using the function step in R. The 216 

step function uses Akaike’s Information Criterion (AIC) in model choice, which is based on the 217 

goodness of fit. The model building proceeds by steps until the ‘best’ fit is identified. If two predictor 218 

variables were highly correlated (>0.85) one, typically that which was more difficult to measure, was 219 

removed as well as variables with missing replicates (Variables included in the automatic model 220 

building are marked with * in Tables S2-S8). Differential statistic functions within the edgeR package 221 

(Chen et al., 2008) was used, as in  Weis et al. (2017) to determine the significantly different taxa 222 

between vineyards separated by the main environmental drivers of beta diversity (i.e. soil type and soil 223 

phosphorous content). In order to avoid the influence of taxa showing low counts, a minimum threshold 224 

was set up at 100 counts per million.  225 

3 Results 226 

3.1 Analysis of soil properties 227 

Of the three soil physicochemical properties tested, plant-available phosphorous (P) and electrical 228 

conductivity (a measure of soil salinity), differed significantly (Kruskal-Wallis: p-value < 0.05) 229 

between sub-regions of the Barossa (Table S1). Plant-available P was lowest in the Northern Grounds 230 

(11.5±2.7µg P/g soil) and highest in the Eastern Edge (39.0 ±14.2µg P/g soil). Electrical conductivity 231 

ranged from 111.0 uS/cm (Northern Grounds, SE=34.2) to 302.5 uS/cm (Central Grounds, SE=123.5). 232 

Soil pH did not differ between sub-regions, ranging from 6.2 (Eden Valley, SE=0.4) to 6.8 (Southern 233 

Grounds, SE=0.5).  234 

3.2 Barossa Valley soil bacteria community composition 235 

After quality filtering of the raw sequencing results, an average of 130,949 paired sequences remained 236 

per sample. Of these an average of 86,835 paired-end sequences per sample (66.3%) could be joined 237 

using bbmerge (Table S9).  238 

Both bacterial and archaeal DNA was detected in all soil samples. A total of 98.9% of sequences were 239 

classifiable at the phylum level (Figure 1A) and 95.2% at the genus level. Of those classifiable at the 240 

phylum level, 96.5% were assigned to one of nine dominant groups (relative abundance ≥1.0%) in the 241 

samples namely: Actinobacteria (26.9%), Proteobacteria (26.7%), Acidobacteria (12.0%), 242 

Planctomycetes (6.2%), Chloroflexi (5.6%), Firmicutes (5.3%), Gemmatimonadetes (3.9%), 243 

Bacteroidetes (3.5%), Verrucomicrobia (2.5%) (Figure 1A). The only dominant Archaea group was 244 

Crenarchaeota (4.0%). The overall dominant Bacteria and Archaea groups were consistently present in 245 

the six regions, but at different ratios (Figure 1A). The phylogenetic inference of microbiome 246 

composition differences between sub-regions showed three clusters with Central and Northern 247 

Grounds, and Eden Valley and Western Ridge sharing the more similar microbial profiles (Figure 1A).  248 
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The number of observed OTUs (Figure 1B) showed significant differences (t-test: p-value < 0.05) 249 

between the OTU rich sub-regions (Northern and Central Grounds) and the relatively OTU poor sub-250 

regions (Eden Valley and Western Ridge) (Table S10). Similarly, the Chao1 metric showed that 251 

Northern and Central Grounds presented higher levels of OTU richness while Eden Valley and Western 252 

Ridge had the lowest (Figure 1C). Pairwise comparison of alpha diversity between sub-regions showed 253 

significant differences (t-test, p-value < 0.05) between Northern Grounds and Eden Valley and Western 254 

Ridge and between Central Grounds and Eden Valley and Western Ridge (Table S11).  255 

Dissimilarities in microbial communities between samples (i.e. beta diversity) were calculated as 256 

weighted and un-weighted UniFrac distances and both methods showed similar patterns, and so only 257 

analyses based on weighted results are shown here. For the most part, the three replicates from within 258 

a given vineyard were closely grouped on the ordination plot (Figure 2A), indicating that bacterial 259 

communities were consistent within sites. Pairwise analysis of the differences between groups 260 

(vineyards and sub-regions) showed that all vineyards and sub-regions are significantly different to 261 

each other (Adonis, p-value < 0.001). Mantel test analysis of the association between microbiome 262 

compositional differences and geographic distance, showed a small but significant correlation (rxy = 263 

0.315; p-value = 0.0001) (Figure 2B). 264 

To further explore dissimilarities among and within regions, neighbor joining analysis was used to 265 

cluster samples and to generate a similarity tree in QIIME. This information, along with a geographical 266 

map of the regions and their locations, were combined using the GenGIS software package (Parks et 267 

al., 2009). This approach showed a low level of clustering of vineyards according to their geographic 268 

location (Figure 2C).  269 

3.3 Drivers of soil microbiome differentiation 270 

Model selection was used to identify the combination of variables that explained the greatest variation 271 

in the soil microbiome. This approach consistently selected soil plant-available phosphorus (P) and soil 272 

texture as the main drivers (Model: p-value = 0.001) of soil microbiomes in the Barossa vineyards 273 

tested (Figure 3). Together, both variables explained 19.7% of the observed variability. Independent 274 

pairwise analysis of UniFrac distances of vineyards grouped by these soil characteristics, showed that 275 

microbial communities in clay soil types were significantly dissimilar from those in sandy soils 276 

(PERMANOVA: p-value < 0.001, Figure 4A). Microbial communities in soils with high plant-277 

available phosphorus (P > 30mg/kg) were also dissimilar from those with low plant available 278 

phosphorous (PERMANOVA: p-value < 0.001, Figure 4C). Three and eight taxa were significantly 279 

more abundant in clay and sandy soils respectively (Figure 4B), while eight taxa were found 280 

significantly associated with low plant available phosphorous content, and three associated high levels 281 

of plant available phosphorous in soil (Figure 4D). 282 

Envfit analysis identified a number of other environmental factors as individually associated with 283 

microbial community composition (Figure 5). Aside from plant available phosphorous (r2 = 0.3706, p-284 

value < 0.001), these variables were: elevation (r2 = 0.3609, p-value < 0.001), growing season rainfall 285 

(r2 = 0.2499, p-value < 0.001), mean annual rainfall (r2 = 0.1621, p-value = 0.004), spacing between 286 

rows (r2 = 0.1512, p-value = 0.006) and between vines (r2 = 0.1561, p-value = 0.011), and growing 287 

season mean temperature (r2 = 0.1113, p-value = 0.022).  288 

Analysis of the correlation between individual environmental and vineyard management variables and 289 

taxa abundance, identified 4 positive (Spearman’s >0.80, p-value <0.001) and 3 negative (Spearman’s 290 

<-0.80, p-value <0.001) significant correlations (Figure S2). Positive correlations with individual taxa 291 

included, pH (order iii1-15 and family Pirellulaceae), elevation (family Isosphaeraceae), and plant age 292 
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(family Hyphomicrobiaceae); while negative correlations included P (family OPB35), elevation 293 

(family Conexibacteraceae), and the spacing between vines on the same row (family Haliangiaceae). 294 

3.4 Terroir and vineyard soil microbiomes 295 

Twenty four of the 75 grape and wine characteristics included in the study displayed a significant 296 

correlation with the soil microbial community composition (Table 2). The strongest associations 297 

identified for each of the four groups of traits tested were: 50 berry weight and average color per berry 298 

(basic berry properties); total anthocyanins and total phenolics (basic wine chemistry); Glycine and 299 

Alanine (wine amino acids); and 2-phenyl ethyl ethanol and acetic acid (wine fermentation products).  300 

Significant positive correlation (Spearman’s >0.80, p-value <0.05) were identified between the 301 

abundance of one taxon (order IS_44) and the average level of total phenolics mg/g berry weight 302 

(Figure S3A). Similarly, six wine traits showed positive correlations with the abundance of six 303 

microbial taxa (Figure S3B-E). Briefly, the genus Rhodoplanes was positively associated with the level 304 

of wine total phenolics and the family Chitinophagaceae was associated with color density of SO2 305 

corrected wine and with the level SO2 resistant pigments in wine, while the family Kouleothrixaceae 306 

was positively correlated with wine color density. 307 

4 Discussion  308 

Previous studies have shown that environmental factors (e.g. climate and soil properties) and crop 309 

management may affect microbial populations in vineyards (Fierer, 2008; Burns et al., 2015; Weckert, 310 

2016). To better understand how these variables contribute to vineyard microbial communities and 311 

how microbial diversity and composition correlate with fruit and wine quality traits, we studied the soil 312 

microbiome composition of 22 commercial vineyards representative of the Barossa Valley wine region 313 

in Australia.  314 

4.1 Vineyard soil microbiome composition and diversity 315 

With over 37,176 sequences per sample we reached a sequencing depth higher than those achieved in 316 

previous studies deemed sufficient to resolve differences between similar samples (e.g. Liu et al., 2014; 317 

Burns et al. 2015). From a species composition point of view, our results indicate that vineyard soil 318 

microbiomes present similarities across the six sub-regions studied. All soils analyzed presented both 319 

bacteria and archaea. A total of 96.5% of the all identified sequences were allocated in one of nine 320 

main dominant phyla (relative abundance >= 1.0%). Of these, eight (Actinobacteria, Proteobacteria, 321 

Acidobacteria, Planctomycetes, Chloroflexi, Firmicutes, Gemmatimonadetes, Bacteroidetes, and 322 

Verrucomicrobia) were Eubacteria, while only one dominant taxon was from Archeabacteria 323 

(Crenarchaeota). Although dominant phyla were consistently found in the six regions tested, they were 324 

present in different ratios. This finding is similar to earlier work; for example, investigating the Napa 325 

Valley American Viticultural Area (AVA), Burns et al. (2015) found the same nine top dominant 326 

bacteria groups, also with different ratios and order for each group. Similarly, Liu’s et al. (2014) 327 

analysis of agricultural black soils in northeast China found almost the same dominant bacterial groups. 328 

Equally, analysis of non-agricultural soils by Faoro et al, (2010) and Lauber et al. (2009) identified the 329 

same dominant groups, with the exception of Verrucomicrobia which was replaced by Nitrospira 330 

(Faoro et al., 2010) and TM7 and Cyanobacteria replacing Planctomycetes and Chloroflexi (Lauber et 331 

al., 2009).  332 

4.2 Location, soil properties, climate and vineyard management contribute are associated with 333 

soil microbial community dissimilarity in the Barossa 334 
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Although dominant taxa were constant at a regional level, soil microbiome diversity and composition 335 

seemed to be a better factor separating soil microbiomes from different sub-regions. The phylogenetic 336 

inference of microbiome composition differences between sub-regions showed that OTU richer sub-337 

regions (Northern and Central Grounds) clustered independently from the OTU poorer ones (Eden 338 

Valley and Western Ridge).  339 

Previous studies have shown that the major factors determining compositional dissimilarities of soil 340 

microbiome between sites are dispersal constraints (which predicts that more distant soils should have 341 

greater phylogenetic dissimilarity) and environmental heterogeneity (Fierer, 2008; Liu et al., 2014; 342 

Burns et al., 2015). Analysis of the influence of geographical distance on soil microbiome composition 343 

differences between Barossa Valley Region vineyards showed a small significant correlation between 344 

both parameters. It could be argued that such small contributions to vineyard soil microbiome 345 

composition differences could be associated with the relatively small distances between the vineyards 346 

in this study (Average distance 11.7 km, minimum distance 0.7 km and maximum distance 26.5 km). 347 

However, this correlation was similar to that observed by Burns et al. (2015) when studying 19 348 

vineyards of the Napa Valley AVA that were separated by up to 53 km. This suggests that dispersal 349 

constraints contribute to soil microbiome differences at a much smaller scale than previously perceived. 350 

Environmental heterogeneity has been found to be more important than geographic distance in shaping 351 

bacterial community at different geographical scales (Fierer and Jackson, 2006; Miura et al., 2017; da 352 

C Jesus et al., 2009; Ranjard et al., 2013; Hermans et al., 2017). The main contributors to environmental 353 

associated variability in soil communities are differences in climatic conditions, topography, soil 354 

properties, and cultivation practices (Mezzasalma et al., 2018; Burns et al., 2015). Microbiome 355 

composition similarity analysis results did not show a clear clustering of vineyards according to their 356 

geographic location, indicating that even at a close geographic distance, environmental heterogeneity 357 

is the dominant factor shaping soil microbiome composition.  358 

To determine which environmental factors contribute to the observed differences in soil microbial 359 

communities we used an automatic model building approach. This analysis revealed that when taken 360 

in combination, plant-available phosphorous and soil texture were the major contributors to soil 361 

microbiome differences between vineyards (approximately 20% of the total observed variability). 362 

Differences in plant-available phosphorous have been previously shown to impact microbial 363 

communities (Awasthi et al., 2011; Fierer and Jackson, 2006). In the studied vineyards, clay soils 364 

tended to show higher plant-available phosphorous content (Figure 4A & C), which is consistent with 365 

previous findings (Krogstad et al., 2005). Interestingly, soil particle size has been negatively correlated 366 

with microbiome community alpha diversity (Sessitsch et al., 2001) indicating that both variables could 367 

be affecting microbiome composition in an, at least partially, independent manner. Moreover, while 368 

genera Streptomyces, Rubrobacter (both Actinobacteria) and unclassified MND1, were especially 369 

prevalent in clay soils, genera Streptomyces, Pseudomonas and unclassified Sinobacteraceae were 370 

found in soils with plant-available phosphorous content higher than 30µg / g soil. Pseudomonas, are 371 

inorganic P solubilizing bacteria (Awasthi et al., 2011; Goswami et al., 2013; Schmalenberger and Fox, 372 

2016). Conversely, P levels negatively correlated with the abundance of the organic P mineralizing 373 

taxon OPB35. Pairwise analysis of individual taxa and environmental variables also identified 374 

previously reported strong and positive correlations between soil pH and order iii1-15 (acidobacteria-375 

6) and family Pirellulaceae (Rousk et al., 2010; Hermans et al., 2017; Wu et al., 2017). Interestingly, 376 

both P and pH, have been shown to be soil variables that are indicative of anthropogenic activity 377 

(Hermans et al., 2017), which highlights the potential use of such taxa as reliable indicators of soil 378 

condition.  379 
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Previous studies have shown that climatic variables such as rainfall (Wildman, 2015) and temperature 380 

(Cong et al., 2015) are major shapers of soil microbial population composition and activity. Our results 381 

indicate that cooler and wetter regions (Western Ridge and Eden Valley) had relatively lower soil 382 

microbial diversity, and a higher ratio of dominant species, than the warmer and drier sites. 383 

Additionally, elevation, which negatively affects air temperature, showed a positive correlation with 384 

the families Isosphaeraceae and an unsurprising negative correlation with the thermophilic taxon 385 

Conexibacteraceae (Wagner and Wiegel, 2008).  386 

Agricultural lands tend to show similar patterns of dominant bacteria (Burns et al. 2015; Liu et al. 387 

2014; Faoro et al. 2010; Lauber et al. 2009), indicating that microbial community composition can be 388 

profoundly affected by cropping practices (Hartman et al., 2018). Our results show that, both spacing 389 

between row and vine, which determine the vineyard’s planting density, are significantly associated 390 

with global differences in soil microbial community. Work in oil palm plantations has shown that 391 

planting density affects soil bacteria by altering the level of solar light incidence on soils, which can 392 

have dramatic effects on soil temperature and moisture (Tripathi et al., 2016). Pairwise comparisons 393 

between agronomical practices and individual taxa showed a negative correlation between spacing 394 

among vines on the same row and the abundance of representatives of the Haliangiaceae family. These 395 

are mesophilic organisms previously identified to be sensitive to agricultural practices (e.g. (Ding et 396 

al., 2014; Kim and Liesack, 2015; Wang et al., 2016)), which abundance could be favored by lower 397 

soil temperatures in densely planted vineyards. This highlights the importance of temperature, shown 398 

above, in the formation of soil bacterial communities. However, vine density and the use of under-vine 399 

cover crops could also cause different levels of interactions between plant roots and soil microbes. This 400 

is particularly prominent when comparing sites with similar topography and soil texture, in which 401 

spatial patterns of soil biota are assumed to be structured primarily by plant growth, age, growth form 402 

and density (Ettema, 2002). Our results indicate that the abundance of taxa from the bacterial family 403 

Hyphomicrobiaceae is positively correlated with the vineyard age. Plant age has previously been linked 404 

to differences in soil bacterial communities in annual crops (Marques et al., 2014; Walters et al., 2018) 405 

and in wild plant species (Wagner et al., 2016; Na et al., 2017). However, how composition and 406 

diversity of rhizosphere communities shift with plant age in perennial, long-living crops has received 407 

less attention. No-till soil management has been shown to affect community composition (Lewis et al., 408 

2018). It is therefore tempting to speculate that in perennial crops, the effect of plant age on soil 409 

bacterial communities, is the result of the prolonged presence of the crop.  410 

4.3 Correlations between soil bacterial communities and berry and wine parameters  411 

Berry parameters were found to be significantly associated with both the composition and diversity of 412 

soil microbiomes and with the abundance of single taxa. A total of six fruit traits correlated with 413 

differences in bacterial community composition and diversity, while one fruit trait was found 414 

significantly associated with the abundance of specific taxa. Plant–microbe interactions are known to 415 

modify the metabolome of Arabidopsis thaliana plants grown under controlled conditions (Badri et al., 416 

2013), however, the modulating effect of soil microbiomes on the metabolome of commercial crops is 417 

unexplored. Unfortunately, the non-intervention nature of this research impedes us determining if the 418 

relationships observed between vineyard soil microbiomes and fruit traits are causal or simply mere 419 

correlations. 420 

Soil microbiomes have previously been described as a contributor to the final sensory properties of 421 

wines by affecting wine fermentation. Grape must microbiota was found to be correlated to regional 422 

metabolite profiles and was suggested to be potential predictor for the abundance of wine metabolites 423 

(Bokulich et al., 2016). Here we identified 19 wine traits correlated with differences in bacterial 424 
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community composition and diversity, and seven correlated with the abundance of specific taxa. 425 

Vineyard soils may serve as a bacterial reservoir since bacterial communities associated with leaves, 426 

flowers, and grapes share a greater proportion of taxa with soil communities than with each other 427 

(Zarraonaindia et al., 2015). Unfortunately, the non-intervention nature of this research, the lack of 428 

replicability and the use of commercially produced  wines, preclude us from determining if the 429 

relationships observed between vineyard soil microbiomes and fruit/wine traits are causal or simply 430 

mere correlations. Each of these wines was made commercially by different producers so there is 431 

potential for a certain level of winemaking effect. 432 

5 Conclusion 433 

Taken collectively our results show that geographic separation between vineyards contributes to 434 

bacterial community dissimilarities at a much smaller scale than previously reported. Environmental 435 

variables (e.g. climatic, topography, soil properties, and management practices) were the greatest 436 

contributor to such differences. Particularly, we found that soil variables are the major shapers of 437 

bacterial communities. Also, we show that variables highly affected by soil anthropogenisation (pH, 438 

plant available Phosphorous) and agricultural management variables (plant age, planting density) have 439 

strong correlations both with the community composition and diversity and the relative abundance of 440 

individual taxa. Finally, our results provide an important starting point for future studies investigating 441 

the potential influence of microbial communities on the metabolome of grapevines in general, and on 442 

the definition of local Terroirs. It will also be important to study a wider range of soil physicochemical 443 

properties, and vineyard floor vegetation, on the soil microbiome. 444 
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 728 

Figure 1. Soil bacteria community composition and diversity in 6 Barossa sub-regions. A) 729 

Phylogenetic inference of microbiome composition differences between Barossa sub-regions. 730 

Neighbour joining tree was generated with weighted UniFrac distances calculated with sequences 731 

classifiable at the phylum level (98.9% of total). 96.5% of all sequences were assigned to one of nine 732 
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main dominant groups (relative abundance >= 1.0%) (indicated here by *). B) Alpha diversity: Chao1 733 

diversity comparison, C) and observed species diversity comparison. Alpha diversity values were 734 

calculated based on rarefied data was established using 16S sequencing reads from 3 soil samples per 735 

vineyard.  736 

   737 

 738 

Figure 2. Effect of vineyard location on soil microbiome differentiation. A) PCoA based on Beta 739 

diversity of soil bacterial communities calculated using weighted UniFrac distances. Values were 740 

calculated based on rarefied data to 37,176 sequences per sample. B) Relationship between 741 

phylogenetic Beta diversity and geographic distance. Unifrac_dist indicates weighted UniFrac 742 

distances. Geographic distances were calculated from latitude/longitude coordinates using GenAlex 743 

v6.5 geographic distance function implemented as Log(1+distances in Kilometres). The relationship 744 

was tested using Mantel's correlation coefficient (rxy) with its probability estimate for significance (P) 745 
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based on 9,999 random permutations and implemented using GenAlex v6.5. C) Neighbour joining 746 

ultrametric tree calculated from Beta diversity weighted UniFrac distance matrix between 22 vineyards 747 

located in six sub-regions: Northern Grounds (blue); Southern Grounds (yellow); Central Grounds 748 

(green); Eastern Edge (red); Western Ridge (purple); Eden Valley (orange). Tree was overlayed with 749 

the Barossa Region elevation map using GenGIS. Beta diversity was established using 16S sequencing 750 

reads from 3 soil samples per vineyard. 751 

  752 
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 753 

 754 

Figure 3. Main drivers of soil microbiome differentiation between Barossa Region vineyards. The 755 

observed important soil factors that affect soil microbial community groups in combinations. CAP plot 756 

displays the combination of variables that explained the greatest variation in the soil microbiome 757 

through model selection (full results Table 1). The correlation test was carried out on environmental 758 

variables following the removal of the highly correlated variables (>0.85) using the function ordisten, 759 

in the package Vegan. The variables implemented in the final model were soil phosphorous and soil 760 

texture, which explained 19.7% of variation in the soil microbiome. Distance based redundancy 761 

analysis (dbRDA) with Bray-Curtis dissimilarity matrix of OTUs was used to examine the influence 762 

of these predictor variables using the function capscale in the package Vegan in R.  763 
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 764 

Figure 4. Identification of microbial genera associated to soil texture and plant-available 765 

phosphorous in Barossa Region vineyards. Principal coordinate analysis plots display weighted 766 

UniFrac distances of soil samples from 22 vineyards in six sub-regions of Barossa Valley. Venn 767 

Diagrams show significantly different (P > 0.01) genera. Plots and diagrams are grouped by (A/B) soil 768 

type (clay (red) versus sandy soils (green)), and (C/D) plant-available Phosphorous (P) (P < 30 µg P / 769 

g soil (red), P > 30 µg P / g soil (green). Beta diversity was established using 16S sequencing reads 770 

from 3 soil samples per vineyard.  771 
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 772 

Figure 5. Environmental and vineyard management factors significantly associated with soil 773 

microbial community composition in Barossa Region vineyards. Non-metric multidimensional 774 

scaling plot displays the microbial community composition of 22 vineyards located in six sub-regions: 775 

Northern Grounds (blue); Southern Grounds (yellow); Central Grounds (green); Eastern Edge (red); 776 

Western Ridge (purple); Eden Valley (orange). Vector arrows indicate the association with 777 

environmental variables with p-value < 0.05. Arrow heads indicate the direction and length indicates 778 

the strength of the variable and nMDS correlation. Analysis was conducted using 999 permutations 779 

with variables deemed significant where p-value < 0.05. 780 

 781 

 782 

 783 

 784 
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Table 1. Main drivers of soil microbiome differentiation between Barossa Region vineyards. 785 

Variables that explained the greatest variation in the soil microbiome through model selection. The 786 

correlation test was carried out on environmental variables following the removal of the highly 787 

correlated variables (>0.85) using the function ordisten, in the package Vegan.  788 

 789 

 790 

 791 

 792 

 793 

 794 

 795 

 796 

 797 

 798 

 799 

 800 

 801 

 802 

Step Df Deviance 
Resid. 

Df 
Resid. 

Dev 
AIC 

1 NA NA 21 75.29566 29.06836 

Soil P -1 8.170918 20 67.12475 28.54123 

Soil texture -1 6.620899 19 60.50386 28.25662 
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Table 2. Fruit and wine characteristics significantly associated with microbial community 803 

composition in Barossa Region vineyards. Table shows the envfit output that was carried out the 804 

correlation test between grape and wine characteristics variables that fitted onto an ordination of 805 

nonmetric multidimensional scaling (nMDS) plots of microbial community data from soils in 22 806 

vineyard sites. Analysis was conducted using 999 permutations with variables deemed significant 807 

where p-value < 0.05. 808 

Variables NMDS1 NMDS2 r2 Pr(>r) 

Basic 
berry 

properties 

50 berries weight -0.87544 -0.48332 0.1612 0.008** 

TA berry 0.9369 0.3496 0.1119 0.029* 

Average colour 0.76859 0.63974 0.1337 0.008** 

Average total phenolics berry 0.76558 0.64334 0.135 0.015* 

Malic acid -0.90493 0.42557 0.104 0.03* 

Basic wine 
chemistry 

Total phenolics 0.83761 0.54627 0.2132 0.002** 

Total anthocyanins 0.99519 0.09801 0.2507 0.001*** 

Colour density (so2 corrected) 0.72894 0.68457 0.1449 0.006** 

Hue -0.78985 0.61331 0.1314 0.011* 

Wine 
amino 
acids  

Alanine 0.11831 0.99298 0.124 0.017* 

Asparagine 0.55124 0.83435 0.1156 0.023* 

Glutamate 0.39571 0.91837 0.103 0.031* 

Glycine 0.62968 0.77685 0.1847 0.002** 

Serine 0.54731 0.83693 0.0936 0.04* 

Threonine 0.20213 0.97936 0.0934 0.049* 

Tryptophan 0.56228 0.82695 0.119 0.025* 
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Wine 
ferment. 
products 

Acetic acid -0.99914 -0.04153 0.1689 0.003** 

Propanoic acid -0.96827 0.24991 0.118 0.012* 

3-methylbutanol 0.99079 0.13538 0.1184 0.02* 

2-methylbutanol 0.98968 0.14332 0.108 0.034* 

Butanoic acid -0.89212 0.4518 0.1298 0.013* 

2-phenyl ethyl ethanol 0.70731 0.7069 0.2064 0.001*** 

2-phenyl ethyl acetate 0.82725 0.56183 0.1249 0.013* 
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 809 

Supplementary Figure 1. Location of 22 Barossa vineyard sites. Vineyards are color coded 810 

according to the six wine sub-regions as defined in Xie et al. (2017): Northern Grounds: Blue, Southern 811 

Grounds: Yellow, Central Grounds: Green, Eastern Ridge: Red, Western Ridge: Purple, Eden Valley: 812 

Orange. Map modified from Xie et al. (2017). 813 

 814 

 815 

 816 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.12.246447doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.246447
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
29 

 817 

Supplementary Figure 2. Association between taxon abundance and environmental/agronomical 818 

variables in Barossa Region vineyard soil bacteria communities. Correlations were tested using 819 

Spearman’s rank correlation coefficient with its probability estimate for significance (P) and 820 

implemented using the function rcorr in the R package Hmisc. Correlation coefficient and P values for 821 

each of the comparisons are included in each inset.   822 
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  823 

 824 

Supplementary Figure 3. Association between taxon abundance and fruit/wine traits in Barossa 825 

Region vineyard soil bacteria communities. Relationship between taxon abundance and fruit (A) and 826 

wine (B-F) traits. Correlations were tested using Spearman’s rank correlation coefficient with its 827 

probability estimate for significance (P) and implemented using the function rcorr in the R package 828 

Hmisc. Correlation coefficient and P values for each of the comparisons are included in each inset. 829 
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