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Summary Paragraph 
 
Immunotherapy has improved the prognosis for half of the melanoma patients, prompting 
a need to understand differences between responding and non-responding patients. 
Gene expression profiling of tumors has focused on deriving primarily immune-related 
signatures, however these have shown limited predictive power. Recent studies have 
highlighted the role of RNA editing in modulating resistance to immunotherapy. This has 
led us to test whether RNA editing activity can be predictive of response in publicly 
available datasets of immunotherapy-treated melanoma patients. Here, we identified 
RNA editing signatures that were able to predict with very high accuracy and confidence 
patient responses and outcomes. Our analysis, however, demonstrates that RNA editing 
by itself is sufficient as a strong predictive tool for examining sensitivity of melanoma 
patients to immunotherapy.  
 
Main 
 
Melanoma is a highly aggressive and frequently lethal cancer. The advent of 
immunotherapy has significantly improved the prognosis for around half of melanoma 
patients, however our understanding of which patients will and will not respond to these 
treatments is a significant hurdle1-4. A number of groups have profiled the tumors of 
melanoma patients on immunotherapy clinical trials utilizing RNA-sequencing (RNA-Seq) 
in an attempt to identify gene expression signatures associated with patient response2-4. 
Each of these studies have provided important biological insights into genomic and 
transcriptional changes that drive melanoma, however the predictive power of these 
signatures is limited. 
 
Recent studies have highlighted the role of RNA editing, particularly by the adenosine 
deaminase acting on RNA (ADAR) family of proteins as important for the immune 
response and T-cell activation5-9. The ADAR protein family (ADAR1-3 (ADAR3: is 
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enzymatically inactive)) catalyzes the deamination of Adenines (A) within double-
stranded regions of RNA (dsRNA) into Inosines (I), in a process known as A-to-I editing10. 
The resulting I-U base-pair is significantly less stable than the replaced A-U base-pair 
causing destabilization of dsRNA10. These modifications have vital roles in cellular 
homeostasis, as unedited dsRNA regions are recognized by human cells as viral 
contaminants and trigger strong immune responses7,10. Importantly for our study, the 
resulting I base is recognized as a Guanine (G) during library construction, enabling the 
identification of A-I editing sites from RNA-Seq data using a number of available 
computational tools11-13. Based on the strong link between ADAR activity, the immune 
response and a real need to determine immunotherapy response in patients, we tested 
the predictive power of RNA editing in publicly available datasets2,3,11. 
 
Results 
 
Utilizing the Hugo dataset2, we first examined whether the levels of interferon response 
or ADAR genes correlated with patient response to immunotherapy. From these results, 
we found that the expression of interferon (Figure 1a) or ADAR genes (Figure 1b) is not 
associated with patient outcome (Non-Responder (NR) vs. Responder (R)). In addition, 
the overall levels of A-I editing events, as measured by AG/TC transitions, also appeared 
random (Figure 1c, Table S1). We next asked whether RNA editing sites (RES) in 
independent genes were associated with patient response. For this, we tabulated the 
RES score14 for each gene and identified gene RES scores significantly associated with 
response (t-test p<0.05) and not differentially expressed (Wald p>0.05)15,16. From this 
analysis, we identified 13 up-regulated (Figure 1d) and 248 down-regulated RES scores 
(Figure 1e, Table S2) that correlated with patient response to immunotherapy. Down-
regulated RES events provided the cleanest clustering of patients based on outcome 
(Figure 1e). To determine the heterogeneity between patients, we compared the means 
of the signature RES scores and found a striking and statistically significant difference 
between non-responding vs responding patients (Figure 1f, Table S3). These findings 
suggest that RES scores may provide the basis for more accurately predicting patient 
response to immunotherapy. 
  
Analysis of this type can be affected by confounding factors. To minimize this, we added 
two additional filtering steps. First, we removed RES scores that had significant linear 
relationships (p>0.05) to transcript levels. Second, we used linear regression on the RES 
scores with the predictors being response and transcript levels. Following this filtering, 
we retained only RES scores with a significant response coefficient (p<0.05) and removed 
the confounding effect of transcriptional levels. This approach enabled the identification 
of 5 up-regulated and 162 down-regulated RES scores that can classify responding vs. 
non-responding patients (Figures 1g and 1h, Table S2). In agreement with our findings 
based on the initial criteria, we note that down-regulated RES scores present the most 
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accurate patient clustering (Figure 1h). The mean RES scores for each of these groups 
was again tightly correlated with outcome (Figure 1i, Table S3). Importantly, the mean 
gene expression of these genes was unchanged in responders vs. non-responders 
(Figure S1a, 1b, Table S3). Collectively, these results show that RES signatures can 
separate patients by outcome to immunotherapy and that these changes are driven by 
RNA editing activity and not transcription.  
 
The predictive power of the RES score in the Hugo dataset, compelled us to investigate 
whether RNA editing signatures could stratify patients from additional cohorts. For this, 
we selected the Riaz melanoma dataset that included RNA-Seq for melanoma patients 
treated with nivolumab from the following groups: responder, non-responder, and stable 
disease patients3. In agreement with the Hugo data, an interferon response signature 
(Figure 2a), ADAR levels (Figure 2b) and gross A-I editing sites (Figure 2c, Table S4), 
were not predictive. Utilizing our initial RES criteria, we identified gene RES scores that 
correlated with patient outcome (Figure 2d, 2e, Table S5). This is particularly striking for 
down-regulated RES sites, as patients that respond to immunotherapy cluster very tightly 
together (Figure 2e). Mean RES scores across these patient groups also show strong 
separation in responding patients (Figure 2f, Table S6). Interestingly, patients with stable 
disease frequently correlate with RES scores of non-responders and show similar RES 
means (Figure 2d-f). As above, we then filtered these events to remove confounding 
effects and identified up-regulated (Figure 2g) and down-regulated (Figure 2h) RES 
scores that tightly correlated with patient outcome. The mean RES scores for each 
responder is highly significant (Figure 2i, Table S6) and are unchanged at the transcript 
level (Figure S1c, 1d, Table S6). Collectively, these findings confirm that RES score 
analysis can be utilized to segregate patients based on their response to immunotherapy. 
This approach can be used on diverse datasets with differences in sequencing coverage, 
patient population and immunotherapy agent. 
 
Our RES scores outlined in Figure 1 and 2 correlate with patient response, however we 
wanted to investigate the predictive power of this pipeline for patients. For this, we used 
logistic regression models from up and down-regulated mean RES scores from each 
dataset. Using the Hugo dataset, we found that up-regulated RES scores had a greater 
than 78% capacity to predict patients that will respond to immunotherapy (Figure 3a, S2a-
c, Table S7). We note that the sole responding patient that our model does not predict 
(blue dot below 0.5 in Figure 3a), is patient 38 (Pt38), which had very high AG/TC levels 
and is an outlier in Figure 1c. In contrast, the down-regulated RES scores have an over 
96% predictive capacity and separates all of the responding patients (Figure 3b, S2d-f, 
Table S7). In the independent Riaz dataset, we also find that our logistic regression of 
RES scores predicts patient response with both the up (90%) (Figure 3c, S3a-c) and 
down-regulated RES genes (Figure 3d, S3d-f, Table S7) having a greater than 87% 
predictive capacity. Based on these analyses, the down-regulated RES scores represent 
the most accurate model for determining patient sensitivity. These results highlight the 
predictive power of this approach for identifying patients that are likely to respond to 
immunotherapy. 
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We next evaluated how these RES scores correlated with patient survival. For this, 
patients were stratified by mean RES scores. For patients with elevated RES scores in 
the up-regulated group, we find improved survival periods for patients within the Hugo 
cohort (Figure 3e, Table S8). In agreement, patients with elevated RES score means 
within the Riaz dataset, show significant survival differences to those with lower means 
(Figure 3f, Table S8). Although these findings strongly support the predictive power of our 
model, the down-regulated RES score means show the most significant differences in 
patient survival (Figure 3g-h, Table S8). In this data, patients with lower mean RES scores 
display real survival benefit that is independent of the dataset. We next tested how this 
approach would cluster stable disease patients, and found that this logistic regression 
test was highly accurate and would cluster these patients with non-responders (Figure 
S4). Based on the logistic regression model and survival analysis of these patients, the 
down-regulated RES score enables the most accurate sub-classification of melanoma 
patients across datasets. This data highlights the predictive nature of RES scores for 
understanding the clinical benefit for patients on immunotherapy. 
 
We next examined the predictive power of recurrent RES sites within different patient 
groups. For this, we sub-classified RES sites enriched from responder or non-responder 
patients. Using recurrent RES sites, we were able to completely separate patients within 
the Hugo cohort based on clinical response (Figure 4a). This is also true for patients within 
the Riaz group (Figure 4b), suggesting that recurrent RNA editing within genes is 
contributing to response. To build on this, we compared the common genes with RES 
scores within both datasets. These genes with conserved A-I editing were also strongly 
predictive of patient response and able to segregate responders from non-responders or 
stable disease in each dataset (Figure 4c, 4d). We then examined whether recurrent RES 
sites existed between datasets that could predict patient response. For this analysis, we 
compared RES sites from both datasets and identified 5 RES sites that were present and 
significant in both (Table S9). We next tested whether these recurrent RES events could 
separate patients by response, and found that although the number of RES sites is small, 
these sites correlated with patient response (Figure 4e, 4f). By using the cumulative levels 
of RES sites within these genes, we find that elevated numbers of RES sites correlate 
with improved patient survival in both datasets (Figure 4g, 4h). To evaluate the hazard 
potential of this metric, we utilized Cox Proportional Hazards modeling17. From this, we 
find significant associations between patient response and the number of common RES 
sites (Table S3, Table S9). Our findings strongly implicate recurrent RES sites within 
melanoma as predictive of patient outcome and survival. 
 
Discussion 
  
This analysis highlights the real prognostic power of RNA editing sites and the affected 
genes in predicting immunotherapy responses in melanoma patients. Previous studies 
have focused on the analysis of genomic and transcriptomic datasets to identify immune 
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related signatures in pathways such as interferon signaling18, MHC antigen 
presentation3,19,20, and innate anti-PD1 resistance2. However, although innovative the 
predictive power of these signatures to identify patient response to immunotherapy has 
been limited. In this study, we investigated the capacity of RNA A-I editing events to 
accurately predict patient outcomes and response to different immunotherapy agents. 
Our approach has incorporated new knowledge that has been generated by a number of 
groups that have identified the role of ADAR-mediated RNA editing in development and 
cancer5-7,10,21,22. These studies have linked ADAR activity or ADAR-loss to immune 
response levels and immune checkpoint blockade. In agreement with a number of other 
studies, we find no correlation with interferon signatures, ADAR levels or total A-I editing 
events to immunotherapy response18,23,24. However, by systematically identifying A-I RNA 
changes that do not correlate with transcriptional changes, our RES scores accurately 
capture A-I editing events that can predict patient response with very high levels of 
confidence.  

These findings show that the RES score is sufficient to predict patient response on vastly 
different datasets. We note that the significant differences in patient population, library 
construction and sequencing protocols resulted in more exhaustive coverage in the Hugo 
dataset compared with Riaz2,3. In addition, patients within each trial were treated with 
different immunotherapies: Patients from the Hugo cohort primarily received 
pembrolizumab, while the Riaz cohort received nivolumab. In spite of these differences, 
our data suggests that the controlled use of RNA A-I editing sites is a strong predictive 
tool for examining the sensitivity of melanoma patients to immunotherapy. 

Data Availability 
 
All data are presented in this manuscript are available from the corresponding author 
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Methods 
 
Datasets Used 
 
The Hugo dataset (GSE78220) consisted of samples from patients treated primarily with 
pembrolizumab1. 15 were responders and 13 were non-responders based on Immune-
related Response Evaluation Criteria In Solid Tumors (irRECIST) criteria1. The Riaz 
dataset (GSE91061) consisted of nivolumab-treated patients of which 23 were non-
responders, 10 responders, and 16 stable disease by RECIST criteria2. 2 were of 
unknown response designation2.  
 
RNA Editing Sites Pipeline 
 
RNA-Seq files were imported from Gene Expression Omnibus (Hugo GSE78220 and 
Riaz GSE91061) using SRAToolkit 2.9.0. TrimGalore 0.6.0 was used to perform adaptor 
and quality trimming of RNASeq reads with the additional specification of 6 bases 
removed from the 5’ of each reads3. Bowtie2 was used for removing contaminating rRNA 
and tRNA reads4. STAR 2.5.2a was used for aligning the reads to the GRCh38 p12 
genome release 31 and obtaining gene counts and BAM alignment files5,6. The gene 
counts were imported into the R environment using DESeq2, a Bioconductor package for 
differential expression analysis and the resulting data was log-regularized7. Additionally, 
a differential expression analysis was conducted between responders and non-
responders.  
 
Sprint was used on the resulting BAM alignment files to identify RNA editing sites de 
novo.8 The changesammapq.py script from Sprint was used to convert the BAM files to 
the correct format for Sprint8. The sprint_from_bam.py script was used to identify regular 
RNA editing sites from the resulting BAM file using the GRCh8 p12 genome release 316 
and Sprint-provided hg38 repeat annotations. Annotating of the resulting RNA editing 
sites positions for genes, genomic regions, and repeats was done using functions and 
hg38 annotations from annotatr, a Bioconductor package for investigating intersecting 
genomic annotations9. Sprint-provided hg38 repeat annotations were also used in 
annotating the RNA editing sites.  
 
Identifying Differential RNA Editing 
 
For each gene, we developed an RNA editing score defined as the number of RNA editing 
sites per gene10. For our RNA editing scores, we only focused on A to G or T to C 
transitions for a gene. The RNA editing scores were log2-transformed with a pseudo-
count of 1 to normalize the data.  A two-tailed t-test was performed to determine 
differential RNA editing scores for each gene between responding and non-responding 
patients with significance criteria being two-tailed p-value < 0.05 and log2 fold change > 
0.3785. Additionally, we overlapped the significant genes with DESeq2 results and 
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removed  genes that were differentially expressed at a nominal level of significance 
(Wald’s Test two-tailed p-values < 0.05). 
 
A final set of filtering criteria (as opposed to initial criteria of filtering by only t-test and 
DESeq results) was developed to remove the influence of log-regularized transcript levels 
on number of RES identified using linear models analyzed with the lm() function in R. 
Genes with a significant transcript two-tailed p-value < 0.05 in RES ~ transcript linear 
model were filtered out. Additionally, the linear model RES ~ response + transcript was 
used to remove transcript levels as a confounding variable and only genes with a two-
tailed p-value < 0.05  for the response coefficient were retained. 
 
RNA Editing Signatures 
 
The mean RES score of the signature up-regulated and down-regulated gene (for both 
initial and final criteria) was used as a measure of the RNA editing signatures for each 
patient sample.  Two-tailed pairwise t-tests were conducted between responders, non-
responders, and stable disease patients to determine how significantly each signature 
discriminated between response groups. Additionally, a t-test was also conducted on the 
corresponding log-regularized transcript levels to determine how the transcript levels of 
the signature genes significantly discriminated between patient response groups.  
 
Logistic Regression Models 
 
The means of the significant log2-tranformed RNA editing scores from initial and final up-
regulated and down-regulated genes were used as input to a set of logistic regression 
models using the glm() functions in R where response ~ mean RNA editing score. Two-
tailed p-values of the mean RNA editing score coefficient was used to assess significance 
and model accuracy was calculated for correctly classified patient samples. The pROC R 
package was used for receiver operating characteristic (ROC) analysis11.  
 
Recurrent RNA Editing Sites 
 
AG/TC RNA editing sites from all samples in each cohort were stratified into sites 
identified only responders, sites identified only non-responders, and those identified in 
both responders and non-responders (Stable patients in Riaz were not considered).  A 
two-tailed Fisher’s Exact test was performed to determine the contingency of RNA editing 
sites being enriched in responders or non-responders. Significant recurrent RNA editing 
sites had a two-tailed p-value < 0.05 and were only annotated to genes with DESeq2 
nominal Wald’s Test p-values > 0.05. Significant sites whose contingency odds ratio 
favored responders were responder-enriched and significant sites whose odds ratios 
favored non-responders were non-responder enriched. For the responder and non-
responder enriched RES we determined the annotated genes for these sites using 
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functions derived from annotatr9. The responder and non-responder enriched RES and 
their annotated genes were compared across the Hugo and Riaz cohorts.  
 
Survival Analysis 
 
Survival analyses were done to determine the effects of RNA editing signatures and 
recurrent RNA editing sites on patient survival. Analyses were performed on all patient 
samples within a cohort. The survival and survminer R packages were used12. A survival 
object or response variable was created from survival data using the Surv() function. 
Kaplan-Meir curves were created using the survfit() function and Cox proportional hazard 
regression modeling was done via the coxph() function13. The ggsurvplot() function was 
used for visualizing survival curves.  
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Figure 1:  RNA editing sites can segregate melanoma patients based on response 
to immunotherapy. a) Heat map of Interferon and Interferon-related gene expression 
changes in non-responder (NR) and responder (R) patients from the Hugo dataset. b) 
ADAR1, ADAR2 and ADAR3 gene expression levels in non-responder and responder 
patients. c) Total AG/TC RNA editing sites vs. total spots in non-responder (red) and 
responder (blue) patients. d) Heat map of up-regulated RES scores in genes using initial 
criteria in non-responder and responder patients. e) Heat map of down-regulated RES 
scores in genes using initial criteria in non-responder and responder patients. f) Means 
of RES scores of up-regulated and down-regulated genes using initial criteria in non-
responder and responder patients. g) Heat map of up-regulated RES scores in genes 
using final criteria in non-responder and responder patients. h) Heat map of down-
regulated RES scores in genes using final criteria in non-responder and responder 
patients. i) Means of RES scores of up-regulated and down-regulated genes using final 
criteria in non-responder and responder patients.  *p<0.05, **p<0.01, ***p<0.001 
 
Figure 2:  RES scores can be used across datasets to sub classify immunotherapy 
response. a) Heat map of Interferon and Interferon-related gene expression changes in 
non-responder (NR), responder (R), stable disease (SB) and unknown (UNK) patients 
from the Riaz dataset. b) ADAR1, ADAR2 and ADAR3 gene expression levels in non-
responder, stable disease and responder patients. c) Total AG/TC RNA editing sites vs. 
total spots in non-responder (red), responder (blue) and stable disease (orange) patients. 
d) Heat map of up-regulated RES scores in genes using initial criteria in non-responder, 
responder, stable disease and unknown patients. e) Heat map of down-regulated RES 
scores in genes using initial criteria in non-responder, responder, stable disease and 
unknown patients. f) Means of RES scores of up-regulated and down-regulated genes 
using initial criteria in non-responder, stable disease and responder patients. g) Heat map 
of up-regulated RES scores in genes using final criteria in non-responder, responder, 
stable disease and unknown patients. h) Heat map of down-regulated RES scores in 
genes using final criteria in non-responder, responder, stable disease and unknown 
patients. i) Means of RES scores of up-regulated and down-regulated genes using final 
criteria in non-responder, stable disease and responder patients.  *p<0.05, **p<0.01, 
***p<0.001 
 
Figure 3:  RES scores accurately predict response and survival of melanoma 
patients to immunotherapy. a) Logistic regression models from the Hugo dataset for 
up-regulated RES score means and responding prediction for responder (R, blue) and 
non-responder (NR, red) patients. b) Logistic regression models from the Hugo dataset 
for down-regulated RES score means and responding prediction for responder and non-
responder patients. c) Logistic regression models from the Riaz dataset for up-regulated 
RES score means and responding prediction for responder and non-responder patients. 
d) Logistic regression models from the Riaz dataset for down-regulated RES score means 
and responding prediction for responder and non-responder patients. e) Survival analysis 
of patients stratified by upper 50% (red) and lower 50% (blue) means of up-regulated 
RES scores for genes in the Hugo cohort. f) Survival analysis of patients stratified by 
upper 50% (red) and lower 50% (blue) means of up-regulated RES scores for genes in 
the Riaz cohort.  g) Survival analysis of patients stratified by upper 50% (purple) and 
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lower 50% (green) means of down-regulated RES scores for genes in the Hugo cohort. 
h) Survival analysis of patients stratified by upper 50% (purple) and lower 50% (green) 
means of down-regulated RES scores for genes in the Riaz cohort.   
  
Figure 4:  Recurrent and common RES sites occur and predict outcomes in 
melanoma tumors. a) Heat map of significant recurrent RES sites in non-responder (NR) 
and responder (R) patients from the Hugo dataset. b) Heat map of significant recurrent 
RES sites in non-responder (NR), responder (R), stable disease (SD) and unknown 
(UNK) patients from the Riaz dataset. c) Heat map of significant shared RES genes in 
non-responder and responder patients from the Hugo dataset. d) Heat map of significant 
shared RES genes in non-responder, responder, stable disease and unknown patients 
from the Riaz dataset. e) Heat map of significant shared RES sites in non-responder and 
responder patients from the Hugo dataset. f) Heat map of significant shared RES sites in 
responder, non-responder, stable disease and unknown patients from the Riaz dataset. 
g) Survival analysis of patients stratified by common RES number 0-5 from the Hugo 
dataset (0 common RES - black, 1 common RES – blue, 2 common RES – magenta, 3 
common RES – tan, 4 common RES – orange, 5 common RES - red). h) Survival analysis 
of patients stratified by common RES number 0-2 from the Riaz cohort (0 common RES 
- black, 1 common RES – blue, 2 common RES - magenta).   
          
Figure S1:  Gene expression levels of RES containing genes do not correlate with 
outcome. a) Expression levels of predictive genes that contain up-regulated RES scores 
in the Hugo dataset. b) Expression levels of predictive genes that contain down-regulated 
RES scores in the Hugo dataset. c) Expression levels of predictive genes that contain up-
regulated RES scores in the Riaz dataset. d) Expression levels of predictive genes that 
contain down-regulated RES scores in the Riaz dataset. *p<0.05, **p<0.01, ***p<0.001 
 
Figure S2:  Logistic models and ROC curves from the Hugo dataset accurately 
predict patient response. a) Logistic regression models from the Hugo dataset for initial 
up-regulated RES score means and responding prediction for responder (R, blue) and 
non-responder (NR, red) patients. b) ROC curves of initial up-regulated RES score 
means. c) ROC curves of final up-regulated RES score means. d) Logistic regression 
models from the Hugo dataset for initial down-regulated RES score means and 
responding prediction for responder (R, blue) and non-responder (NR, red) patients. e) 
ROC curves of initial down-regulated RES score means. f) ROC curves of final down-
regulated RES score means. 
 
Figure S3:  Logistic models and ROC curves from the Riaz dataset accurately 
predict patient response. a) Logistic regression models from the Riaz dataset for initial 
up-regulated RES score means and responding prediction for responder (R, blue) and 
non-responder (NR, red) patients. b) ROC curves of initial up-regulated RES score 
means. c) ROC curves of final up-regulated RES score means. d) Logistic regression 
models from the Riaz dataset for initial down-regulated RES score means and responding 
prediction for responder (R, blue) and non-responder (NR, red) patients. e) ROC curves 
of initial down-regulated RES score means. f) ROC curves of final down-regulated RES 
score means. 
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Figure S4:  Logistic regression models cluster patients with stable disease with 
non-responders. Graph showing the frequency of stable disease RES scores clustering 
with non-responders (NR) and responders (R). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 13, 2020. ; https://doi.org/10.1101/2020.08.12.248393doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.248393


ADAR1 ADAR2 ADAR3

NR      R

f 13 up-regulated RES genes 
(initial criteria)

248 down-upregulated RES genes
(initial criteria)

NR                    R NR                    R

b
64 interferon and interferon-related genes

13 up-regulated RES genes 
(initial criteria)

e 248 down-upregulated RES genes
(initial criteria)

d

Total AG/TC Sites vs Total Spots

g h i

a c

5 up-regulated RES genes 
(final criteria)

162 down-regulated RES genes 
(final criteria)

5 up-regulated RES genes 
(final criteria)

162 down-regulated RES genes 
(final criteria)

NR                    R NR                   R
NR                   R NR                    R

NR        R NR         R

Siddiqui_Figure1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 13, 2020. ; https://doi.org/10.1101/2020.08.12.248393doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.248393


ADAR1 ADAR2 ADAR3

NR   SD    R

b
60 interferon and interferon-related genes

NR            SD            R NR           SD            R

i 9 up-regulated RES genes 
(final criteria)

8 down-regulated RES genes 
(final criteria)

f
29 up-regulated RES genes 

(initial criteria)
41 down-upregulated RES genes

(initial criteria)

NR           SD            R

c Total AG/TC Sites vs Total Spots

h9 up-regulated RES genes 
(final criteria)

8 down-regulated RES genes 
(final criteria)

e
29 up-regulated RES genes 

(initial criteria)
41 down-upregulated RES genes

(initial criteria)d

g

a

NR           SD           R

NR    SD     R NR    SD      R

Siddiqui_Figure2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 13, 2020. ; https://doi.org/10.1101/2020.08.12.248393doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.248393


h
Hugo Down-regulated Genes Survival Analysis

p = 0.00935

g
Riaz Down-regulated Genes Survival Analysis

p =0.002

f
Riaz Up-regulated Genes Survival Analysis

p=0.000288

e
Hugo Up-regulated Genes Survival Analysis

p = 0.106

Riaz et al 2017 Cohorts

c dLogistic regression of 162 down-regulated RES score means
(final criteria)

Logistic regression of 9 up-regulated RES score means
(final criteria)

Logistic regression of 8 down-regulated RES score means
(final criteria)

p=0.00881
96.4% Prediction Accuracy

p=0.00723
90.9% Prediction Accuracy

p=0.0403
87.9% Prediction Accuracy

Hugo et al 2016 Cohorts

a bLogistic regression of 5 up-regulated RES score means
(final criteria)

p=0.00811
78.6% Prediction 
Accuracy

Siddiqui_Figure3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 13, 2020. ; https://doi.org/10.1101/2020.08.12.248393doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.248393


h
Riaz  Common RES

P=0.0173

5 Riaz Common RES

34

0         1          2

7 10

g
Hugo Common RES5 Hugo Common RES

P=0.0153

0 1 2 3 4 5

7

4
5 5 5

2

Riaz 207 Responder RES and 19 Non-Responder RESc d

RES from common genes

Hugo 302 Responder RES and 26 Non-Responder RESa bHugo 1308 Responder RES and 2148 Non-Responder RES

fe

Riaz 370 Responder RES and 42 Non-Responder RES

5 Hugo Common RES 5 Hugo Common RES

Siddiqui_Figure4
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprintthis version posted August 13, 2020. ; https://doi.org/10.1101/2020.08.12.248393doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.248393


B

D

A        

C

5 Final Up-regulated RES Gene Transcript Levels 162 Final Down-regulated RES Gene Transcript Levels

9 Final Up-regulated RES Gene Transcript Levels 8 Final Down-regulated RES Gene Transcript Levels

NS NS

NS

NS

NS

NS

NS

NS

Siddiqui_FigureS1
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprintthis version posted August 13, 2020. ; https://doi.org/10.1101/2020.08.12.248393doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.248393


BA        C

ED        F

Logistic regression of 13 up-regulated RES score means 
(initial means)

ROC of initial up-regulated RES scores ROC of final up-regulated RES Scores

Logistic regression of 248 down-regulated RES score means 
(initial means)

ROC of initial down-regulated RES scores ROC of final down-regulated RES scores

p=0.01163
85.7% Prediction Accuracy AUC=0.913

p=0.0090
92.9% Prediction Accuracy

AUC=0.959

AUC=0.864

AUC=0.959

Specificity

Specificity

Specificity

Specificity

Se
ns

iti
vi

ty
Se

ns
iti

vi
ty

Se
ns

iti
vi

ty
Se

ns
iti

vi
ty

RES Signature

RES Signature

R
es

po
nd

in
g 

Pr
ed

ic
tio

n
R

es
po

nd
in

g 
Pr

ed
ic

tio
n

Siddiqui_FigureS2
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprintthis version posted August 13, 2020. ; https://doi.org/10.1101/2020.08.12.248393doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.248393


BA        C

ED        F

Logistic regression of 29 up-regulated RES score means 
(initial means)

Logistic regression of 41 down-regulated RES score means 
(initial means)

ROC of initial up-regulated RES scores

ROC of initial down-regulated RES scores

ROC of final up-regulated RES scores

ROC of final down-regulated RES scores

p=0.00576
90.9% Prediction Accuracy

AUC=0.957

p=0.158
87.9% Prediction Accuracy

AUC=0.972

AUC=0.943

AUC=0.967

SpecificitySpecificity

Se
ns

iti
vi

ty

SpecificitySpecificity

Se
ns

iti
vi

ty

Se
ns

iti
vi

ty
Se

ns
iti

vi
ty

RES Signature

RES Signature

R
es

po
nd

in
g 

Pr
ed

ic
tio

n
R

es
po

nd
in

g 
Pr

ed
ic

tio
n

Siddiqui_FigureS3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 13, 2020. ; https://doi.org/10.1101/2020.08.12.248393doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.248393


11

2

3

Siddiqui_FigureS4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 13, 2020. ; https://doi.org/10.1101/2020.08.12.248393doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.248393


Table S1:  List of Hugo et al, 2016 samples and total RES identified 
 
Sample Total RES Total AG/TC RES Response 
SRR3184279 113487 109986 NR 
SRR3184280 120503 119098 R 
SRR3184281 175009 172171 R 
SRR3184282 87648 85321 R 
SRR3184283 188339 184670 R 
SRR3184284 142434 139986 NR 
SRR3184285 122232 120262 R 
SRR3184286 125394 120977 R 
SRR3184287 139930 135397 NR 
SRR3184288 176012 173281 NR 
SRR3184289 203427 200152 R 
SRR3184290 205424 200691 NR 
SRR3184291 119880 115351 R 
SRR3184292 514260 499604 NR 
SRR3184293 57758 56464 R 
SRR3184294 131515 129720 NR 
SRR3184295 160197 157045 NR 
SRR3184296 212384 207854 NR 
SRR3184297 124321 121034 NR 
SRR3184298 211518 206137 R 
SRR3184299 218569 212844 R 
SRR3184300 60642 58878 R 
SRR3184301 160617 158044 NR 
SRR3184302 552621 528453 NR 
SRR3184303 645070 611809 NR 
SRR3184304 223249 214872 R 
SRR3184305 331579 319552 R 
SRR3184306 766700 743066 R 
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Table S2:  RES score signature genes from Hugo et al, 2016 cohort 
 
Initial Up 
Genes 

Initial Down Genes Final Up 
Genes 

Final Down 
Genes 

BAD ABHD11 BAD ABHD11 
LINC01184 ACTL6A LINC02226 ACTL6A 
SDCBP2-AS1 ACTR1B RRP1 ACTR1B 
NUDT15 ADAMTSL1 TMEM144 AIDA 
SPACA9 AIDA GEN1 AP3S1 
GNGT1 AP3S1 

 
ARG2 

LINC02226 ARG2 
 

ASNA1 
RRP1 ASNA1 

 
ATN1 

ZNF781 ATN1 
 

ATP13A3 
FSD2 ATP13A3 

 
ATP8B1 

MIR4477A ATP8B1 
 

BAIAP2L1 
TMEM144 AZIN1 

 
BBIP1 

GEN1 BAIAP2L1 
 

BCL2L12  
BBIP1 

 
BNIP3L  

BCL2L12 
 

BTK  
BNIP3L 

 
C12orf65  

BRD4 
 

C8orf37-AS1  
BTK 

 
C8orf76  

C12orf65 
 

CBX3  
C17orf67 

 
CCDC142  

C19orf70 
 

CCNB2  
C2orf74 

 
CLN3  

C8orf37-AS1 
 

COQ10B  
C8orf76 

 
CYP51A1  

CALHM2 
 

DARS2  
CAMK1 

 
DCBLD1  

CAVIN1 
 

DDX21  
CBX3 

 
DDX39A  

CCDC136 
 

DEDD  
CCDC142 

 
DNAJC14  

CCNB2 
 

DPM1  
CD109 

 
DRC3  

CERCAM 
 

DSN1  
CGREF1 

 
EAF2  

CLN3 
 

EFCAB13  
COQ10B 

 
EIF3D  

CYP51A1 
 

EMC3  
DARS2 

 
EMC7  

DBF4 
 

ENGASE 
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DCBLD1 

 
ERGIC2  

DDX21 
 

ERP44  
DDX39A 

 
EXOC5  

DEDD 
 

FAM200A  
DGKE 

 
FAM210B  

DLGAP1 
 

G3BP1  
DNAJA1 

 
GPN3  

DNAJC14 
 

GSK3A  
DPM1 

 
HMG20B  

DRC3 
 

HMGN2P46  
DSN1 

 
HNRNPU  

EAF2 
 

IPO13  
EFCAB13 

 
IRF3  

EIF3D 
 

KCNJ8  
EMC3 

 
LINC00667  

EMC7 
 

LINC01301  
ENGASE 

 
LOC101927267  

ERGIC2 
 

LPAR6  
ERP44 

 
LSM4  

EXOC5 
 

MAP3K10  
FAAP20 

 
MARCH1  

FALEC 
 

MCEE  
FAM200A 

 
MEAF6  

FAM210B 
 

MEIOC  
FAM92A 

 
MEX3C  

FHL2 
 

NCBP2-AS2  
FKBP10 

 
NECAP2  

FLNB 
 

NIFK-AS1  
FTSJ1 

 
NLRC4  

G3BP1 
 

NOP16  
GBGT1 

 
NRAS  

GCFC2 
 

NUTM2F  
GPN3 

 
PAK4  

GPR153 
 

PCBP2  
GSK3A 

 
PHACTR1  

HMG20B 
 

PMM1  
HMGN2P46 

 
POFUT1  

HNRNPU 
 

PPP2R1B  
HUS1 

 
RALY  

IL17D 
 

RB1CC1  
IPO13 

 
RFK  

IRF3 
 

RNF169  
KCNAB1 

 
ROMO1 
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KCNJ8 
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LOC101926964 
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Table S3:  T-test of Hugo et al 2016 model predictions 
 
Model Group0 Group1 D.O.F. Mean 

Group0 
Mean 
Group1 

T-test 
Statistic 

T-test  
P-value 

 Diff. of 
Means 

Initial Up 
RES 
Scores 

NR R 17.02 0.67 1.86 6.00 1.44E-05 1.19 

Initial Down 
RES 
Scores 

NR R 25.43 2.63 1.32 -6.33 1.17E-06 -1.30 

Final Up 
RES 
Scores 

NR R 19.13 0.39 1.41 4.44 2.76E-04 1.02 

Final Down 
RES 
Scores 

NR R 25.29 2.52 1.22 -6.34 1.18E-06 -1.30 

Final Up 
Transcript 
Levels 

NR R 25.58 7.56 7.72 1.50 1.46E-01 0.16 

Final Down 
Transcript 
Levels 

NR R 25.98 10.07 10.02 -1.69 1.02E-01 -0.05 

 
D.O.F. (Degrees of Freedom) 
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Table S4:  List of Riaz et al, 2017 samples and total RES identified 
 
Sample Total RES Total AG/TC Sites Response 
SRR5088813 14560 14119 NR 
SRR5088887 29306 28448 SD 
SRR5088834 9641 9185 R 
SRR5088872 1812 1678 NR 
SRR5088926 22203 21496 NR 
SRR5088916 16108 15677 NR 
SRR5088890 21140 20613 NR 
SRR5088891 11083 10684 R 
SRR5088815 14753 14388 SD 
SRR5088818 9335 9032 UNK 
SRR5088906 9075 8765 NR 
SRR5088920 35971 35303 SD 
SRR5088908 3964 3723 NR 
SRR5088922 10632 10323 NR 
SRR5088909 12812 12475 NR 
SRR5088878 13230 12797 R 
SRR5088911 25997 25426 R 
SRR5088913 13864 13503 NR 
SRR5088929 9690 9396 R 
SRR5088898 10108 9806 SD 
SRR5088900 16295 15830 SD 
SRR5088895 21154 20687 SD 
SRR5088819 9931 9643 NR 
SRR5088880 18138 17665 SD 
SRR5088924 16604 16255 R 
SRR5088904 10706 10435 NR 
SRR5088836 22165 21643 NR 
SRR5088897 17623 17268 R 
SRR5088824 13629 13326 R 
SRR5088883 6286 6023 NR 
SRR5088839 8651 8351 NR 
SRR5088821 13001 12587 SD 
SRR5088856 4934 4644 NR 
SRR5088857 22499 21940 SD 
SRR5088826 22415 21708 NR 
SRR5088840 6187 6025 SD 
SRR5088861 8060 7798 R 
SRR5088827 13043 12788 UNK 
SRR5088846 7804 7475 SD 
SRR5088864 4821 4367 NR 
SRR5088849 22065 21597 SD 
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SRR5088914 17364 16941 NR 
SRR5088822 7025 6704 SD 
SRR5088850 9718 9364 NR 
SRR5088829 16919 16451 NR 
SRR5088831 9502 8961 SD 
SRR5088885 17741 17178 NR 
SRR5088866 10496 10181 NR 
SRR5088867 19327 18877 SD 
SRR5088843 8668 8336 R 
SRR5088853 11952 11545 SD 
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Table S5:  RES score signature Genes from Riaz et al, 2017 cohort 
 
Initial Up 
Genes 

Initial Down Genes Final Up 
Genes 

Final Down 
Genes 

ADGRE2 ACYP1 C16orf72 CFAP36 
AUH ADCY6 EIF2S3 COX7B 
C16orf72 C2CD3 ATOX1 RAD50 
CTSS CFAP36 GOLPH3L UBR4 
DTWD2 COX7B FCGRT WASHC5 
EIF2S3 GIT2 ACBD4 OSGEPL1 
FAM129A GNS CHADL WAC 
FAM20B ITCH ZNF236-DT RBM10 
FPGS LINC02614 NAA40 

 

H6PD MLANA 
  

KRIT1 MORC3 
  

LSG1 MYO5A 
  

PINK1-AS RAB17 
  

POLR1E RAD50 
  

RALGAPA1 SEC16B 
  

SOD2 THUMPD3-AS1  
 

TEP1 TSPAN31 
  

TRIM56 UBR4 
  

ATOX1 WASHC5 
  

FAM111A-DT ZNF226 
  

GOLPH3L ZNF329 
  

IL12RB1 ZNF426 
  

LRRC57 ZNF836 
  

ST3GAL2 GMEB1 
  

FCGRT GXYLT2 
  

ACBD4 OSGEPL1 
  

CHADL PRPF3 
  

ZNF236-DT SVIL-AS1 
  

NAA40 WAC 
  

 
ZNF814 

  
 

ZNF718 
  

 
AKAP10 

  
 

FMNL2 
  

 
GOLGA2 

  
 

LOC100130950  
 

 
BICD1 

  
 

ABCA5 
  

 
GON4L 

  
 

GYG2 
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RAF1 

  
 

RBM10 
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Table S6:  T-test of Riaz et al 2017 model predictions 
 
Model Group0 Group1 D.O.F. Mean 

Group0 
Mean 
Group1 

T-test 
Statistic 

T-test  
P-value 

Mean 
of Diff. 

Initial Up 
RES Score 

NR R 30.65 1.72 2.82 6.16 8.16E-07 1.09 

Initial Up 
RES Score 

NR SD 36.99 1.72 2.24 2.72 9.84E-03 0.51 

Initial Up 
RES Score 

SD R 23.77 2.24 2.82 3.66 1.26E-03 0.58 

Initial Down 
RES Score 

NR R 25.02 0.99 0.17 -7.42 9.01E-08 -0.81 

Initial Down 
RES Score 

NR SD 30.81 0.99 0.91 -0.47 6.39E-01 -0.08 

Initial Down 
RES Score 

SD R 16.29 0.91 0.17 -5.23 7.73E-05 -0.73 

Final Up 
RES Score 

NR R 20.38 0.87 2.03 7.27 4.38E-07 1.15 

Final Up 
RES Score 

NR SD 35.59 0.87 1.19 2.29 2.84E-02 0.32 

Final Up 
RES Score 

SD R 19.27 1.19 2.03 5.26 4.29E-05 0.83 

Final Down 
RES Score 

NR R 28.00 1.04 0.13 -7.14 8.96E-08 -0.90 

Final Down 
RES Score 

NR SD 26.68 1.04 0.81 -1.05 3.05E-01 -0.23 

Final Down 
RES Score 

SD R 16.95 0.81 0.13 -3.56 2.41E-03 -0.67 

Final Up 
Transcript 
Levels 

NR R 13.25 9.55 9.52 -0.26 7.96E-01 -0.03 

Final Up 
Transcript 
Levels 

NR SD 33.87 9.55 9.63 1.00 3.23E-01 0.08 

Final Up 
Transcript 
Levels 

SD R 14.11 9.63 9.52 -0.89 3.89E-01 -0.11 

Final Down 
Transcript 
Levels 

NR R 17.63 10.73 10.72 -0.20 8.43E-01 -0.01 

Final Down 
Transcript 
Levels 

NR SD 32.64 10.73 10.75 0.40 6.89E-01 0.02 

Final Down 
Transcript 
Levels 

SD R 19.51 10.75 10.72 -0.52 6.09E-01 -0.04 

 
D.O.F. (Degrees of Freedom) 
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Table S7:  Logistic Regression Results 
 
Cohort Model Estimate Standard 

Error 
Z value P-value Prediction ROC AUC 

Hugo Initial 
Up 

4.16 1.65 2.52 0.01 0.86 0.91 

Hugo Initial 
Down 

-4.30 1.65 -2.61 0.01 0.93 0.96 

Hugo Final 
Up 

2.76 1.04 2.65 0.01 0.79 0.86 

Hugo Final 
Down 

-4.46 1.70 -2.62 0.01 0.96 0.96 

Riaz Initial 
Up 

6.10 2.21 2.76 0.01 0.91 0.94 

Riaz Initial 
Down 

-23.66 16.75 -1.41 0.16 0.88 0.97 

Riaz Final 
Up 

5.91 2.20 2.69 0.01 0.91 0.96 

Riaz Final 
Down 

-12.02 5.86 -2.05 0.04 0.88 0.97 
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Table S8:  Cox Proportional Hazards Modeling Results 
 
Cohort Model Coefficient exp(Coefficient) Standard Error Z Value P-value 

Hugo Final Up -0.63 0.53 0.39 -1.62 1.06E-01 
Hugo Final 

Down 
0.92 2.50 0.35 2.60 9.35E-03 

Riaz Final Up -1.19 0.30 0.33 -3.63 2.88E-04 
Riaz Final 

Down 
0.75 2.11 0.24 3.09 2.00E-03 

Hugo Common 
RES 

-0.53 0.59 0.22 -2.42 1.53E-02 

Riaz Common 
RES 

-0.63 0.53 0.26 -2.38 1.73E-02 
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Table S9:  Common RES Sites 
 
Chromosome Start End Strand Transition Genes 
chr1 155733924 155733925 + AG DAP3 
chr2 151477764 151477765 + AG RIF1 
chr2 24002029 24002030 + AG UBXN2A 
chr22 42383507 42383508 - TC NFAM1 
chr7 92200451 92200452 - TC KRIT1 
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