Supplementary Information: A generative network model of neurodevelopment

Danyal Akarca ${ }^{1 *}$, Petra E Vértes ${ }^{2,3}$, Edward T Bullmore ${ }^{2,4}$, the CALM team ${ }^{1}$, \& Duncan E Astle ${ }^{1}$
${ }^{1}$ MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
${ }^{2}$ Department of Psychiatry, University of Cambridge, Cambridge, UK
${ }^{3}$ The Alan Turing Institute, London, UK
${ }^{4}$ Department of Clinical Neurosciences, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
*danyal.akarca@mrc-cbu.cam.ac.uk

Supplementary Figures

Rule			Energy		η		γ	
Name	Class	$K\left(n^{i}, n^{j}\right)$	Mean	SD	Mean	SD	Mean	SD
Spatial	Spatial	1	0.337	0.020	-3.940	0.397	N/A	N/A
Neighbours	Homophily	$\sum w a_{i w}{ }_{\text {w }}$	0.165	0.020	-1.995	0.483	0.338	0.045
Matching	Homophily	$\frac{\|\Gamma i \backslash j \cap \Gamma j \backslash i\|}{\|\Gamma i \backslash j \cup \Gamma j \backslash i\|}$	0.141	0.021	-1.647	0.490	0.357	0.022
C-Average	Cluster	$\frac{C i}{2}+\frac{C j}{2}$	0.181	0.016	-3.070	0.378	-6.203	0.735
C-Minimum	Cluster	$\min \left[C_{i}, C_{j}\right]$	0.252	0.020	-3.626	0.396	-6.131	0.795
C-Maximum	Cluster	$\max \left[C_{i}, C_{j}\right]$	0.182	0.014	-3.095	0.387	-6.153	0.735
C-Difference	Cluster	$\left\|C_{i}-C_{j}\right\|$	0.322	0.025	-6.193	0.744	-3.480	2.012
C-Product	Cluster	$C_{i} C_{j}$	0.223	0.024	-3.401	0.393	-5.964	0.926
D-Average	Degree	$\frac{k i}{2}+\frac{k j}{2}$	0.221	0.019	-3.516	0.502	2.419	0.332
D-Minimum	Degree	$\min \left[k_{i}, k_{j}\right]$	0.279	0.016	-4.749	0.749	0.474	0.010
D-Maximum	Degree	$\max \left[k_{i}, k_{j}\right]$	0.216	0.019	-3.557	0.602	2.255	0.332
D-Difference	Degree	$\left\|k_{i}-k_{j}\right\|$	0.229	0.018	-3.836	0.669	1.689	0.577
D-Product	Degree	$k_{i} k_{j}$	0.277	0.018	-4.605	0.738	0.399	0.082

Supplementary Table 1 Generative rules, their formulae and descriptive statistics across the broad parameter space ($\eta \pm 7, \gamma \pm 7$). Descriptive statistics of the η and γ required to achieve the best performing network for each subject, across the generative rules.

Matching: Narrow energy window						
Averaged over top N networks	Energy		η		γ	
	Mean	SD	Mean	SD	Mean	SD
$\mathrm{N}=1$	0.090	0.010	-1.565	0.327	0.349	0.033
$\mathrm{~N}=10$	0.101	0.011	-1.579	0.334	0.352	0.036
$\mathrm{~N}=100$	0.116	0.013	-1.614	0.372	0.355	0.038
$\mathrm{~N}=500$	0.1326	0.015	-1.658	0.427	0.357	0.040

Supplementary Table 2 Descriptive statistics of high performing wiring parameters η and γ and the energy of the networks they produce. Parameters were selected using the matching generative rule with 50,000 simulations, evenly spaced across the narrow window $-3.606<\eta$ <0.354 and $0.212<\gamma<0.495$. Parameters were averaged across a variable N number of high performing wiring combinations.

Supplementary Figure 1 Spatial variation in KS statistics across the narrow matching window, and the trade-off between η and γ in the same space for variable N number of high performing wiring combinations. (a) Degree KS statistics (b) Clustering coefficient KS statistics (c) Betweenness-centrality KS statistics (d) Edge length statistics. (e) Within the narrow window, η and γ trade-off such that subjects with a larger γ have a greater preponderance to have a larger magnitude negative η.

Supplementary Figure 2 Cumulative density functions of topological and network features that were not included in the energy equation, and their predictions. Simulated measures were calculated from the top performing networks. (a) Local efficiency was calculated as in Figure 3, by averaging across subjects. Spatial embedding prediction is shown. Global measures for each subject are shown for the (b) Number of rich clubs. (c) Assortativity. (d) Modularity. (e) Transitivity.

η									γ							
Global measures	$\begin{gathered} \text { Top } \mathrm{N}=1 \\ \text { simulated network } \end{gathered}$		Top $\mathrm{N}=10$ simulated networks		Top $\mathrm{N}=100$ simulated networks		Top $\mathrm{N}=500$ simulated networks		$\begin{gathered} \text { Top } \mathrm{N}=1 \\ \text { simulated network } \end{gathered}$		Top $\mathrm{N}=10$ simulated networks		$\begin{gathered} \text { Top } \mathrm{N}=100 \\ \text { simulated networks } \end{gathered}$		$\begin{gathered} \text { Top } \mathrm{N}=500 \\ \text { simulated networks } \end{gathered}$	
	R	P	R	P	R	P	R	P	R	P	R	P	R	P	R	P
Degree	0.0623	0.3074	-0.0828	0.1748	-0.1209	0.0472	-0.1845	0.0023	0.3215	6.5867×10^{-8}	0.5765	2.5715×10^{-25}	0.5860	2.7400×10^{-26}	0.5947	3.2074×10^{-27}
Clustering coefficient	-0.2424	5.7241×10^{-5}	-0.4312	1.1915×10^{-13}	-0.5754	3.3105×10^{-25}	-0.6338	9.7869×10^{-32}	0.5879	1.7144×10^{-26}	0.7878	2.3807×10^{-58}	0.8314	2.4001×10^{-70}	0.8285	1.8709×10^{-69}
Betweenness centrality	-0.1595	0.0087	-0.1128	0.0641	-0.1741	0.0041	-0.1391	0.0223	-0.2194	2.8060×10^{-4}	-0.4125	1.6248×10^{-12}	-0.4225	4.0817×10^{-13}	-0.4424	2.2968×10^{-14}
Edge length	0.3415	8.4813×10^{-9}	0.4752	1.2926×10^{-16}	0.5477	1.5660×10^{-22}	0.4925	6.6608×10^{-18}	0.1168	0.0553	0.2094	5.3257×10^{-14}	0.2287	1.5018×10^{-4}	0.2491	3.4712×10^{-5}
Efficiency	0.1049	0.0854	0.041	0.5020	0.0154	0.8005	-0.0460	0.4516	0.2070	6.2060×10^{-4}	0.3988	9.9888×10^{-12}	0.4158	1.0312×10^{-12}	0.4340	7.8898×10^{-14}
Number of rich clubs	0.0861	0.1581	0.0177	0.7718	0.0090	0.8827	0.0206	0.7360	0.2041	7.4004×10^{-4}	0.3560	1.7377×10^{-9}	0.3832	7.1277 $\times 10^{-11}$	0.4001	8.4373×10^{-12}
Assortativity	0.0130	0.8313	0.0358	0.5578	0.0311	0.6104	0.0531	0.3845	-0.1850	0.0023	-0.1964	0.0012	-0.1564	0.0101	-0.1602	0.0083
Transitivity scalar	-0.2548	2.2667×10^{-5}	-0.3989	9,7813 $\times 10^{-12}$	-0.5281	8.5927×10^{-21}	-0.5767	2.4941×10^{-25}	0.4863	1.9646×10^{-17}	0.6383	2.6553×10^{-32}	0.6792	7.0291×10^{-38}	0.6689	2.1791×10^{-36}
Maximised modularity	-0.2249	1.9449×10^{-4}	-0.1747	0.0040	-0.2626	1.234×10^{-5}	-0.2374	8.1647×10^{-5}	-0.1052	0.0844	-0.2291	1.4583×10^{-4}	-0.2432	5.3864×10^{-5}	-0.2543	2.3398×10^{-5}
Grey volume	-0.0040	0.9482	-0.1048	0.0856	-0.1644	0.0068	-0.1799	0.0030	0.1492	0.0141	0.2363	8.8556×10^{-5}	0.2278	1.5917×10^{-4}	0.2217	2.4095×10^{-4}
Surface area	0.0061	0.9207	-0.0950	0.1196	-0.1461	0.0163	-0.1627	0.0074	0.1329	0.0291	0.2214	2.4517×10^{-4}	0.2141	3.9639×10^{-4}	0.2081	5.7950×10^{-4}
Cortical thickness	-0.0331	0.5885	-0.0909	0.1362	-0.1730	0.0044	-0.1979	0.0011	0.1262	0.0382	0.2058	6.6834×10^{-4}	0.1938	0.0014	0.1871	0.0020

Supplementary Table 3 Correlational statistics between η and γ and observed global network and graphical measures. Global measures were calculated by averaging across the cortex. Parameters were averaged across a variable N number of best performing networks to determine how this influences associations. The first four rows (blue) correspond to measures minimised within the energy equation (2). The next five rows (green) correspond to measures not included in the energy equation. The final three rows (yellow) are cortical morphology measures which were not included in the energy equation. For all N , both η and γ are associated with a range of observed characteristics within and outside of the energy equation. Boldened numbers are associations which are significant at $\mathrm{P}<0.05$.

Supplementary Figure 3 Gene loading analysis and pathway enrichment (a) Distributions of significant genes ($p_{\text {corr }}<0.05$) for the nodal-costs and nodal-values PLS1, which provided an average of 581.5 significant genes and 437.6 significant respectively across the sample.
(b) To collapse across subjects, we ranked genes according to the number of subjects for which each gene was significant and submitted genes above 10% to an ordered pathway enrichment analysis. (c) Pathway enrichment analysis summarises large gene sets as a smaller list of more easily interpretable pathways that can be visualised to identify main biological themes. Outcomes of Gene Ontology Biological Processes (BP) from the g:Profiler statistical enrichment analysis. We highlight a number of highly significant results.

PLS	Response	Number of genes	Gene Ontology	Link
PLS1	Parametrised costs	1427	Biological processes and cellular components	https://biit.cs.ut.ee/gplink//TYGoJHihSs
	Parameterised values	1584	Biological processes and cellular components	$\underline{\text { https://biit.cs.ut.ee/gplink//H gK8UIVR1 }}$

Supplementary Table 4 Gene queries submitted to g:Profiler. Ordered gene lists were computed by taking subject-specific significant ($p_{\text {corr }}<0.05$) genes according to their frequency across the sample, up to 10% of the sample.

\mathbf{N}	Age (months)		Sex		Referral status	
	Mean	SD	Male	Female	Referred	Non-referred
270	117.8	25.8	178	92	192	78

Supplementary Table 5 Demographic information of the sample.

