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Abstract 47 

Lyme disease is the most common vector-borne disease in temperate zones and a growing public 48 

health threat in the United States (US). The life cycles of the tick vectors and spirochete 49 

pathogen are highly sensitive to climate, but determining the impact of climate change on Lyme 50 

disease burden has been challenging due to the complex ecology of the disease and the presence 51 

of multiple, interacting drivers of transmission. Here we incorporated 18 years of annual, county-52 

level Lyme disease case data in a panel data statistical model to investigate prior effects of 53 

climate variation on disease incidence while controlling for other putative drivers. We then used 54 

these climate-disease relationships to project Lyme disease cases using CMIP5 global climate 55 

models and two potential climate scenarios (RCP4.5 and RCP8.5). We find that interannual 56 

variation in Lyme disease incidence is associated with climate variation in all US regions 57 

encompassing the range of the primary vector species. In all regions, the climate predictors 58 

explained less of the variation in Lyme disease incidence than unobserved county-level 59 

heterogeneity, but the strongest climate-disease association detected was between warming 60 

annual temperatures and increasing incidence in the Northeast. Lyme disease projections indicate 61 

that cases in the Northeast will increase significantly by 2050 (23,619 ± 21,607 additional cases), 62 

but only under RCP8.5, and with large uncertainty around this projected increase. Significant 63 

case changes are not projected for any other region under either climate scenario. The results 64 

demonstrate a regionally variable and nuanced relationship between climate change and Lyme 65 

disease, indicating possible nonlinear responses of vector ticks and transmission dynamics to 66 

projected climate change. Moreover, our results highlight the need for improved preparedness 67 

and public health interventions in endemic regions to minimize the impact of further climate 68 

change-induced increases in Lyme disease burden.  69 

 70 

Keywords: Lyme disease, climate change, Ixodes scapularis, Ixodes pacificus, least squares 71 

dummy variables, disease projections 72 
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Introduction 78 

Arthropod-transmitted pathogens pose a severe and growing threat to global public health 79 

(World Health Organization 2014). Because vector life cycles and disease transmission are 80 

highly sensitive to abiotic conditions (Mattingly 1969, Sonenshine and Roe 2013), climate 81 

change is expected to alter the magnitude and geographic distribution of vector-borne diseases 82 

(Kilpatrick and Randolph 2012, World Health Organization 2014). Climatic changes, in 83 

particular warming temperatures, have already facilitated expansion of several vector species 84 

(e.g., Purse et al. 2005, González et al. 2010, Roiz et al. 2011, Clow et al. 2017a), and have been 85 

associated with increased vector-borne disease incidence (e.g., Loevinsohn 1994, Subak 2003, 86 

Hii et al. 2009). Identifying areas of high risk for current and future vector-borne disease 87 

transmission under climate change is critical for mitigating disease burden. However, the 88 

presence of interacting drivers of disease transmission such as land use change and globalization, 89 

and the complex ecology of vector-borne diseases make the effort to measure and predict effects 90 

of climate on vector-borne disease incidence challenging (Rogers and Randolph 2006, 91 

Tabachnick 2010, Mills et al. 2010, Ostfeld and Brunner 2015, Lafferty and Mordecai 2016). 92 

This challenge is particularly apparent in the case of Lyme disease, the most common 93 

vector-borne disease in temperate zones (Kurtenbach et al. 2006, Rizzoli et al. 2011, Rosenberg 94 

et al. 2018), because transmission depends on a complex sequence of biotic interactions between 95 

vector and numerous host species that may respond differently to environmental change (Ostfeld 96 

1997). In the United States (US), Lyme disease is caused by the bacteria Borrelia burgdorferi, 97 

and is vectored by two tick species: Ixodes scapularis in the eastern and midwestern US and 98 

Ixodes pacificus in the western US. After hatching from eggs, both tick species have three 99 

developmental stages—larva, nymph, and adult—during which they take a single blood meal 100 

from a wide range of vertebrate hosts before transitioning to the next developmental stage or 101 

reproducing (Sonenshine and Roe 2013). This life cycle takes 2-3 years to complete, 95% of 102 

which is spent at or below the ground surface in diapause, seeking a host, digesting a blood meal, 103 

or molting (i.e., off the host) (Sonenshine and Roe 2013, Ostfeld and Brunner 2015).  104 

Given their long life spans, ectothermic physiology, and high degree of interaction with 105 

the physical environment, tick life cycles are sensitive to changes in climate and weather 106 

conditions (Sonenshine and Roe 2013).  Prior research has demonstrated that temperature and 107 

moisture strongly influence tick mortality, development, and host-seeking abilities (reviewed in 108 
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Ostfeld and Brunner 2015, Ogden and Lindsay 2016). In particular, both low and high 109 

temperatures decrease I. scapularis and I. pacificus survival and host-seeking activity (Lindsay et 110 

al. 1995, Vandyk et al. 1996, Padgett and Lane 2001). Further, cool temperatures prolong tick 111 

development and increase generation times, leading to greater proportional mortality before 112 

reproduction (Peavey and Lane 1996, Ogden et al. 2004, 2006). Rainfall and moisture 113 

availability also influence host-seeking activity in nonlinear ways. Low humidity exposure 114 

substantially increases tick mortality and inhibits host-seeking activity (Stafford 1994, Lane et al. 115 

1995, Vail and Smith 1998, Schulze et al. 2001, Rodgers et al. 2007, Nieto et al. 2010, Ginsberg 116 

et al. 2017, MacDonald et al. 2019b). To avoid desiccating conditions, Ixodid ticks often modify 117 

their questing behavior to remain closer to the moist vegetative surface, or return frequently to 118 

rehydrate, both of which decrease the probability of obtaining a blood meal and thereby limiting 119 

survival and reproduction (Randolph and Storey 1999, Prusinski et al. 2006, Sonenshine and Roe 120 

2013, Arsnoe et al. 2015, McClure and Diuk-Wasser 2019). However, heavy rainfall may also 121 

directly impede tick host-seeking (Randolph 1997). Given these physiological relationships, 122 

temperature and precipitation are important predictors of these tick species’ latitudinal and 123 

altitudinal range limits (McEnroe 1977, Estrada-Peña 2002, Brownstein et al. 2003, Ogden et al. 124 

2005, Leighton et al. 2012, Berger et al. 2014, Eisen et al. 2016, Hahn et al. 2016), and 125 

northward range expansion of I. scapularis has been associated with warming temperature 126 

(Ogden et al. 2014b, Clow et al. 2017b, 2017a). 127 

Yet despite well-known physiological relationships between specific climate variables 128 

and aspects of tick biology, and strong evidence of relationships between climate and tick range 129 

limits, it remains unclear how these effects translate into Lyme disease incidence - the outcome 130 

of interest to public health - and how broadly they apply across biogeographically distinct US 131 

regions. However, associations between climate and Lyme disease incidence are difficult to 132 

measure given the influence of many non-climate factors such as changing physician awareness, 133 

host movement, and human behavior (Morshed et al. 2006, Randolph 2010, Ostfeld and Brunner 134 

2015, Kilpatrick et al. 2017, Scott and Scott 2018). A handful of prior studies have attempted to 135 

isolate the effect of climate on incidence, but have been limited in geographic or temporal scope, 136 

and/or not controlled for confounding drivers of incidence, leading to conflicting results about 137 

the role of climate change on transmission (Subak 2003, McCabe and Bunnell 2004, Schauber et 138 
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al. 2005, Burtis et al. 2016, Dumic and Severnini 2018). As a result, our ability to predict effects 139 

of future climate change on Lyme disease incidence remains limited.  140 

Here, we leverage an 18-year county-level Lyme disease case reporting dataset and 141 

explicitly control for other drivers of disease burden to ask: How has interannual variation in 142 

climate conditions contributed to past changes in Lyme disease incidence across distinct US 143 

regions? We include climate variables capturing changes in temperature and precipitation 144 

conditions and investigate how relationships between climate and Lyme disease outcomes vary 145 

across different regions of the US (i.e., the Northeast, Midwest, Southeast, Southwest, Pacific 146 

Southwest, and Pacific). We hypothesize that: a) warmer temperatures in northern regions and b) 147 

spring precipitation in all regions promote tick survival and therefore increase Lyme disease 148 

incidence, while c) hot, dry conditions during the questing period decrease tick host-seeking 149 

activity, survival and disease incidence. To avoid drawing spurious conclusions about the effects 150 

of climate, we analyze the effects of other known and potential drivers of disease incidence such 151 

as changing forest cover, public awareness of tick-borne disease, and health-seeking behavior, 152 

and use a statistical approach that explicitly accounts for unobserved heterogeneity in disease 153 

incidence between counties and years. We then use these modeled, regionally-specific 154 

relationships between climate and Lyme disease burden to investigate projected changes in US 155 

Lyme disease incidence under future climate scenarios. We report the projected change in Lyme 156 

disease incidence for individual US regions in 2040 – 2050 and 2090 – 2100 relative to 157 

hindcasted 2010 – 2020 levels under two potential climate scenarios: RCP8.5, which reflects the 158 

upper range of the literature on emissions, and RCP4.5, which reflects a moderate mitigation 159 

scenario (Hayhoe et al. 2017). 160 

 161 

Materials and Methods 162 

Lyme disease case data  163 

We obtained annual, county-level reports of Lyme disease cases spanning from 2000 to 2017 164 

from the US Centers for Disease Control and Prevention (CDC) (see Supporting Information). 165 

These disease case data provide the most spatially-resolved, publicly available surveillance data 166 

in the US. Raw case counts were converted to incidence using annual county population sizes 167 

from the US Census Bureau (USCB) and were expressed in cases per 100,000 people.  168 
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Climate data 169 

An overwhelming number of climate variables, such as the mean, range, and maximum or 170 

minimum temperature or precipitation at different time scales, could conceivably affect Lyme 171 

disease transmission. To reduce the probability of identifying significant but spurious 172 

relationships between climate and incidence, we limited the variables considered here to: average 173 

winter temperature lagged 1.5 years; average spring precipitation; the number of hot, dry days in 174 

May – July (the nymphal tick questing period); cumulative average temperature; total annual 175 

precipitation; daily temperature variability; and daily precipitation variability (Table 1). These 176 

variables have either been previously associated with variation in Lyme disease incidence, tick 177 

range limits or abundance, or, in the case of daily temperature and precipitation variability, are 178 

grounded in physiological relationships between climate and tick life history but have not been 179 

previously tested. In particular, interannual variation in Lyme disease incidence in endemic 180 

regions has been positively associated with lagged average winter temperature (Subak 2003), 181 

average spring precipitation (McCabe and Bunnell 2004), and negatively associated with the 182 

number of hot, dry days in May – July (Burtis et al. 2016). A measure of cumulative annual 183 

temperature (degree days > 0°C) has been associated with I. scapularis population establishment 184 

and abundance (Jones and Kitron 2000, Ogden et al. 2004, 2006, Clow et al. 2017b), and 185 

cumulative annual precipitation has been associated with larval tick abundance (Jones and Kitron 186 

2000). Frequent variation in temperature can decrease tick survival due to the energetic costs of 187 

adapting to changing conditions (Gigon 1985, Herrmann and Gern 2013), thus daily temperature 188 

and precipitation variability were included here to explore whether this effect scaled to affect 189 

transmission risk. Details about how these variables were calculated and further justification for 190 

their biological relevance are listed in Table 1.  191 

For past climate conditions, we obtained daily, county-level average temperature and 192 

total precipitation data from the National Oceanic and Atmospheric Administration (NOAA) 193 

weather stations accessed via the CDC’s Wide-ranging Online Data for Epidemiological 194 

Research (WONDER) database. To estimate future climate variables, we used NASA Goddard 195 

Institute for Space Studies CMIP5 data on modeled temperature and precipitation (Schmidt et al. 196 

2014). Specifically, we obtained estimates of daily near-surface air temperature and precipitation 197 

through 2100 under the upper climate change scenario (RCP8.5) and a moderate climate change 198 

scenario (RCP4.5) (van Vuuren et al. 2011, Taylor et al. 2012). These climate scenarios are 199 
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relatively similar in the radiative forcing levels assumed through 2050 but diverge substantially 200 

in the latter half of the century. Climate estimates from these two scenarios are provided at a 2° x 201 

2.5° resolution; values were then ascribed to counties based on county latitude and longitude (see 202 

Figure S1). Mean values for hindcasted and projected climate variables for each region are listed 203 

in Table S1.  204 

 205 

Awareness data 206 

We controlled for variation in public awareness of ticks and Lyme disease using data from 207 

Google trends on the frequency of “ticks” as a search term. We obtained data on “ticks” search 208 

frequency, normalized for a given location and year, for 2004 (the first year the data were 209 

available) to 2017. We also initially used “tick bite”, and “Lyme disease” as search terms, but 210 

found that these generated nearly identical coefficient estimates, thus we proceeded to use only 211 

the “ticks” search term as a predictor. Search frequency data were aggregated at the designated 212 

market area (DMA), the smallest spatial scale available. Search frequency values for a given 213 

DMA, which contained an average of 14 counties, were applied equally to all counties therein. 214 

We used a 1-year lagged version of the tick search variable, as awareness of tick-borne disease is 215 

likely endogenous to incidence (i.e., higher Lyme disease incidence likely contributes to higher 216 

tick search frequency and awareness) and using predetermined values reduces endogeneity 217 

concerns (Bascle 2008).  218 

 219 

Health-seeking behavior data 220 

We explicitly controlled for variation in health-seeking behavior, previously posited as a driver 221 

of Lyme disease reporting (Armstrong et al. 2001, Wilking and Stark 2014) by including health 222 

insurance coverage and poverty as potential predictors. Given the logistical and financial 223 

challenges in obtaining a Lyme disease diagnosis and treatment (Johnson et al. 2011, Adrion et 224 

al. 2015), access to health care services may play a role in whether a Lyme disease case is 225 

identified and reported. We obtained data on health insurance coverage, defined as the percent of 226 

county residents with any form of health insurance coverage in a given year, for 2005 to 2017 227 

from USCB’s Small Area Health Insurance Estimates (SAHIE) program. We obtained data on 228 

poverty, defined as the percent of county residents living in poverty in a given year, for 2000 to 229 

2017 from the USCB. 230 
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 231 

Land cover data 232 

We included two land cover variables putatively associated with higher tick-borne disease risk: 233 

the percent forest in a given county and year, and the percent mixed development (Brownstein et 234 

al. 2005b, Dister and Fish 1997, Frank et al. 1998, Glass et al. 1995, Killilea et al. 2008, 235 

MacDonald et al. 2019a). We calculated these variables using 30-m resolution land cover data 236 

from the US Geological Survey (USGS) National Land Cover Database (NLCD) (Yang et al. 237 

2018). Percent forest included any deciduous, evergreen, or mixed forest. Mixed development 238 

was defined as areas with a mixture of constructed materials and vegetation, including lawn 239 

grasses, parks, golf courses, and vegetation planted in developed settings. We calculated county-240 

level values of these land cover variables for 2001, 2004, 2006, 2008, 2011, 2013, and 2016 as 241 

these are the only years the NLCD dataset is currently available. 242 

To estimate future land cover variables, we used land cover projections generated by the 243 

USGS Earth Resources Observation and Science Center (EROS) using the IPCC Special Report 244 

on Emissions Scenarios (SRES) (Sohl et al. 2014). Although newer socioeconomic pathways 245 

have recently been developed (i.e., the “Shared Socioeconomic Pathways”), these scenarios have 246 

not yet been incorporated into US land cover projections (Sohl 2019). We used modeled land 247 

cover data under SRES B1, which reflects lower urban development, to align with the moderate 248 

climate change scenario (RCP4.5), and SRES A1B, which reflects higher urban development and 249 

conversion of natural lands, to align with the upper climate change scenario (RCP8.5) 250 

(Nakicenovic et al. 2000, Rogelj et al. 2012, Sohl et al. 2014). Using these data, we again 251 

calculated annual, county-level values of percent forest cover and mixed development for 2040 – 252 

2050 and 2090 – 2100. However, as the ‘mixed development’ land cover class was not included 253 

in the projected data, we instead used the ‘mechanically disturbed’ public or private land cover 254 

class (see Supporting Information). 255 

 256 

Regional divisions 257 

Given the large variation in climatic conditions across the US, as well as variation in ecological 258 

dynamics of tick-borne diseases such as tick species identity, tick densities, tick questing 259 

behavior, and host community composition (Eisen et al. 2016, Kilpatrick et al. 2017, Ostfeld 260 

1997, Salkeld and Lane 2010), we examined regional differences in climate-disease 261 
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relationships. We used the US Fish & Wildlife Service regional boundaries to divide the US into 262 

the following seven regions for analysis: Northeast, Midwest, Mountain Prairie, Pacific, Pacific 263 

Southwest, Southwest, and Southeast (Figure 1). These regional divisions were selected as they 264 

roughly correspond to genetic structuring of I. scapularis and I. pacificus (Kain et al. 1997, 1999, 265 

Humphrey et al. 2010) and are likely distinct in environmental conditions and resources (Ricketts 266 

et al. 1999, Smith et al. 2018). These regional divisions are also similar to the nine ‘climatically 267 

consistent’ regions within the contiguous US identified by NOAA (Karl and Kloss 1984) but 268 

preserve larger regions in the South and Midwest to obtain higher power in the analysis. Further, 269 

each region contains only one vector species: I. scapularis in the Northeast, Midwest, Southeast, 270 

and Southwest, and I. pacificus in the Pacific and Pacific Southwest (Dennis et al. 1998). As 271 

neither species has an established presence in the Mountain Prairie, this region was removed 272 

from the analysis. Regional descriptions, including the population size (as of 2017), the number 273 

of counties, and the average climate conditions, are provided in Table S2.  274 

 275 

Statistical analysis 276 

We used a least squares dummy variable (termed “fixed-effects” in econometrics) regression 277 

approach to estimate changes in Lyme disease incidence using repeated observations of the same 278 

groups (counties) from 2000 – 2017 (Larsen et al. 2019). This class of statistical approaches has 279 

been developed to isolate potential causal relationships in the absence of randomized 280 

experiments where such experiments are not feasible (Larsen et al. 2019, MacDonald and 281 

Mordecai 2019). We included ‘county’ and ‘year’ dummy variables to control for any 282 

unobserved heterogeneity that may influence reported Lyme disease incidence in a particular 283 

county across all years (e.g., geographic features, number of health care providers), or influence 284 

Lyme disease in all counties in a given year (e.g., changes in disease case definition), 285 

respectively. All counties (n = 2,232) for which there were complete data on Lyme disease cases, 286 

climate, and other predictors were included.  287 

To account for regional variation in the predictors of tick-borne disease incidence 288 

(Wimberly et al. 2008, Raghavan et al. 2014), we ran separate models for each US region (see 289 

Methods: Regional divisions). We used stepwise variable selection, in which variables were 290 

added if they reduced model Akaike information criterion (AIC) by two or more, to identify the 291 

climate, land cover, and non-ecological predictors that best explained Lyme disease incidence in 292 
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each region (Yamashita et al. 2007, Zhang 2016). We assessed the multicollinearity of these 293 

models by calculating the variance inflation factor (VIF). No predictors had VIF values greater 294 

than 10 after the stepwise variable selection procedure, thus we did not remove any variables 295 

from the final models due to high collinearity (Hair et al. 2014). 296 

We accounted for spatial and temporal autocorrelation of model errors by using cluster-297 

robust standard errors. This nonparametric approach accounts for arbitrary forms of 298 

autocorrelation within a defined “cluster” to avoid misleadingly small standard errors and test 299 

statistics (Cameron and Miller 2015). We specified clusters as US Agricultural Statistics 300 

Districts (ASDs), which contain on average 9.9 ± 5.2 counties. These districts contain contiguous 301 

counties grouped by similarities in soil type, terrain, and climate such that each district is more 302 

homogenous with respect to these characteristics than the state as a whole (USDA 2018). 303 

Accounting for spatial and temporal correlation in this way may help to account for ecological 304 

similarities between neighboring counties not captured in the climate and land cover predictors. 305 

Along these lines, ASDs have previously been used to account for spatial autocorrelation when 306 

investigating relationships between forest fragmentation and Lyme disease incidence at the 307 

county-level (MacDonald et al. 2019a). When reporting on the significance of a predictor, we 308 

use standard errors and p-values calculated using this correction. To ensure our results were 309 

robust to cluster specification, we repeated the model runs using county as the cluster unit (Table 310 

S3). All analyses were conducted in R version 3.6 (R Core Team 2017) 311 

To capture any nonlinear relationships between climate predictors and Lyme disease 312 

incidence, we generated models using linear and quadratic versions of the climate variables as 313 

potential predictors. Specifically, we used the stepwise variable selection approach starting with 314 

linear and quadratic versions of each climate variable to determine the best fit model for each 315 

region. We compare model accuracy and the output of these models to those using only linear 316 

versions of climate predictors to assess the sensitivity of our results to the functional form of 317 

climate-disease relationships (see Methods: Model validation). 318 

  319 

Lyme disease projections 320 

We projected Lyme disease incidence using the climate and land cover variables included in the 321 

best fit model for each region as well as a county dummy variable. Tick search frequency, 322 

poverty, and health insurance coverage were not included because annual, county-level 323 
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projections for these variables are unavailable. Using these models, we obtained regional 324 

estimates for Lyme disease incidence under the upper and moderate climate change scenarios 325 

(RCP8.5 and RCP4.5) for 2040 – 2050 and 2090 – 2100. We calculated county-level changes in 326 

Lyme disease incidence by subtracting modeled incidence for 2010 – 2020 from projected 327 

incidence. Using modeled incidence for 2010 – 2020, rather than true case data for the years it 328 

was available, allowed for more direct comparisons between prior and projected cases because 329 

these estimates were made using the same climate and land cover data.  330 

We converted projected Lyme disease incidence to cases under two differing assumptions 331 

about county population sizes. In the first calculation, we account for projected population 332 

growth by using county-level population projections under the Shared Socioeconomic Pathway 333 

“Middle of the Road” scenario (SSP2) as generated by Hauer 2019 (Samir and Lutz 2017). In the 334 

second, we assume that county population sizes remained the same as those in 2017, the last year 335 

of available county-level Lyme disease case reports. We focus our results and discussion on the 336 

projections made using population size projections, but compare results from these two 337 

approaches to ensure that changes in projected Lyme disease case counts resulted from predicted 338 

changes in incidence rather than projected population growth or decline. We report point 339 

estimates and 95% prediction intervals when discussing projected changes in Lyme disease case 340 

counts. 341 

 342 

Model validation 343 

To evaluate predictive model accuracy, we compared hindcasted Lyme disease incidence under 344 

both emissions scenarios to observed values for 2008 – 2017 (Judge et al. 1985, Clark et al. 345 

2001). We compared model accuracy under varying model specifications to check the robustness 346 

of the climate-disease relationships. In the first specification, each regional model contained the 347 

predictors (climate, land cover, and non-ecological variables) determined through variable 348 

selection (see Methods: Statistical analysis) as well as county and year dummy variables. In the 349 

second specification, each regional model contained the same predictors as in the first 350 

specification, but only linear versions of the climate predictors were included. This is to assess 351 

the sensitivity of our results to the functional form of climate-disease relationships. Under the 352 

third specification, regional models contained the same climate and non-climate predictors as in 353 

the first specification but no dummy variables. Under the fourth specification, regional models 354 
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contained all possible climate and non-climate variables, and the county and year dummy 355 

variables. Using each of these specifications, we created models of Lyme disease incidence on a 356 

training dataset containing a randomly selected 75% subset of counties and years and used the 357 

withheld 25% of observations for validation (Hijmans 2012, Caldwell et al. 2016). To evaluate 358 

the performance of each model specification, we calculated the root-mean-square error (RMSE) 359 

and correlation coefficient between projected and observed Lyme disease incidence for a given 360 

county and year between 2008 – 2017 (the years with complete data for all predictors) for each 361 

regional model. We also compared estimated average annual incidence to observed average 362 

annual incidence for each model specification and each region. We used the modeled climate and 363 

land cover data when hindcasting as these datasets were used for Lyme disease projections. 364 

 365 

Results 366 

Climate and Lyme disease incidence 367 

At least one climate variable was included in the best fit model of Lyme disease incidence for all 368 

US regions with vector species present (Table 2). However, the specific climate variable(s) 369 

included in the model varied between regions and were often not significant predictors of 370 

incidence. As hypothesized, cumulative temperature was a significant, positive predictor in the 371 

Northeast, while the number of hot, dry days in May - July was a significant, negative predictor 372 

in this region (Table 2). Hot, dry days was also a significant, negative predictor in the Midwest. 373 

In the Southeast, daily temperature variability was a significant, positive predictor of incidence. 374 

In all other regions, the temperature and/or precipitation variables included in the best fit models 375 

were not statistically significant predictors. Further, for all regions, the climate predictors 376 

explained relatively little of the variation in Lyme disease incidence compared to the county 377 

dummy variables (Table 2). In many cases, quadratic versions of climate predictors were 378 

included in the best fit model for a particular region, indicating nonlinearity in climate-disease 379 

relationships (Table 2). For example, the number of hot, dry days, total annual precipitation, and 380 

temperature variability were all nonlinear predictors in the best fit model for the Northeast.  381 

 382 

Non-climate predictors and Lyme disease incidence 383 

For all regions, the best fit model of Lyme disease incidence included the 1-year lagged tick 384 

search frequency as well one health-seeking predictor and/or a land cover variable (Table 2). 385 
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Lagged tick search frequency was a significant, positive predictor in the Northeast, and had 386 

regionally variable, and non-significant effects in other regions. Poverty was negatively 387 

associated with Lyme disease incidence in the Northeast, and positively associated with 388 

incidence in the Midwest and Southwest, but was not a significant predictor in any of these 389 

models. Health insurance coverage was a non-significant, negative predictor of Lyme disease in 390 

the Southeast. Forest cover was included in all regional models except the Southwest, but had 391 

regionally variable effects and was only a significant predictor in the Pacific. Mixed 392 

development cover was a positive predictor in the Southeast and Southwest, but only significant 393 

in the Southeast. The above non-climate predictors were included in each regional model of 394 

incidence along with county and year dummy variables. The majority of the variation in 395 

incidence for each region was explained by the county dummy variable (Table 2), indicating that 396 

there was a great deal of unobserved county-level heterogeneity driving Lyme disease incidence 397 

that was captured by the dummy variables. However, the estimated effect sizes of the predictors 398 

are the marginal effects of deviations from county- and year-means, meaning the total effect of a 399 

given variable, such as forest cover, may be larger if much of the variation is captured by the 400 

county fixed effects. 401 

 402 

Model Validation 403 

Under the main model specification, hindcasted Lyme disease incidence matched the observed 404 

values with reasonable accuracy in the high incidence regions (Table 3 and Figure S1). In the 405 

Northeast and Midwest, the correlations between estimated Lyme disease incidence for a given 406 

county and year and the observed incidence were 0.85 and 0.90, respectively. Model accuracy 407 

was lower in the Pacific, Pacific Southwest, Southwest, and Southeast, where incidence is much 408 

lower (r = 0.40, 0.26, 0.07, 0.32, respectively). However, the estimated annual average Lyme 409 

disease incidence (i.e., average incidence for a given region between 2008 – 2017) closely 410 

matched the observed annual average for all regions (Table 3). For each region, the estimated 411 

incidence was within 13% of the observed incidence, and was within 5% for the Northeast 412 

specifically.  413 

Model accuracy also varied across the four model specifications (Table 3). In particular, 414 

model specifications with dummy variables outperformed (i.e., lower RMSE, higher correlation 415 

coefficients) those without. Models including only linear versions of climate predictors (i.e., 416 
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model specification two) along with non-climate and dummy variables performed similarly to 417 

the main model specification but with slightly lower correlation coefficients and higher RMSE in 418 

the Northeast and Midwest, where the majority of cases occur. Coefficient estimates and Lyme 419 

disease projections using this model specification are shown in Tables S4 and S5. Models 420 

including all potential climate and non-climate predictors along with dummy variables had 421 

similar accuracy to the main model specification and model specification two (Table 3). The 422 

simpler, variable selection-based model specification using nonlinear climate predictors where 423 

selected was thus used for the remaining analysis to minimize overfitting and decrease 424 

transferability concerns (Allen and Fildes 2001, Wenger et al. 2011, Wenger and Olden 2012), 425 

and to achieve the greatest accuracy in high Lyme disease incidence regions.  426 

 427 

Projected Lyme disease incidence 428 

Under the upper climate change scenario (RCP8.5), the number of Lyme disease cases in the 429 

Northeast is projected to increase by 23,619 ± 21,607 by 2040 – 2050 and 61,776 ± 27,578 by 430 

2090 – 2100 (Figures 2 and 3, Table 4). Non-significant decreases in the Midwest and increases 431 

in the Southeast were also projected under this scenario, and minimal, non-significant changes 432 

were projected for other regions (Table 4). By contrast, under the moderate climate change 433 

scenario (RCP4.5), no regions were projected to significantly increase or decrease. Non-434 

significant increases in the Midwest, and non-significant increases or decreases, depending on 435 

the decade, were projected for the Northeast, with minimal changes elsewhere. Given the 436 

regionally variable projections and the large prediction intervals around all point estimates, total 437 

US Lyme disease incidence is not projected to change significantly under either climate scenario 438 

by 2040 – 2050 or 2090 – 2100 (Table 4). These results indicate that future changes in US Lyme 439 

disease burden are highly uncertain, vary strongly by region, and will depend on the degree of 440 

future climate change. 441 

These Lyme disease projections were qualitatively similar to those generated using only 442 

linear versions of the climate variables (Table S5). Under this model specification (model 443 

specification two, see Methods: Model validation), the number of Lyme disease cases in the 444 

Northeast is projected to increase under the upper climate change scenario (21,467 ± 21,354 by 445 

2040 – 2050 and 42,538 ± 24,129 by 2090 – 2100), but not under the moderate climate scenario. 446 

Non-significant decreases and increases in the Midwest were projected for the upper and 447 
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moderate climate scenario, respectively, and non-significant changes in the US as a whole were 448 

projected under both scenarios and time periods. These results are all consistent with those 449 

generated under the main model specification, indicating that our projections are generally robust 450 

to the functional form of climate-disease relationships specified in the model. The one qualitative 451 

difference in results is the significant increase in cases in the Southeast under the upper climate 452 

change scenario (1,522 ± 1,213 by 2040 – 2050 and 3,460 ± 1,736 by 2090 – 2100) under model 453 

specification two, which was marginally non-significant under the main model specification.  454 

Lyme disease case projections made using county-level population size projections were 455 

similar to those using constant (i.e., 2017) population sizes. In particular, large but uncertain 456 

increases in Lyme diseases cases were still projected for the Northeast under the upper climate 457 

change scenario (18,885 ± 19,509 by 2040 – 2050 and 40,320 ± 21,886 by 2090 – 2100) when 458 

assuming constant population sizes. This indicates that our results are generally robust to 459 

population size assumptions and are not solely driven by projected changes in human 460 

demography. However, because population growth is projected for the Northeast (Hauer et al. 461 

2019; Table S7), projections made assuming constant population sizes are smaller (but not 462 

significantly) than those using projected population sizes.  463 

 464 

Discussion 465 

Given the increasing rate of vector-borne disease emergence and re-emergence in recent decades, 466 

including Zika in Central and South America and tick-borne encephalitis in Europe, identifying 467 

the environmental drivers of vector-borne disease transmission has been a major research theme 468 

(Rogers and Randolph 2006, Kilpatrick and Randolph 2012, Lafferty and Mordecai 2016, Swei 469 

et al. 2019). Extensive prior research indicates that temperature and moisture conditions can 470 

impact vector life cycles, activity patterns, abundance, and range limits (reviewed in Ogden and 471 

Lindsay 2016). Yet despite clear relationships between specific features of climate and aspects of 472 

vector life cycles and biology, identifying how these relationships translate to affect disease 473 

incidence has remained challenging. Here we use 18 years of disease and climate data in a panel 474 

data statistical modeling approach to identify the impacts of climate change on human Lyme 475 

disease incidence across biogeographically distinct US regions. We find that climate was a 476 

predictor of interannual variation in Lyme disease incidence in all US regions with established 477 
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vector species (Northeast, Midwest, Pacific, Pacific Southwest, Southwest, and Southeast), even 478 

after controlling for potentially confounding factors and spurious relationships spatially and 479 

temporally. However, the specific climate variable(s) that best predicted burdens varied between 480 

regions and had highly variable effect sizes and often nonlinear relationships with incidence. 481 

While these results underscore the complexity of climate-Lyme disease relationships, the specific 482 

associations observed here tended to reflect known relationships between climate and the life 483 

histories of the US vectors of Lyme disease, I. scapularis and I. pacificus.   484 

 The strongest climate-disease association detected was between warming annual 485 

temperatures and increasing Lyme disease incidence in the Northeast. Previous studies have 486 

found that warming year-round temperatures at high latitudes contribute to more rapid tick 487 

development rates, increased survival, and I. scapularis range expansion (Clow et al. 2017a, 488 

Leighton et al. 2012, Lindsay et al. 1995, Ogden et al. 2004, Rand et al. 2004). This suggests 489 

warmer temperatures near the ticks’ northern range limit would promote Lyme disease 490 

transmission – an expectation empirically supported in this study. We also found a significant 491 

negative association between hot, dry conditions during the nymphal questing period (May – 492 

July) and incidence in the Northeast and Midwest. Prior studies indicate that desiccating 493 

conditions reduce tick questing activity, which can lead to decreased contact rates with larger 494 

vertebrate hosts, including humans (Randolph and Storey 1999, Prusinski et al. 2006, Sonenshine 495 

and Roe 2013). Further, Burtis et al. 2016 found the number of hot, dry days during this period 496 

was significantly negatively associated with I. scapularis questing density as well as Lyme 497 

disease incidence in the Hudson Valley, Southern New England, and northern New Jersey. Our 498 

work thus provides evidence that these prior relationships between desiccating conditions and 499 

tick questing behavior scale to incidence across the Northeast and Midwest. That this 500 

relationship was not observed or significant in the Southeast or Southwest is also consistent with 501 

prior evidence of differing questing behavior in northern and southern I. scapularis nymphs. 502 

Northern I. scapularis nymphs are much more likely to quest above the leaf litter, while southern 503 

I. scapularis nymphs primarily use habitats below the vegetative surface (Arsnoe et al. 2015). As 504 

this different questing behavior buffers southern I. scapularis from desiccating conditions, 505 

variation in the number of hot, dry days is less likely to impact tick-host contact rates and disease 506 

transmission here. Similar differences in questing behavior have been demonstrated between 507 

northern and southern population of I. pacificus (Lane et al. 2013, MacDonald and Briggs 2016), 508 
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but we find no significant relationship between hot, dry days and incidence in the Pacific, 509 

potentially because low Lyme disease incidence in this region reduces the power to detect effects 510 

of variation in climate on incidence. Although we did find the expected negative relationship 511 

between hot, dry days and incidence in the Northeast and Midwest, we did not detect the 512 

hypothesized positive relationship between spring precipitation and Lyme disease incidence in 513 

any region. We did find a positive association in the Northeast and Pacific Southwest, but the 514 

association was not significant, and it was negative (but non-significant) in the Midwest and 515 

Southwest. This may be due to counteracting effects of precipitation on human behavior leading 516 

to reduced tick-human contact rates (Jaenson et al. 2012), independent of effects of precipitation 517 

on tick host-seeking suitability.  518 

The associations between climate conditions and Lyme disease incidence found here 519 

were detected while rigorously controlling for non-climate predictors of disease as well as 520 

unobserved predictors that covary with climate at the county and year levels. In particular, we 521 

explicitly controlled for variation in human awareness of ticks, land use and land cover 522 

characteristics, proxies for health-seeking behavior, and other unobserved heterogeneity between 523 

US counties and years in our modeling approach. Increasing tick awareness, as determined by 524 

the frequency of tick-related Google searches, was generally positively associated with Lyme 525 

disease incidence, while land cover and health-seeking behavior predictors had regionally 526 

variable relationships. By controlling for these effects, we provide strong evidence that the 527 

positive association between warming temperatures and Lyme disease incidence in the Northeast 528 

found in this study is not simply driven by increasing human awareness of tick-borne disease, 529 

temporal trends, or other concurrent changes as has been previously suggested (Morshed et al. 530 

2006, Randolph 2010, Scott and Scott 2018). Further, the total effects of climate and land use 531 

predictors may be larger than those estimated here, because these ecological predictors may 532 

underlie some of the variation included in the county and year dummy variables.  533 

While our statistical models included both climate and non-climate predictors of Lyme 534 

disease incidence, model accuracy varied widely between regions. Most notably, model accuracy 535 

was substantially greater for endemic regions (Northeast and Midwest), compared to low 536 

incidence (non-endemic) regions (Pacific, Pacific Southwest, Southwest, and Southeast) 537 

(Ciesielski et al. 1988). The relatively poor predictive accuracy in non-endemic regions could be 538 

due to higher misdiagnosis rates and/or higher travel-associated Lyme disease transmission 539 
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(Eldin and Parola 2018, Parola and Paddock 2018) decoupling the relationship between local 540 

conditions and disease. However, evidence suggests that most Lyme disease transmission occurs 541 

in the peri-domestic environment, in which the county of transmission and reporting are likely to 542 

be the same (Falco and Fish 1988, Maupin et al. 1991, Jackson et al. 2006, Connally et al. 2009). 543 

The lower predictive accuracy in these regions more likely reflects a lack of sufficient annual 544 

variation in Lyme disease incidence needed to detect effects of climate in these regions above 545 

and beyond the county and year fixed effects, and/or weaker effects of climate conditions on 546 

Lyme disease transmission relative to confounding drivers not included in our model such as 547 

host movement and community composition. In contrast, the largest effect of climate on disease 548 

transmission is expected at the edges of the climate suitability for transmission (Githeko et al. 549 

2000). As portions of the Northeast and Midwest are near the I. scapularis northern range limit, 550 

the higher model accuracy here likely indicates stronger climate – Lyme disease relationships. 551 

Supporting this assertion, the climate predictors explained a relatively larger proportion of the 552 

variation in incidence in these regions. 553 

Our Lyme disease projections, made using regionally-specific incidence models and 554 

projected climate and land cover data, suggest that climate change may lead to substantial 555 

increases in incidence in coming decades, but that these increases are largely concentrated in the 556 

Northeast, are highly uncertain, and depend upon the magnitude of climate change. In particular, 557 

under the upper climate change scenario (RCP8.5), Lyme disease cases in the Northeast are 558 

projected to increase by 23,619 ± 21,607 by 2040 – 2050 and 61,776 ± 27,578 by 2090 – 2100 559 

(Table 4). However, increases are not projected in the Northeast under the moderate climate 560 

change scenario (RCP4.5), nor for any other region under either scenario. Large increases in the 561 

Midwest under less severe warming are possible, as are large increases in total US cases under 562 

more severe warming, but these projections are non-significant. While the significant increase in 563 

Lyme disease cases projected for the Northeast under RCP8.5 was robust to alternative model 564 

specifications and assumptions about county-level population growth, the large prediction 565 

intervals around our point estimates for this region and all others indicate a wide range of 566 

potential disease outcomes under climate change.  567 

These results indicate that climate change will likely contribute to increasing Lyme 568 

disease incidence in the Northeast, but the specific numerical projections should be interpreted 569 

with caution. While significant increases were projected in the Northeast, many other factors 570 
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contribute to Lyme disease transmission including host movement and community composition, 571 

and human avoidance behaviors (Ostfeld 1997, Brownstein et al. 2005b, Ogden et al. 2008, 572 

Brinkerhoff et al. 2011, Larsen et al. 2014, Berry et al. 2018, MacDonald et al. 2019a). 573 

Accordingly, we found that unobserved county-level heterogeneity, which would encompass 574 

these factors, was a predominant driver of incidence in each of our regional models. Thus, while 575 

climate may contribute to increasing Lyme disease incidence in northern regions, it may not be 576 

the dominant driver of future changes in Lyme disease. Further, while we examined the effects 577 

of two potential climate scenarios, uncertainty in these climate change projections was not 578 

incorporated into our predictive models and would contribute additional uncertainty in Lyme 579 

disease projections. Lastly, the projection models extrapolate from climate and disease 580 

relationships observed in the previous 18 years, assuming that these relationships can be 581 

extended to climate conditions not yet experienced. That is, we assume that the relationship 582 

between cumulative temperature, for example, and Lyme disease incidence in a given region will 583 

remain the same even as cumulative temperatures exceed prior values. This could generate 584 

inaccurate projections for regions near current tick upper thermal limits such as the Southeast 585 

and Southwest as further warming and drought here may reduce tick survival and host-seeking 586 

suitability (Vail and Smith 1998, Randolph and Storey 1999, Schulze et al. 2001, Berger et al. 587 

2014, MacDonald et al. 2020). Generating more accurate projections for these regions would 588 

require experiments investigating effects of future temperatures on aspects of tick-borne disease 589 

transmission. 590 

Despite these limitations and the large uncertainty in our Lyme disease projections, our 591 

results are consistent with a growing body of evidence linking increased Lyme disease risk with 592 

climate warming (Brownstein et al. 2005a, Burtis et al. 2016, Clow et al. 2017b, Dumic and 593 

Severnini 2018, Kilpatrick et al. 2017, Leighton et al. 2012, Ogden et al. 2008,2014b, Robinson 594 

et al. 2015, Subak 2003, Tuite et al. 2013). Specifically, our finding of climate change-induced 595 

increases in Lyme disease burden at higher latitudes, is consistent with prior studies projecting or 596 

observing increasing I. scapularis habitat suitability and range expansion under climate warming 597 

(Ogden et al. 2008, 2014a, McPherson et al. 2017). Similar range expansions have also been 598 

projected and observed for Ixodes ricinus, the European Lyme disease vector, under climate 599 

warming (Gray et al. 2009, Jaenson and Lindgren 2011, Lindgren et al. 2000, Porretta et al. 600 

2013). Further, our finding that the projected changes in incidence depend on the degree of 601 
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future warming is also consistent with prior work. I. scapularis range expansion and population 602 

growth, and the proportion of Eastern Canadians at risk for Lyme disease, are projected to be 603 

higher under upper climate change scenarios than under mitigation scenarios (Leighton et al. 604 

2012, McPherson et al. 2017). These results suggest that vector range expansions and future 605 

Lyme disease burdens depend in part on climate policy actions.  606 

More generally, our results are consistent with expectations from vector thermal biology 607 

that suggest that warming temperatures generally increase transmission near the cold edge of a 608 

vector’s range limit, but may decrease or have variable effects elsewhere (Martens et al. 1995, 609 

Ogden and Lindsay 2016, Lafferty and Mordecai 2016, Mordecai et al. 2019). For tick-borne 610 

diseases, as for other vector-borne diseases, multiple temperature-sensitive traits combine to 611 

influence transmission, including survival, development rates, and host-seeking (Randolph et al. 612 

2002, Ogden et al. 2004, Randolph 2004, Ogden and Lindsay 2016, Ogden 2017). Nonlinear 613 

effects of temperature on these traits typically leads to vector-borne disease transmission peaking 614 

at intermediate temperatures and declining as temperatures approach lower and upper thermal 615 

limits (Mordecai et al. 2019). This suggests that climate warming would most strongly increase 616 

transmission near the lower thermal limits, such as in the Northeast, as was observed here. This 617 

further suggests the effects of climate warming would differ in magnitude and direction 618 

depending on the extent of warming, as seen in the Midwest region where non-significant 619 

increases were projected under the moderate climate change scenario while decreases were 620 

projected under the upper scenario. The theoretical expectations of nonlinear thermal responses 621 

therefore help to explain some of the context-dependent effects of temperature found empirically 622 

in this study. 623 

 624 

Conclusions  625 

We demonstrate that interannual variation in Lyme disease incidence is associated with climate 626 

in all US regions with established vector species, independent of other drivers of disease risk and 627 

excluding potentially spurious relationships with county- and year-specific variation. The 628 

specific climate variable(s) associated with incidence and their effect sizes varied by region, but 629 

the strongest climate-disease association observed was between warming temperatures and 630 

increasing incidence in the Northeast. However, in all regions, climate explained less variation in 631 

incidence than unobserved county-specific heterogeneity, highlighting that climate is one of 632 
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many factors influencing Lyme disease transmission. We project that future climate change 633 

could substantially increase Lyme disease burden in the Northeast in coming decades under an 634 

upper climate change scenario. Cases in the Northeast were not projected to increase under a 635 

moderate climate change scenario, highlighting the potential for climate change mitigation to 636 

protect human health by preventing further increases in Lyme disease incidence. However, the 637 

projected effects in this region and all others are highly uncertain, indicating a wide range of 638 

potential disease outcomes under climate change. Our projections provide an essential first step 639 

in determining broad patterns of Lyme disease risk under climate change, but ongoing 640 

surveillance efforts and mechanistic studies linking changes in vector ecology under climate 641 

change to human disease incidence should be conducted to refine these risk assessments.  642 

  643 
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Tables 1037 
 1038 
Table 1. Climate variables considered for models of disease incidence by region, along with 1039 
descriptions and justification of their relevance to disease transmission. 1040 
 1041 

Climate 
Variable Description Biological Relevance 

Lagged winter 
temperature 

Average monthly temperatures 
for Dec - Feb 1.5 years prior. 
Identified by Subak 2003 as 
significantly positively 
correlated with Lyme disease 
incidence in highly endemic 
areas. 

Colder winter temperatures are associated 
with reduced host-seeking abilities of the 
adult tick (Duffy and Campbell 1994, Clark 
1995, Carroll and Kramer 2003) and reduced 
abundance of the white-footed mouse, a 
highly competent reservoir host (Wolff 
1996). 

Spring 
precipitation 

Average precipitation in May 
and June. Identified by McCabe 
and Bunnell 2004 as 
significantly positively 
correlated with Lyme disease 
incidence in highly endemic 
areas.  

Greater precipitation during the late spring 
and early summer increases the moisture of 
the leaf litter, providing conditions which 
promote the survival and questing activity of 
the nymphal life stage (Knülle and Rudolph 
1982, Berger et al. 2014). 

Hot, dry days 

The number of days with 
temperature > 25°C and 
precipitation = 0 during May – 
July (or May – June for 
counties with Ixodes pacificus). 
Identified by Burtis et al. 2016 
as significantly negatively 
correlated with Lyme disease 
incidence in highly endemic 
areas.  

Hot, dry conditions are associated with 
decreased questing activity and questing 
height of ticks (Randolph and Storey 1999, 
Schulze et al. 2001), reducing the likelihood 
of attachment to humans (Arsnoe et al. 
2015). The May - July, and May - June, time 
periods capture the peak nymphal questing 
periods for I. scapularis and I. pacificus, 
respectively (Eisen et al. 2016). 

Cumulative 
average 

temperature 

The sum of average daily 
temperatures (°F) over the 
entire year 

Cumulative temperature appears to control 
most developmental stages of I. scapularis 
(Lindsay et al. 1995, Rand et al. 2004). 
Lower cumulative temperature is associated 
with longer development periods and/or 
higher tick mortality (McEnroe 1977, 
Estrada-Peña 2002, Brownstein et al. 2003, 
Ogden et al. 2004, Leighton et al. 2012). 

Total annual 
precipitation 

The sum of total daily 
precipitation (mm) over the 
entire year 

Greater precipitation increases the moisture 
of the leaf litter, providing conditions which 
favor tick survival and questing activity 
(Knülle and Rudolph 1982, Jones and Kitron 
2000, Berger et al. 2014a). 
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Daily temperature 
variability 

The variance in average daily 
temperatures (°F) over the 
entire year 

Frequent temperature variation can decrease 
tick survival, even beyond that of constant 
cold exposure, due to energetic costs 
associated with adapting to changing 
temperatures (Gigon 1985, Hermann and 
Gern, 2013); however, effects will vary 
based on the average temperature of the 
region. 

Daily 
precipitation 
variability 

The variance in total daily 
precipitation (mm) over the 
entire year 

Both drought and heavy rainfall are 
associated with deceased tick questing 
activity and survival (Randolph 1997, Jones 
and Kitron 2000, Perret et al. 2004). 
Variation in precipitation, as opposed to 
consistent rainfall supplying favorable high 
relative humidity conditions, may thus be 
detrimental for tick survival, but will depend 
on the average precipitation of the region 
and the magnitude of variation. 

 1042 
 1043 
  1044 
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Table 2. Effect of climate and non-climate variables on Lyme disease incidence by region. Only 1045 
variables included in the best fit model, as determined by variable selection, are shown. The 1046 
scaled coefficient estimates (Coef.) shown here reflect the standard deviation change in Lyme 1047 
disease incidence for a one standard deviation change in the climate variable. The coefficients 1048 
are scaled so that the effects of different variables are directly comparable. The standard errors 1049 
(SE) shown are clustered by the agricultural statistics district (see Methods: Statistical analysis). 1050 
Statistically significant (p < 0.05) coefficients are denoted with *.  1051 
 1052 

 
Northeast Midwest Pacific 

Pacific 
Southwest Southwest Southeast 

Variable Coef. SE Coef. SE Coef. SE Coef. SE Coef. SE Coef. SE 
Avg. winter 
temp.   -0.073 0.237 -0.967 1.039 0.119 0.172     

Avg. winter 
temp.! 

  0.381 0.253 1.268 0.894 0.391 0.403     

Avg. spring 
precip. 0.067 0.129 -0.051 0.041   0.089 0.089 -0.998 0.836   

Avg. spring 
precip.! -0.094 0.083           

Hot, dry days -0.302* 0.128 -0.264* 0.099     0.151 0.137 -0.029 0.022 
Hot, dry days	! 0.106 0.062 0.121* 0.055         
Cumulative 
temp. 1.034* 0.468       1.589 1.429 1.928 1.657 

Cumulative 
temp.!         -2.127 1.620 -2.405 1.811 

Total annual 
precip. -0.141 0.283 -0.046 0.176     1.192 0.981   

Total annual 
precip.! 

0.183 0.229 -0.010 0.115         

Temp. 
variability 0.365 0.596     0.112 0.954   0.813* 0.310 

Temp. 
variability	! 

0.131 0.483     0.224 0.488   -0.473* 0.241 

Precip. 
variability   0.040 0.048     -0.220 0.176   

Precip. 
variability	!   0.012 0.019         

Lag 'ticks' 
search 0.168* 0.075 0.016 0.017 0.014 0.036 0.049 0.059 0.020 0.069 -0.016 0.019 

Poverty -0.055 0.087 0.046 0.072     0.210 0.133   
Percent insured           -0.009 0.039 
Forest cover 1.988 1.283 -3.966 3.896 -1.515* 0.763 -0.365 0.513   0.663 0.383 
Mixed dev. 
cover         1.447 1.650 1.441* 0.686 

R! 0.728 0.829 0.405 0.327 0.309 0.330 
Model with only climate and dummy variables 

R! 0.681 0.768 0.230 0.137 0.112 0.146 
Model with only non-climate and dummy variables 

R! 0.712 0.820 0.400 0.308 0.258 0.320 
Model with only county dummy variable 

R! 0.606 0.700 0.156 0.114 0.090 0.149 
Model with only year dummy variable 

R! 0.045 0.018 0.028 0.014 0.007 0.010 
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Table 3. Model validation metrics for four specifications of models of Lyme disease incidence 1053 
(see Methods: Model validation). The model validation metrics shown are the root-mean-square 1054 
error (RMSE) and correlation coefficient (r) for estimated versus observed Lyme disease incidence 1055 
in the testing data sets. The observed and estimated average (± 1 standard deviation) annual Lyme 1056 
disease incidence is also shown for each region and each model specification. Model validation 1057 
was performed using data from 2008 – 2017 (the years with complete data for all predictors).   1058 
 1059 

  Main Model Model Spec. 2 Model Spec. 3 Model Spec. 4 
 Observed 

annual 
incidence 

Est. 
annual 

inc. 
RMSE r 

Est. 
annual 

inc. 
RMSE r 

Est. 
annual 

inc. 
RMSE r 

Est. 
annual 

inc. 
RMSE r 

NE 48.9 ± 
17.4 

51.3 ± 
13.3 38.970 0.853 51.8 ± 

15.6 39.138 0.851 49.4 ± 
9.4 65.419 0.458 51.2 ± 

13.2 38.343 0.858 

MW 14.5 ± 
3.2 

12.7 ± 
2.1 15.709 0.903 12.6 ± 

3.1 15.706 0.902 14.2 ± 
4.0 29.023 0.602 12.7 ± 

2.1 15.49 0.906 

PC 0.8 ± 0.3 0.8 ± 
0.1 1.739 0.402 0.9 ± 

0.3 1.739 0.404 0.9 ± 
0.1 1.777 0.282 0.8 ± 

0.1 1.736 0.423 

PS 0.9 ± 0.6 0.8 ± 
0.4 1.682 0.264 0.8 ± 

0.4 1.682 0.268 0.8 ± 
0.2 1.316 0.321 0.8 ± 

0.4 1.747 0.262 

SW 0.4 ± 0.3 0.4 ± 
0.2 5.169 0.071 0.4 ± 

0.3 5.170 0.070 0.3 ± 
0.2 5.131 0.040 0.4 ± 

0.2 5.157 0.086 

SE 0.5 ± 0.2 0.5 ± 
0.2 1.685 0.323 0.5 ± 

0.2 1.694 0.313 0.5 ± 
0.2 1.725 0.172 0.5 ± 

0.2 1.682 0.326 

  1060 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2020. ; https://doi.org/10.1101/2020.01.31.929380doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.31.929380
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 4. Projected change in the number of Lyme disease cases, relative to hindcasted 2010 – 1061 
2020 levels, for each region under the upper and moderate climate change scenario. Lyme disease 1062 
projections incorporate county-level population size projections under SSP2 for 2050 and 2100 1063 
from Hauer et al. 2019 (see Tables S6 & S7). Point estimates and 95% prediction intervals are 1064 
shown.  1065 
 1066 
 Upper climate change scenario  

(RCP8.5) 
Moderate climate change scenario 

 (RCP4.5) 
 2040 – 2050  2090 – 2100 2040 – 2050  2090 - 2100 

Northeast 23,619 
[2,013, 45,226] 

61,776 
[34,197, 89,354] 

7,415 
[-14,646, 29,476] 

-7,385 
[-36,417, 21,647] 

Midwest -2,470 
[-10,839, 5,899] 

-4,217  
[-13,681, 5,247] 

2,504 
[-5,633, 10,641] 

477 
 [-10,305, 11,529] 

Pacific 48 
[-218, 315] 

104 
[-379, 587] 

17 
[-212, 246] 

113 
[-246, 471] 

Pacific 
Southwest 

-84 
[1,948, 1,780] 

-239 
[-2,490, 2,012] 

-11 
[-1,726, 1,705] 

90 
[-2,012, 2,192] 

Southwest -148 
[-1325, 1,029] 

-608 
[-2,434, 1,217] 

-133 
[-1,301, 1,034] 

-240 
[-1,884, 1,403] 

Southeast 991 
[-236, 2,217] 

1,768 
[-61, 3,597] 

339 
[-865 1,543] 

776  
[-807, 2,339] 

US Total 22,485 
[-8,585, 57,451] 

33,639 
[-9,916, 77,194] 

10,131 
[-24,383, 44,645] 

-6,169 
[-51,671, 39,581] 

 1067 
 1068 
  1069 
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Figure Legends 1070 
 1071 

Figure 1. a) Regional boundaries designated by US Fish & Wildlife Service. These regions were 1072 

used to analyze spatial variation in the effects of climate conditions on disease outcomes. Map 1073 

recreated from: https://www.fws.gov/endangered/regions/index.html. Dashed black lines denote 1074 

the approximate eastern boundary of Ixodes pacificus and western boundary of Ixodes scapularis 1075 

based on distribution maps created by the CDC. b) Regional time series of log Lyme disease 1076 

incidence (the number of cases per 100,000 people in the population) from 2000 – 2017. The 1077 

Mountain Prairie region is not shown here as it was removed from the analysis due to low vector 1078 

presence at the start of the analysis period. 1079 

 1080 

Figure 2. Projected change in Lyme disease cases by region for 2040 – 2050 and 2090 – 2100 1081 

under the a) upper (RCP8.5) and b) moderate (RCP4.5) climate change scenarios. Case changes 1082 

refer to raw case counts rather than incidence and indicate the average change in cases for a 1083 

particular decade relative to hindcasted values for 2010 – 2020. Bars represent 95% prediction 1084 

intervals. Regions are defined in Fig. 1. 1085 

 1086 

Figure 3. Projected change in Lyme disease cases for 2100 shown at the county level under the 1087 

a) upper (RCP8.5) and b) moderate (RCP4.5) climate change scenarios. Case changes refer to 1088 

raw case counts rather than incidence and are relative to hindcasted values for 2010 – 2020. All 1089 

counties within the Mountain Prairie are shown in gray as this region was not included in the 1090 

analysis. Other counties shown in gray (n = 49) containing missing disease, land cover or climate 1091 

data.    1092 
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