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ABSTRACT 21 

Predictive models are becoming more and more commonplace as tools for candidate antigen 22 

discovery to meet the challenges of enabling epitope mapping of cohorts with diverse HLA 23 

properties. Here we build on the concept of using two key parameters, diversity metric of the 24 

HLA profile of individuals within a population and consideration of sequence diversity in the 25 

context of an individual’s CD8 T-cell immune repertoire to assess the HIV proteome for defined 26 

regions of immunogenicity.  Using this approach, Analysis of HLA adaptation and functional 27 

immunogenicity data enabled the identification of regions within the proteome that offer 28 

significant conservation, HLA recognition within a population, low prevalence of HLA 29 

adaptation and demonstrated immunogenicity. We believe this unique and novel approach to 30 

vaccine design that, in combination with in vitro functional assays, offers a bespoke pipeline for 31 

expedited and rational CD8 T-cell vaccine design for HIV and potentially other pathogens with 32 

the potential for both global and local coverage. 33 
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INTRODUCTION 42 

Since the Human Immunodeficiency Virus (HIV) was first identified, 77.3 million people have 43 

become infected of which 35.4 million people subsequently died (Sheet, Day, and People 2018). 44 

Decades of research has enabled a comprehensive understanding of the structure, genetics, 45 

mechanism of infection, immune control and immune escape to emerge, resulting in novel 46 

targets for interventions, both as therapeutic targets and for prophylaxis in the form of a broadly 47 

efficacious vaccine (reviewed (McMichael and Koff 2014)).  48 

The structure of HIV lends itself to the development of vaccines that target the dominant surface 49 

glycoprotein gp120  and lead to the development of broadly neutralizing antibodies (reviewed by 50 

Sok and Burton (Sok and Burton 2018)). Approaches to develop immunization regimes that will 51 

bias the development of this class of antibodies to provide prophylactic protection against HIV 52 

infection are under development with the first products entering clinical assessment (Julg and 53 

Barouch 2019). However, natural control of HIV viral load following the acute viral load burst is 54 

associated with a T-cell mediated response (Altfeld et al. 2006) and this suggests that a vaccine 55 

designed to raise T-cell responses may have efficacy if it is targeted to defined antigenic regions 56 

(Ogishi and Yotsuyanagi 2019) including those with integral networked topology (Gaiha et al. 57 

2019). 58 

There are currently a number of T-cell vaccine candidates that utilize a variety of novel design 59 

approaches being tested in human clinical trials. The HIV Conserved vaccine (HIVCON) utilizes 60 

a conserved mosaic approach whereby regions of the proteome that have been identified as 61 

conserved within available databases are arranged in a specific regimen to both elicit T-cell 62 

responses to potential epitopes present within these regions, whilst limiting immunogenicity to 63 

the necessary joining or junctional regions (Ondondo et al. 2016). A second approach is to 64 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.08.15.250589doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.15.250589


assemble known T-cell epitopes in a mosaic approach, whereby composite proteins are created to 65 

include common T-cells epitopes in a polyvalent design (Baden et al. 2018). A third approach, 66 

HIVACAT T-cell Immunogen, involves the construction a chimeric protein encoding 16 67 

continuous segments of HIV derived from gag, pol, vif and nef (Guardo et al. 2016). There are 68 

pros and cons to all these approaches, but a potential caveat to utilizing conserved regions of the 69 

proteome is that historically pathogen diversity has been measured as the similarity or 70 

dissimilarity of sequences to each other, however a vaccine design should factor in how this 71 

pathogen sequence conservation is viewed by the host immune system. 72 

Development and implementation of predictive models is becoming more commonplace as tools 73 

for candidate antigen discovery (Soria-Guerra et al. 2015).  This is highly relevant for HIV 74 

vaccine discovery where there is a staggering amount of complexity posed by diversity observed 75 

within individuals (Kearney et al. 2009), within and between clades (Li et al. 2015; Taylor et al. 76 

2008) and within populations (Maldarelli et al. 2013) making it a formidable challenge for 77 

rational T-cell vaccine design.  78 

Here we present an in silico approach that complements the vaccine design strategies through the 79 

identification of HLA restricted antigenic regions within diverse HIV sequences  based upon 80 

modelling of HLA restricted responses within individuals and linking these to disease 81 

progression via samples obtained from IAVI Protocol C (Amornkul et al. 2013) . We show that 82 

within a population, although HLA sequences show high levels of polymorphism), there are 83 

conserved, and over represented alleles associated with the >80% of the population covered 84 

within the study. In this study, we propose the use of the artificial neural network, NetMHCpan 85 

(Nielsen et al. 2007; Nielsen and Andreatta 2016) to as a proxy to identify putative CD8 T-cell 86 

epitopes contained within the HIV transmitted founder virus (TFV) identified from the Protocol 87 
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C clinical cohort of sub Saharan and East Africa. Using the transmitted founder virus sequence 88 

for relevant vaccine design is a well-established concept (reviewed here (Joseph et al. 2015)) and 89 

exploiting these predicted peptide/HLA interactions to generate additional novel metrics of HIV 90 

diversity adds another layer of information to facilitate vaccine design. 91 

We believe that the size of the study cohort used in this investigation enables an extrapolation 92 

and scaling of the approach to global populations to enable a rationalized isolation and prediction 93 

of antigenic epitopes for any disease where a T-cell response is dominant in its control. By 94 

further informing vaccine strategies to focus the immune system against particular pathogens, 95 

incorporating potential immune recognition information into established models may increase 96 

the likelihood of success (Hare et al. submitted.).  97 

MATERIALS & METHODS 98 

Cohort characteristics 99 

HLA profiles were evaluated from two IAVI-sponsored clinical cohorts. IAVI Protocol C is a 100 

prospective vaccine preparedness cohort studies of HIV-1 antibody negative heterosexuals or 101 

men who have sex with men in a Uganda Virus Research Institute/Medical Research 102 

Council/Wellcome Trust HIV-1 acquisition cohort study, and in a heterosexual sero-discordant 103 

couple’s cohort study in Rwanda. Subjects were given HIV counseling, condom provision and 104 

regular HIV testing either monthly or quarterly. Those who seroconverted to HIV-1 were 105 

screened for stage of primary HIV-1 infection (Amornkul et al. 2013). IAVI Protocol G was a 106 

cross-sectional cohort of ~2000 HIV positive individuals enrolled at 13 sites around the world in 107 

order to identify circulating broadly neutralizing antibodies (Simek et al. 2009). 108 

Near Full Length Transmitted Founder Genomes 109 
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The selection criteria for inclusion in the generation of near full length transmitted genomes is as 110 

previously described (Baalwa et al. 2013). For this analysis, 125 Near Full length transmitted 111 

Founder genomes were evaluated from across Africa (Table 1).  112 

HLA Distribution 113 

The HLA binding predictor NetMHCpan was used to identify putative epitopes in 125 114 

Transmitted Founder HIV-1 gag sequences derived from a cohort in Zambia (Claiborne et al. 115 

2015). The distance between two sequences was defined as the percent of mismatched amino-116 

acids in each 9mer, summed across all 9mers spanning the entire protein (i.e. a 500 a.a protein 117 

contains 492 x 9mers, each overlapping by 8 aa). This distance is dependent on sequences being 118 

aligned and therefore sequences sometimes contain gaps indicating insertions; this treats each 119 

gap character as an aa. Future analyses could consider computing an alignment-free distance. 120 

Using this metric one can compute the distance for the entire protein or for a subset of the 9mers; 121 

the epitope-based distance included only 9mers in the alignment that were predicted to bind to at 122 

least one HLA allele. Binding was based on a threshold of 500nM, though sensitivity analyses 123 

showed similar results with different thresholds.  124 

Model Implementation 125 

For genes from each HIV virus, all 8-11mer peptides were generated. The binding affinity of 126 

each peptide to the HLA alleles described above was predicted using NetMHCpan4.1.  127 

Binding predictions were read into R and PostgreSQL for analysis. First the strain with the 128 

largest number of unique predicted binders was identified. Next, the strain that, when combined 129 

with the previously selected strains, gave the highest coverage of all predicted peptide binders 130 
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was included. This strain was added to the set of selected strains and the process was repeated 131 

until all strains were included in the set.  132 

For comparison, set-building was performed a second time using randomly selected strains 133 

instead of choosing the strain that resulted in the greatest increase of peptide coverage. 134 

HLA Adaptation Analysis 135 

HLA adaptation analysis was performed as previously described (Mónaco et al. 2016). Briefly, 136 

each of the 319 peptides in the peptide set was aligned to the Zambian consensus sequence 137 

corresponding to the protein they were derived from and to HXB2. HLA adaptation was assessed 138 

using a list of statistically significant viral amino acid-HLA allele associations for Gag, Pol and 139 

Nef, previously described in Carlson et al., 2014, as well as a new list generated for Rev, Tat, Vif 140 

and Vpr based on 295 sequences derived from chronically-infected individuals from Zambia plus 141 

237 subtype C sequences downloaded from LANL (unpublished). A peptide was adapted when 142 

either the residue was positively correlated with the HLA (referred to as adapted), or the residue 143 

was any other residue than the one negatively correlated with that HLA or the consensus 144 

(referred to as non-adapted). 145 

IFN-γ ELISPOT 146 

The predicted peptides were evaluated for ability to induce T-cell responses by IFN-γ ELISPOT 147 

using bi-specific expanded CD8 T-cells as previously described (Michelo et al). Briefly, PBMC 148 

were thawed and cultured in R10 media supplemented with IL-2 (Sigma 50U/mL final 149 

concentration) and the CD3/CD4 bispecific antibody (Genscript) to expand CD8 T-cells. On Day 150 

7 of expansion the CD8 population was assessed by Human IFN-γ 96 well ELISPOT (Mabtech) 151 

as per manufacturer’s instructions. The peptide pools were prepared as an 11x11x11 3D matrix 152 
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with each peptide occurring 3 unique pools with positive responses defined as the mean replicate 153 

count minus the mean background (mock) count where the mock controls must be <50 SFU/106 154 

PBMC and the media only wells <5 SFC/well). 155 

Statistical Analysis 156 

Data analysis was with GraphPad Prism, Python, Numpy and matplotlib. Statistical tests 157 

included Area Under Curve, Mann-Whitney test, PCoA and a Kolmogorov-Smirnov test to 158 

compare the cumulative distribution of the two data sets and computes a P value dependent on 159 

the largest discrepancy between distributions. See dataspace.iavi.org 160 

RESULTS 161 

HLA Distribution within specific Populations 162 

HLA distribution provides an important metric describing population diversity and correlates 163 

with the breadth of viable immune recognition within that population, which is relevant to both 164 

immune protection against pathogens and vaccine design strategies. Within Protocol C, all 165 

participants were screened for HLA composition upon enrollment and Figure 1 reflects the 166 

diversity of HLA alleles within Protocol C (Amornkul et al. 2013) at a 2 field (4 digit) level of 167 

characterization (Marsh and WHO Nomenclature Committee for Factors of the HLA System 168 

2017).This data represents the HLA diversity of 613 participants and the prevalence of the HLA 169 

A, B and C alleles is displayed as the relative percentage of the cohort.  170 

Given the expected diversity of the HLA profile, it was an unexpected observation that >80 of 171 

the HLA diversity of all alleles, are covered by 10 volunteers within the Protocol C cohort, 172 

supplemented with 3 individuals drawn from IAVI Protocol G (Simek et al. 2009)  (Table 2). 173 

Furthermore, only an additional 9 alleles with frequencies >1% but <2% are excluded from this 174 
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cohort (Supplementary Table 1), indicating that even with a reduced cohort size it may still be 175 

possible to capture the diversity of HLA at the sequence level. 176 

This analysis utilized 2-field characterization of HLA alleles, and whilst this enables frequencies 177 

of alleles to be calculated it has several limitations when considering HLA diversity/similarity. A 178 

clear limitation is that the peptide binding profile of two alleles may not be strongly associated 179 

with the similarity of their 2-field allele representation (Sidney et al. 2008). A second method for 180 

characterizing HLA allele diversity involves the assessment of the amino acid sequence of the 181 

MHC protein with a focus on the peptide binding groove (Ngumbela et al. 2008). Building on 182 

this idea, an alternative, advantageous approach to assessment of the diversity of the HLA 183 

frequency may therefore be to use computationally predicted peptide binding of the HLA alleles 184 

based on machine learning algorithms trained on functional binding data as well as the amino 185 

acid sequences of the HLA proteins (Nielsen et al. 2007).  186 

To characterize the associated peptide:HLA diversity of the volunteers listed in Table , an HLA 187 

binding profile was modelled for each allele by predicting the binding affinity for each 9mer 188 

peptide derived from a representative panel of HIV gag amino acid sequences using the 189 

NetMHCpan4.1 binding algorithm (Nielsen and Andreatta 2016). This modelling enables us to 190 

define a binding profile of each HLA allele and each volunteer based on their HLA genotype. 191 

Based on the similarities of their binding profiles we were then able to cluster HLA alleles and/or 192 

volunteers to visualize and reassess HLA diversity. For example, a two-dimensional 193 

representation of HLA diversity in Protocol C can be generated using their pairwise HLA 194 

binding similarities and principal coordinate analysis (PCoA, Figure 2). 195 
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The analysis revealed distinct clusters of predicted HLA binding profiles which suggested that it 196 

was possible to identify a subgroup of Protocol C volunteers that were representative of the 197 

overall cohort HLA diversity.  198 

Figure 3 illustrates that coverage of the optimal peptide sets is influenced by the prevalence of 199 

HLA alleles within the prediction. As cumulative sets of HLA alleles are removed (starting with 200 

the least frequent alleles) there is minimal loss of epitope binding coverage observed until a key 201 

inflection point is reached, leading to a precipitous loss of coverage, concordant with the 202 

frequency of the HLA alleles that are removed. Interestingly, the trend of minimal coverage loss 203 

at a minimal HLA frequency is observed independent of the size of the predicted peptide set with 204 

a comparable pattern observed for libraries of 300, 250, 200 and 150 peptides suggesting that 205 

while the HLA allele binding profile is peptide specific, it may also be independent of the 206 

peptides as long as a sufficient number are used. 207 

Development of a predictive model for HIV diversity 208 

Using NetMHCpan (at a 1% Binding Threshold), predicted 8, 9 and 10mer epitopes were derived 209 

from TFV gag sequences (N=127) obtained from HIV-infected volunteers enrolled in IAVI 210 

Protocol C, and identified in association with the HLA alleles present (listed in Table 1). Initial 211 

model development utilized a 1-select parameter where peptides were considered individually to 212 

determine the best coverage. This resulted in the prediction of 6562 peptides (Error! Reference 213 

source not found.) and no difference in best coverage mapping versus random selection 214 

(p=0.4670) was observed. Subsequent analysis of this model revealed that 4812 (73%) of these 215 

peptides were either unique to an individual gag sequence or present in only two gag sequences. 216 

If only peptides that were present in 3 virus sequences (3-select best) were considered, this led 217 

to the prediction of 1750 peptides (26.7% of the 1-select best model), which was shown to be 218 
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more effective at mapping coverage than randomly selecting peptides (p<0.0001) 219 

(Supplementary Figure 2, Supplementary Table 2). 220 

Further model development evaluated the effect of varying the binding threshold on the 221 

predicted outcomes. The binding threshold is a measurement of confidence that a predicted 222 

peptide will associate with the prescribed HLA, for example a 1% binding threshold factors in a 223 

1% false positive rate. Running the model whilst varying binding thresholds at 0.5%, 1% and 2% 224 

resulted in the identification of 955, 1750 and 3023 peptides, respectively (Supplementary Table 225 

2) No difference was observed in coverage when the 1% binding threshold was set to a less 226 

stringent 2% or a more stringent 0.5% (p>0.9999 and p=0.6430), therefore a 1% binding 227 

threshold was selected for all future analyses in order to maximize coverage whilst being able to 228 

distinguish additional conserved epitopes (Supplementary Figure 2) 229 

Modelling of HIV diversity for full length transmitted founder proteomes 230 

These parameters were then applied to analyze 125 Transmitted Founder proteome sequences 231 

(excluding envelope) derived from IAVI’s Protocol C (see Tables 1 andTable 3 for input sample 232 

data and model parameters). The initial evaluation identified 14953 predicted peptides occurring 233 

with a frequency of 2.2% in our population. This peptide set covers all predicted affinities and 234 

coverages and may represent multiple HLA interactions/peptide. To evaluate the distribution of 235 

affinities to the primary associated HLAs with Rank Binding scores were assessed (Figure). 236 

Rank binding is an alternative metric for HLA:peptide affinity that can be deployed in order to 237 

normalize the large diversity in the range of predicted binding values for the different HLA 238 

molecules and therefore limit bias derived from over-represented HLA (Nielsen and Andreatta 239 

2016). Rank binding assigns each peptide a score with peptides annotated as a strong binder if 240 

their score is <0.5 or a weak binder if the score is 0.5-2.0.  241 
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To further control for potential bias within the peptide-HLA interactions, the peptides were then 242 

analyzed by both affinity and Rank Binding to all predicted HLA interactions and the frequency 243 

that these peptides occurred in the population in the context of the specific HLA alleles.  244 

This analysis identified a range of predicted binding profiles for the different peptide-HLA 245 

interactions (see Supplementary Table 1 for full HLA allele identities). HLA-A*02:02, HLA-246 

A*31:04 and HLA-B*15:03 were identified as having particularly high predicted affinity peptide 247 

interactions, whereas HLA-B*14:03, HLA-B*15:10 and HLA-C*04:01 have much lower 248 

predicted affinity peptide interactions. This differential pattern of binding may be an artefact, 249 

explained due to the large diversity in the range of predicted binding values for the different 250 

HLA molecules. When plotted using the Rank Binding metric these differences are less 251 

pronounced although trends of stronger associations to specific HLA alleles remain. 252 

Implementing these frequency and binding thresholds to identify HIV-specific predicted CD8 T-253 

cell epitope peptides can be used as a functional metric to assess HIV diversity. By assuming that 254 

these predicted peptides provide a novel tool for ranking HIV proteome diversity, it is possible to 255 

assign a coverage gain value to each sequence and then utilize those values to rank each 256 

sequence for the coverage it provides within the sample population. By implementing these 257 

calculations, it is then possible to identify the sequences that are necessary to obtain the optimum 258 

level of epitope restricted sequence coverage.  259 

The implementation of this model can then be used to target and prioritize individual proteomes. 260 

Figure 5 illustrates how for 125 transmitted founder virus proteomes, achieving 90% coverage 261 

requires 33 prioritized viruses, which decreases to 22 and 16 viruses if 80% or 70% coverage is 262 

desired, respectively (data not shown). Importantly, approximately 40% more viruses are 263 

required to achieve 90% coverage if sequences are randomly selected (n=45 p<0.0001).  264 
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In silico characterization of predicted peptides 265 

Whilst evaluating peptides at a prevalence of ≥2.2% is desirable from the perspective of 266 

understanding population coverage, it is more challenging to map potential regions of the 267 

proteome for anti-HIV T-cell specificities due to the large levels of redundancy and overlap in 268 

evaluating each HLA/epitope interaction.  By selecting HIV sequence coverage as the primary 269 

parameter and predicted affinity as a secondary characteristic the peptide library should contain 270 

both predicted high and lower affinity epitopes with optimum coverage, that may have 271 

functionality if represented at high enough abundance.  Through further stratifications of the 272 

predicted peptide set to limit sequence overlap, and through assigning a minimum population 273 

coverage of 40% (selected to maintain sequence conservation and not introduce multiple 274 

sequence variations) resulted in the identification of 957 peptides. Of these peptides, an unbiased 275 

subset of 319 peptides were selected from across the proteome for further in silico and in vitro 276 

characterization.  277 

HLA adaptation in a particular epitope is defined as the presence of a particular residue that has 278 

been statistically linked to an individual HLA, indicating a process of immune selection in that 279 

context (Mónaco et al. 2016). Vaccine design utilizing conserved epitopes may unwittingly 280 

overlook the observation that not all epitopes in the transmitted virus will be consensus and in 281 

fact, some may actively promote CTL escape (Goepfert et al. 2008). The peptides identified by 282 

the 3-select model were evaluated for predicted HLA adaptation as previously described 283 

(Mónaco et al. 2016). Of these peptides 75/332 were identified as containing a residue that was 284 

adapted, although interestingly the predicted adaptation was against alternative HLA alleles not 285 

predicted by the model for 70/75 predicted peptides with only 2 out of 5 adapted peptides 286 

associating to the primary HLA allele (Data not shown). 287 
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Predicted peptide in vitro characterization 288 

To confirm that the selected subset of predicted peptides were recognized by anti-HIV specific 289 

T-cells, IFNγ ELISPOT assays were performed using a 3D Matrix approach described elsewhere 290 

(Fiore-Gartland et al. 2016). The peptides were evaluated in 32 HIV+ volunteers to determine the 291 

contribution of individual HLA and input sequences and correlate these metrics to observed T-292 

cell responses. 293 

Analysis of IFNγ ELISpot responses in HIV+ subjects who contributed their TF proteome 294 

sequence to the predicted in silico model revealed no significant difference in the median number 295 

of responses per volunteer (N=6) compared to volunteers that did not contribute TF sequences 296 

(median responses/volunteer N=4) (Figure 6A). Further analysis revealed that there was no bias 297 

in responses towards the volunteers with sequences predicted to contribute the most coverage 298 

versus those volunteers whose sequences contributes less to coverage (Figure 6B). Combining all 299 

the responses showed no correlation between the number of total responses/volunteer and the 300 

percentage epitope coverage offered by each peptide (Figure 6C) although the median 301 

responses/volunteer shows a trend aligning to increasing epitope coverage (data not shown).  302 

DISCUSSION 303 

We propose that through a minimal adaptation of the existing predictive algorithm NetMHCpan, 304 

two novel parameters were defined that can be exploited to aid the rational selection of T cell 305 

vaccine immunogens. The first parameter confers the ability to assign a diversity metric to the 306 

HLA profile of individuals within a population. Although there are existing metrics for 307 

evaluating HLA profiles such as using a 2-field code or an HLA gene sequence, there are some 308 

limitations in using these parameters to assign a diversity metric score (Ngumbela et al. 2008; 309 
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Sidney et al. 2008). We propose an alternative metric of HLA diversity that utilizes the predicted 310 

binding affinity of a reference amino acid sequence to assign each HLA allele an individual 311 

binding score. By evaluating the individual HLA profiles of individuals in a studied cohort, it is 312 

then possible to calculate a combined HLA diversity metric. Using these values, individual 313 

volunteers can be mapped within specific populations and distance scores calculated between 314 

each allele and each volunteer. Using this approach, we have demonstrated that it is possible to 315 

select individuals within a cohort that are “representative” of the population from which they are 316 

drawn. Implementing this stratification of volunteers may have implications for the design of 317 

smaller experimental clinical trials. 318 

The second parameter is a metric for HIV diversity determined through the perspective of 319 

predicted binding of putative CD8 T-cell/HLA epitopes. Previous evaluations of HIV diversity 320 

rely on sequence clustering and alignments to order individual sequences. This alignment is 321 

appropriate for comparing the actual sequence of a virus genome or proteome, however this 322 

approach is limited for evaluating how an individual may recognize a specific proteome. By 323 

considering sequence diversity in the context of an individual’s HLA profile and therefore 324 

potential CD8 T-cell immune repertoire, an additional diversity metric can be layered to 325 

represent how an individual may be predicted to view a virus proteome and through combining 326 

the in-silico metrics, it is possible to rank HIV proteome sequences by the coverage they provide 327 

within the population across individuals.  This ability to rank sequences according to putative 328 

immunogenic breadth additionally enables the interpretation of functional immunological killing 329 

assays like the viral inhibition assay (Naarding et al. 2014; Spentzou et al. 2010) . Traditionally 330 

these assays have been interpreted as a binary assessment of the number of viruses inhibited. 331 

Using these novel metrics, it would now be possible to assign a population coverage score to 332 
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each virus or panel of viruses and as such be able to provide an estimate as to the potential anti-333 

virus killing activity of a volunteer based on the pattern of viruses they can inhibit.  334 

IFNγ ELISpot analysis using the peptides predicted by the model revealed that there was no 335 

significant increase in the number of ELISpot responses/volunteer if the individual’s TFV 336 

proteome sequence was included in the prediction compared to the number of 337 

responses/volunteer if an individual’s TFV proteome was not included. This data indicates that 338 

using a subset of samples for prediction has not created any inward bias towards the input source 339 

but is representative of the population. The frequency of responses observed in this study for 340 

both groups are lower than those previously reported  (Kunwar et al. 2013; Mothe et al. 2012; 341 

Sunshine et al. 2014), however this reflects the increased stringency incorporated into the 342 

development of this peptide set whereby only peptides with a predicted coverage greater than 343 

40% were included. By way of comparison, the conservation threshold for the peptides evaluated 344 

by Kunwar et al. and Sunshine et al. were 15% and 5%, respectively,  with a response rate/ 345 

volunteer of 7 and 12 epitopes, respectively (Kunwar et al. 2013; Sunshine et al. 2014).  346 

This hypothesis indicates that through understanding the conservation, adaptation and functional 347 

score assigned to any population of target sequences, it is possible to embed this metric within 348 

algorithms to fully evaluate potential immunogenicity within the context of sequence 349 

conservation and HLA allele frequency and may contribute to expedited vaccine design and 350 

iterative testing strategies aimed at inducing protective CD8 mediated T-cell immunity. The 351 

principals underpinning this approach have applicability to other disease models and geographies 352 

for which comparative input data is available and protective CD8 responses are desirable.  353 

 354 
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Clade  N Distribution 

A 44 Kenya (19), Rwanda (18), Uganda (6), Zambia (1) 

C 38 Kenya (2), Rwanda (1), Uganda (2). Zambia (33) 

D 27 Kenya (3), Uganda (24) 

Recombinant 16 Kenya (6), Rwanda (4), Uganda (8) 

Table 1 Distribution of input transmitted founder proteome data. Number of sequences from each 355 

country listed in parentheses 356 

Sample ID HLA-A HLA-A HLA-B HLA-B HLA-C HLA-C 

00C175058 A*02:05 A*23:01 B*07:05 B*49:01 C*07:01 C*07:02 

00C191996 A*01:01 A*03:01 B*15:03 B*35:01 C*04:01 C*06:02 

00C305154 A*68:02 A*74:01 B*15:03 B*18:01 C*02:10 C*05:01 

00C362470 A*02:02 A*30:02 B*45:01 B*53:01 C*04:01 C*16:01 

00C305125 A*23:01 A*34:02 B*08:01 B*15:10 C*07:01 C*08:02 

00C191735 A*33:01 A*74:01 B*14:03 B*49:01 C*07:01 C*08:02 

00C275031 A*23:01 A*30:02 B*07:02 B*15:10 C*03:04 C*07:02 

00C275048 A*01:01 A*31:04 B*15:03 B*51:01 C*08:02 C*16:01 

00C365005 A*29:02 A*30:02 B*42:01 B*57:03 C*17:01 C*18:01 

00C365007 A*26:01 A*29:02 B*13:02 B*81:01 C*04:01 C*06:02 

00G17616 A*02:01 A*66:01 B*53:01 B*58:02 C*04:01 C*06:02 

00G27009 A*02:05 A*30:02 B*14:02 B*58:01 C*07:01 C*08:02 

00G27188 A*02:05 A*30:01 B*07:02 B*27:03 C*02:02 C*07:02 

Table 2 Volunteers selected for determining HLA coverage within a population 357 

.Parameter Values 

Binding Threshold 1% 

HLA allele contributions All HLA alleles from 13 individuals (Table ) 

HLA haplotype weighting 0 

Rank Binding <1.0 

Peptide Conservation (%) 2.2  

Peptide length 8, 9, 10 & 11mers 

Table 3 Model Parameters 358 
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 359 

Figure 1. Frequency of each HLA Class I allele (HLA-A, HLA-B and HLA-C) represented 360 

within IAVI Protocol C. Alleles. Red boxes demarcate the allele frequencies contained within 13 361 
pre-selected volunteers (Table ) with percentage coverage listed above each stacked histogram 362 

plot. 17 Individual alleles contribute to HLA-A analysis, 21 Individual alleles contribute to 363 
HLA-B analysis and 13 Individual alleles contribute to HLA-C analysis 364 

 365 

Figure 2. Two-dimensional representation of HLA diversity using Principal Coordinate Analysis 366 

(PCoA). A HIV-1 Gag binding profile was predicted for every HLA allele using NetMHCpan 367 
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and a set of transmitted founder sequences. The binding profile of each volunteer (red dot) was 368 

defined by taking the union of predicted binding for each of their HLA alleles. PCoA was 369 

performed using the pairwise similarity matrix of all volunteers, revealing distinct clusters of 370 
individuals. A subgroup of 13 volunteers were chosen to provide optimal coverage of the HLA 371 
binding profiles (blue dots) 372 

 373 

Figure 3. Coverage per predicted peptide calculated against a defined set of HLA alleles. Size of 374 

segments on X axis from left to right represents combined HLA allele frequencies in cohort  375 
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 376 

Figure 4. Affinity plots for all predicted peptides with conservation of ≥2.2% (n=14953). A –377 
Predicted peptide affinity (Rank Binding) versus peptide frequency within transmitted founder 378 
proteome. B-Predicted peptide frequency versus primary associated HLA, C – Predicted peptide 379 
affinity (Rank Binding) versus primary associated HLA 380 
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Figure 5. Cumulative coverage distribution plots of full length transmitted founder gag 383 

sequences using a 3-select coverage model and a 1% Binding Threshold, 3-Select best (red) and 384 
3-Select random (blue). 385 

 386 

Figure 6. IFNγ ELISpot responses observed in HIV+ Volunteers. A – Number of total ELISpot 387 

responses observed in volunteers whose transmitted founder proteome sequence was included 388 
within the in-silico prediction (Seq In: N=19) and volunteers whose transmitted founder 389 

proteome sequence was not included within the in silico prediction (Seq Out: N=21) p=0.2104. B 390 
– Correlation of total number of ELISpot responses in volunteers whose transmitted founder 391 
proteome sequence was included within the in-silico prediction against the order of priority the 392 
sequence was predicted to occur (R2=0.09666 p=0.3012). C – Correlation of total number of 393 

ELISpot responses in volunteers whose transmitted founder proteome sequence was included 394 
within in silico prediction against the % coverage each epitope represented (R2=0.05825, 395 
p=0.0610). 396 

 397 

 398 
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