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Abstract: 23 

Data analysis and knowledge discovery has become more and more important in biology and medicine 24 

with the increasing complexity of the biological datasets, but necessarily sophisticated programming skills 25 

and in-depth understanding of algorithms needed pose barriers to most biologists and clinicians to perform 26 

such research. We have developed a modular open-source software SIMON to facilitate the application of 27 

180+ state-of-the-art machine learning algorithms to high-dimensional biomedical data. With an easy to 28 

use graphical user interface, standardized pipelines, automated approach for machine learning and other 29 

statistical analysis methods, SIMON helps to identify optimal algorithms and provides a resource that 30 

empowers non-technical and technical researchers to identify crucial patterns in biomedical data. 31 
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Main text: 32 

Over the past several years, due to the technological breakthroughs in genome sequencing1, high-33 

dimensional flow cytometry2-4, mass cytometry5,6, and multi-parameter microscopy7,8 the amount and 34 

complexity of biological data has become increasingly intractable and it is no longer feasible to extract 35 

knowledge without using sophisticated computer algorithms. Therefore, researchers are in need of novel 36 

computational approaches that can cope with complexity and heterogeneity of data in an objective and 37 

unbiased way. Machine learning (ML), a subset of artificial intelligence, is a computational approach 38 

developed to identify patterns from the data in order to make predictions on new data9. ML has a profound 39 

impact on biological research10-12, including genomics13, proteomics14-16, cell image analysis17, drug 40 

discovery and development18, and cell phenotyping6,19,20 which revolutionized our understanding of 41 

biological complexity. Recently, using systems-level analysis of genetic, transcriptional, and proteomic 42 

signatures to predict patients’ response to vaccines21,22, therapies and disease progression23-27, ML has 43 

become primary computational approach used in the ‘precision medicine’28.  44 

The biggest challenge is the proper application of ML methods and the translation of the results into 45 

meaningful insights. The analysis of massive datasets and extraction of knowledge using ML requires 46 

knowledge of many different computational libraries for data pre-processing and cleaning, data partitioning, 47 

model building and tuning, evaluation of the performance for the model and minimizing overfitting11. Tools 48 

to achieve these tasks have been mainly developed either in R (https://www.r-project.org/)29,30 or Python 49 

(www.python.org/)31, which have today become leading statistical programming languages in data science. 50 

Because R and Python are free and open-source, they have been quickly adopted by a large community of 51 

programmers who are building new libraries and improving existing ones. As of May 2020, there are 15,658 52 

R packages available in the CRAN package repository (https://cran.r-project.org/). Many of the packages 53 

offer different modeling functions and have different syntax for model training, predictions and 54 

determination of variable importance. Due to the lack of a unified method for proper application of ML 55 

process, even experienced bioinformaticians struggle with these time-consuming ML tasks. To provide a 56 

uniform interface and standardize the process of building predictive models, ML libraries were developed, 57 

for example mlr332 (https://mlr3.mlr-org.com), the classification and regression training (caret)30,33 58 

(https://rdrr.io/cran/caret), scikit-learn34 (https://scikit-learn.org), mlPy35 (https://mlpy.fbk.eu), SciPy 59 

(https://www.scipy.org/) including also ones for deep learning, such as TensorFlow 60 

(https://www.tensorflow.org/), PyTorch (https://pytorch.org/) and Keras (https://keras.io/). Since those 61 

libraries do not have a graphical user interface, usage requires extensive programming experience and 62 

general knowledge of R or Python making it inaccessible for many life science researchers. Therefore, there 63 
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is an increased effort to harmonize those libraries and develop a software that will facilitate application of 64 

ML in life sciences.  65 

The software should provide a standardized ML method for data pre-processing, data partitioning, 66 

building predictive models, evaluation of model performance and selection of features. Moreover, such 67 

software should be adapted for biological datasets that have high percentage of missing values36, have 68 

imbalanced participant distributions (i.e. having a high number of infected subjects, but only a relatively 69 

small number of healthy controls)37 or suffer from a “curse of dimensionality”, i.e. poor predictive power, 70 

as can be observed when the number of features is much greater than the number of samples38. Additionally, 71 

beyond ML process, the software should support exploratory analysis and visualization of the results using 72 

user-friendly graphical interface. The fast-paced technological development dramatically increased size of 73 

biological datasets and computational power needed for analysis. Therefore, open-source web-based 74 

software supporting cloud processing architecture is essential. Additionally, software should support an 75 

automated ML39 (autoML) process that rapidly builds high-performance predictive models by identifying 76 

optimal ML method, including selection of an appropriate algorithm, optimization of model 77 

hyperparameters and evaluation of the best-performing models. AutoML improves the efficiency of ML 78 

process and resulting models often outperform hand-designed models39,40. 79 

To address these challenges, we developed SIMON (Sequential Iterative Modeling “Over Night”), a free 80 

and open-source software for application of ML in life sciences that facilitates production of high-81 

performing ML models and allows researchers to focus on knowledge discovery process. SIMON provides 82 

a user-friendly, uniform interface for building and evaluating predictive models using a variety of ML 83 

algorithms. Currently, there are 182 different ML algorithms available (Supplementary table 1). The entire 84 

ML process which is based on the caret33 library, from model building and evaluation to feature selection 85 

in SIMON is fully automated. This allows advanced ML users to focus on other important aspects necessary 86 

to build highly accurate models, such as data preprocessing, feature engineering and model deployment. It 87 

also makes the entire ML process more accessible to domain-knowledge experts that formulated the 88 

research hypothesis and collected the data, but lack programming ML skills Additionally, to prevent 89 

optimistic accuracy estimates and to optimize the model for generalization to unseen data, SIMON 90 

introduces unified process for model training, hyperparameter tuning and model evaluation by generation 91 

of training, validation and test sets. Training set is used for building models, validation set is used for 92 

hyperparameter tuning and finally, models are evaluated in an unbiased way using the test, also known as 93 

holdout set that has never been used in training. Beside the standardized ML process, the initial install 94 

version offers a set of core components specifically suited for analysis of biomedical data, such as multi-95 

set intersection function for integration of data with many missing values41 (https://cran.r-96 
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project.org/web/packages/mulset/index.html), method for identifying differentially expressed genes using 97 

significance analysis in microarrays (SAM)42, graphical representation of the clustering analysis important 98 

for detection of batch effects, graphical display of the correlation analysis and graphical visualizations of 99 

the ML results that can be downloaded as publication-ready figures in scalable vector graphics (SVG) 100 

format. Finally, SIMON is available in two versions as a single mode and a server version. The single mode 101 

is developed as a SIMON Docker container (https://www.docker.com/), ensuring code reproducibility and 102 

solving installation compatibility issues across major operating systems (Windows, MacOS and Linux). In 103 

both versions parallel computing is supported which is essential for more efficient ML analysis by 104 

distributing the workload across several processors. To promote collaboration, data sharing and support 105 

distributed cloud processing, SIMON is also available as a server version. The server version can be 106 

installed on a private or a public Linux cloud service. Distributed cloud processing (multiNode) is 107 

implemented utilizing OpenStack, a free and open source cloud computing platform 108 

(https://www.openstack.org/). The advantage of the server versions is that it has multiNode capability 109 

which allows users to distribute workload on multiple computers simultaneously to optimize SIMON 110 

performance. The multiNode process can be used to horizontally scale analysis to large infrastructure, such 111 

as high performance computing clusters to meet the computational needs and accommodate parallel 112 

processing of large amounts of data. Additionally, in the server version, users can configure data storage 113 

either on a local server or in a cloud using service which is interoperable with Amazon Web Services S3 114 

application programming interface (AWS S3 API)43. SIMON is also translated into multiple languages by 115 

collaborative open-source effort. SIMON source code is regularly updated, and both source code and 116 

compiled software are available from the project’s website at http://www.genular.org/. Overall, SIMON is 117 

designed to provide a uniform knowledge discovery interface adaptable to the increasing size of biomedical 118 

datasets allowing data scientists, bioinformaticians and domain-knowledge experts to solve biological 119 

research questions. 120 

We demonstrate the accuracy, ease of use and power of SIMON on five different biomedical datasets and 121 

build predictive models for arboviral infection severity (SISA)44, the identification of the cellular immune 122 

signature associated with a high-level of physical activity (Cyclists)45, the determination of the humoral 123 

responses that mediate protection against Salmonella Typhi infection (VAST)46, early-stage detection of 124 

colorectal cancer from microbiome data (Zeller)47,48, and for the detection of liver hepatocellular carcinoma 125 

cells (LIHC)49 (Fig. 1 b, c, d, e, Supplementary protocol). To build models using the SISA dataset 126 

(described in the Supplementary methods and available as Supplementary table 2), 11 ML algorithms 127 

were used, five from the original publication44 (treebag, k nearest neighbors, random forest, stochastic 128 

generalized boosting model and neural network) and  additionally, ‘sda’, shrinkage discriminant analysis; 129 
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‘hdda’, high dimensional discriminant analysis; ‘svmLinear2’, support vector machine with linear kernel; 130 

‘pcaNNet’, neural networks with feature extraction; ‘LogitBoost’, boosted logistic regression and naïve 131 

Bayes. Due to the unified ML process for training, tuning and evaluating predictive models, users can test 132 

a variety of ML algorithms in SIMON. Since the same training and test sets are used by different algorithms, 133 

resulting models can be compared and the best performing models can be selected. After manually setting 134 

initial parameters for data partitioning, predictor and outcome variables, exploratory classes, pre-processing 135 

and selecting ML algorithms (Fig. 1a), SIMON automatically performs all necessary ML analysis steps to 136 

build, tune and evaluate predictive models. The process of building all 11 models on the SISA dataset in 137 

SIMON finished in 59 sec on a standard laptop (Intel® Core™ i7 Processor 7700HQ and 16 GB of RAM). 138 

In SIMON, users can evaluate model performance using standard performance measurements such as 139 

accuracy, sensitivity, specificity, precision, recall, area under the receiver operating characteristic curve 140 

(AUROC), precision-recall area under curve (prAUC), and logarithmic loss (LogLoss) on training and 141 

holdout, test sets (Fig. 1b). The shrinkage discriminant analysis model (‘sda’) had the highest AUROC of 142 

0.97 on the training set and also performed well on the holdout, test set (test AUROC 0.96) (Fig. 1c, 143 

Supplementary table 3, the model is available as the Supplementary data 1).  144 

To demonstrate SIMON’s capabilities for analyzing biomedical datasets with missing data, we applied 145 

SIMON to (i) the Cyclists dataset studying the impact of physical activity on the immune system in 146 

adulthood45  (Supplementary table 4) and (ii) the VAST dataset collected from a clinical trial which was 147 

undertaken to evaluate typhoid vaccine efficacy50 (Supplementary table 5). Description of both datasets 148 

is available in Supplementary methods. The percentage of missing values was 8% in the Cyclists dataset 149 

and 21% in the VAST dataset either due to the exclusion of samples not passing quality control criteria or 150 

the lack of sample volume to repeat experiments and obtain reportable data. To build models using the 151 

datasets with missing values, we used the multi-set intersection (mulset) function41 to identify shared 152 

features between donors and generate resamples (Supplementary protocol). Because mulset function 153 

generates multiple resamples from the initial dataset based on shared features, it is useful for removal of 154 

missing values and can be used for integration of data collected from different assays and across clinical 155 

studies41. For the Cyclists dataset, the mulset function generated 146 resamples. The models were built for 156 

each of the 146 resamples using five ML algorithms (naïve Bayes, svmLinear2, pcaNNet, logistic 157 

regression and hdda) to identify immune cell subsets enriched in the cohort of master cyclists. The analysis 158 

finished in 41 min and 24 sec. The model with the highest performance measures was built with naïve 159 

Bayes on the resample with 96 donors that shared 31 features (train AUROC 0.99 and test AUROC 1) (Fig. 160 

1d, Supplementary table 6 and Supplementary data 2). The mulset function generated 206 resamples 161 

from the initial VAST dataset with varying number of donors and features. Resamples with less than 10 162 
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donors in the test set were removed prior ML process to prevent too optimistic predictive estimates using 163 

the holdout set. Therefore, the ML analysis was performed on 58 resamples using same five ML algorithms 164 

as for the Cyclists dataset. The entire analysis finished in 31 min and 1 sec. The top performing model was 165 

built on the resample with 47 donors that shared 13 features with the naïve Bayes algorithm (train AUROC 166 

0.73 and test AUROC 0.71) (Fig. 1d, Supplementary table 7 and Supplementary data 3).  167 

We also applied SIMON to (i) a dataset with a large number of features measured using whole-168 

metagenome shotgun sequencing of fecal samples (Zeller dataset, Supplementary table 8), and (ii) the 169 

liver hepatocellular carcinoma dataset from TCGA with an imbalanced sample distribution of tumor and 170 

adjacent normal tissue samples (LIHC dataset, Supplementary table 9). Both datasets are described in 171 

Supplementary methods. For the Zeller dataset, models were built using ML algorithms known to perform 172 

well in the situations where more features were measured than individuals, such as shrinkage discriminant 173 

analysis51, high dimensional discriminant analysis52 and neural network with feature extraction53. Two 174 

additional algorithms were included, svmLinear2 and LogitBoost. The complete analysis was performed in 175 

less than 1 min (0:38 min). The sda algorithm built the model with the highest performance (train AUROC 176 

0.86 and test AUROC 0.81) having a higher performance measure than the published LASSO linear 177 

regression model47 (train AUROC 0.84 and test AUROC 0.85) (Fig. 1e, Supplementary table 10 and 178 

Supplementary data 4). For the LIHC dataset we used same five ML algorithms as for Zeller dataset and 179 

analysis finished in 11 min and 30 sec. For such highly imbalanced dataset the precision-recall AUC 180 

(prAUC)54 is a much better performance measurement than AUROC that reported near-perfect performance 181 

(Fig. 1e). The prAUC provides information how well the model correctly detects cancer cells, while it is 182 

less stringent on the evaluation of healthy cells. To avoid obtaining overly optimistic prediction results 183 

(often observed on imbalanced datasets), we ranked models based on the prAUC of the training set 184 

(Supplementary table 11). The model that had the best performance was built using the svmLinear2 185 

algorithm (train prAUC 0.83) and it also performed well on the holdout, test set (prAUC 0.73) 186 

(Supplementary data 5). 187 

The drowsiness contributed the most to the top-performing SISA model, confirming the findings from 188 

the original study44 (Supplementary table 12). To standardize the process for evaluation of the features 189 

and their contribution to the models, we implemented the variable importance score evaluation functions 190 

from the caret library33. This allows users to compare features selected across models. In the case of SISA 191 

dataset, drowsiness contributed the most in all of the models built (Supplementary table 13), indicating 192 

the importance of this symptom and its correlation with hospitalization. The features that contributed the 193 

most to the Cyclists model were total memory, unswitched memory and naïve B cells, recent thymic 194 

emigrants, CD8+ T cells with TEMRA phenotype, and regulatory T cells (CD25+ Foxp3+ CD4+ T cells) 195 
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(Supplementary table 14). In comparison to age-matched physically inactive individuals (non-cyclists), 196 

the master cyclists had increased frequencies of recent thymic emigrants, naïve B cells and CD3 cells, and 197 

decreased frequencies of memory B cells and CD8 T cells with TEMRA phenotype, confirming that ageing 198 

of immune systems i.e. immunosenescence can be reduced by high levels of physical activity45 (Fig. 1f, 199 

Supplementary figure 1). To further explore the relationship between selected features, users can perform 200 

correlation analysis to reveal highly correlated features (Fig. 1g, Supplementary protocol). Naïve and 201 

memory B cells were identified as being highly correlated (Fig. 1g), as expected since these subsets were 202 

determined from the same flow cytometry plots and their relationship is inversely correlated. Removal of 203 

those highly correlated features can help to build more accurate models. Removal of naïve B cells resulted 204 

in building predictive model with the same performance measurements as the model built on the entire 205 

dataset (train AUROC 0.99 and test AUROC 1) (Supplementary table 15), while removal of total memory 206 

B cells lowered the accuracy estimates (train AUROC 0.98 and test AUROC 1) (Supplementary table 16), 207 

indicating the importance of memory B cells to discriminate between master cyclists and non-cyclists. In 208 

the VAST dataset, individuals with higher IgA, IgA1, IgA2 and IgG2 titers against native Vi polysaccharide 209 

(nViPS) antigen and higher IgA and IgG3 titers against biotinylated Vi polysaccharide (ViBiot) on the day 210 

of the challenge were protected against the typhoid challenge supporting the data from univariate analysis46 211 

(Supplementary table 17 and Supplementary figure 2). Moreover, using the clustering function of 212 

SIMON’s exploratory analysis module, we can quickly identify that the IgA2 signature dominates the 213 

responses after vaccination with a purified Vi polysaccharide (Vi-PS), while the IgG2 signature was 214 

dominant for the Vi tetanus toxoid conjugate (Vi-TT) vaccine46 (Fig. 1h, Supplementary protocol). For 215 

the Zeller dataset, the same features as originally reported40 contributed the most to the model, including 216 

Fusobacterium nucleatum and Peptostreptococcus stomatis (Supplementary table 18).  The features that 217 

contributed the most to the LIHC model were well-known genes identified to be upregulated in LIHC such 218 

as GABRD and PLVAP55 and genes enriched in adjacent normal tissue samples ANGPTL656, VIPR157 and 219 

OIT358 as a typical signature for healthy liver tissue (Supplementary table 19, Supplementary figure 3). 220 

Overall, SIMON is a powerful software platform for data mining that facilitates pattern recognition and 221 

knowledge extraction from high-quality, heterogenous biological and clinical data, especially where there 222 

is missing data, an imbalanced distribution and/or high dimensionality. It can be used for identification of 223 

genetic, microbial and immunological correlates of protection and help guiding further analysis of the 224 

biomedical data. 225 

Figure 226 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.08.16.252767doi: bioRxiv preprint 

file://GENULAR/Adriana/Adriana%20Sync/Papers/Paper4_SIMON_software/paper/versions/coauthors%20inputs/Dahora,#_blank
file://GENULAR/Adriana/Adriana%20Sync/Papers/Paper4_SIMON_software/paper/versions/coauthors%20inputs/Dahora,#_blank
https://doi.org/10.1101/2020.08.16.252767
http://creativecommons.org/licenses/by-nd/4.0/


Tomic et al, SIMON: open-source knowledge discovery platform 

8 
 

 227 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.08.16.252767doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.16.252767
http://creativecommons.org/licenses/by-nd/4.0/


Tomic et al, SIMON: open-source knowledge discovery platform 

9 
 

Figure 1. SIMON machine learning workflow. Step 1. Building predictive models. (a) Screenshot of the SIMON 228 
graphical user interface demonstrating input selection for machine learning analysis, such as predictors and response 229 
(outcome) variables, additional exploration classes, training/test split, preprocessing functions and desired machine 230 
learning algorithms. Step 2. Model evaluation and selection. Comparison of (b) box plots of performance 231 
measurements calculated for 11 predictive models and (c) ROC curves built on the SISA dataset. Comparison of ROC 232 
curves calculated from the training and test sets on (d) datasets with missing values (Cyclists and VAST) and (e) high-233 
dimensional datasets (Zeller and LIHC). Step 3. Feature selection. (f) Screenshot of the SIMON interface showing 234 
variable importance scores calculated for each feature and graphical visualization of the selected features from the 235 
Cyclists dataset. Step 4. Exploratory analysis. (g) Correlation analysis on the Cyclists dataset. (h) Clustering analysis 236 
on the VAST dataset. 237 
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