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Abstract

Modern spatial transcriptomics methods can target thousands of different types of RNA
transcripts in a single slice of tissue. Many biological applications demand a high spatial den-
sity of transcripts relative to the imaging resolution, leading to partial mixing of transcript
rolonies in many pixels; unfortunately, current analysis methods do not perform robustly in
this highly-mixed setting. Here we develop a new analysis approach, BARcode DEmixing
through Non-negative Spatial Regression (BarDensr): we start with a generative model of
the physical process that leads to the observed image data and then apply sparse convex
optimization methods to estimate the underlying (demixed) rolony densities. We apply Bar-
Densr to simulated and real data and find that it achieves state of the art signal recovery,
particularly in densely-labeled regions or data with low spatial resolution. Finally, BarDensr
is fast and parallelizable. We provide open-source code as well as an implementation for the
‘NeuroCAAS’ cloud platform.

Author Summary

Spatial transcriptomics technologies allow us to simultaneously detect multiple molecular targets
in the context of intact tissues. These experiments yield images that answer two questions: which
kinds of molecules are present, and where are they located in the tissue? In many experiments
(e.g., mapping RNA expression in fine neuronal processes), it is desirable to increase the signal
density relative to the imaging resolution. This may lead to mixing of signals from multiple RNA
molecules into single imaging pixels; thus we need to demix the signals from these images. Here
we introduce BarDensr, a new computational method to perform this demixing. The method is
based on a forward model of the imaging process, followed by a convex optimization approach
to approximately ‘invert’ mixing induced during imaging. This new approach leads to signifi-
cantly improved performance in demixing imaging data with dense expression and/or low spatial
resolution.
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1 Introduction1

Understanding the spatial context of gene expression in intact tissue can facilitate our understand-2

ing of cell identities and cellular interactions. How do neighboring cells’ gene expressions relate to3

each other? How are different cell types with different activity patterns positioned in relation to4

each other? Is the subcellular distribution of gene expression informative about cell type or state?5

Multiplexed spatial transcriptomics methods offer a promising path forward to investigate these6

questions, allowing us to spatially resolve gene expression patterns. These assays can measure7

thousands of different genes simultaneously by looking at the same slice of tissue multiple times8

through multiple rounds of imaging. Using small barcoded sequences (‘probes’) which bind to9

target transcripts and amplify (generating easily detectable ‘rolonies’), we can get exponentially10

more information about the nature of the tissue in each imaging round.11

However, fully exploiting this new data type can be challenging, for many reasons. Insufficient12

optical resolution can cause parts of multiple rolonies to appear in the same imaging voxel, resulting13

in a ‘mixed’ signal (Chen et al., 2015; Alon et al., 2020). Tissue can deform or drift over multiple14

rounds of imaging (Qian et al., 2020), and the signal from individual rolonies can vary slightly15

between imaging rounds (Moffitt et al., 2016). The chemical washes may fail to complete their16

work in a given round, such that the imaging in the next round contains residual signal from the17

previous round (leading to a ‘ghosting’ effect). Some rolonies may entirely fail to bind to any18

probes in a given round (Lubeck et al., 2014; Chen et al., 2015). Most of these problems are rare,19

but they combine to yield a complex relationship between the signal of interest and the observed20

data.21

Traditional techniques for extracting meaning from these images rely on good image prepro-22

cessing and clever heuristics; there are two main approaches that we are aware of. Both work23

well in ideal conditions. One school of thought (‘blobs-first’) begins by trying to identify regions24

in the tissue where a rolony may be present, and then tries to use the imaging data to guess the25

barcode identity of each rolony (Shah et al., 2016; Wang et al., 2018; Qian et al., 2020; Gyllborg26

et al., 2020; Alon et al., 2020). Another school of thought (‘barcodes-first’) begins by looking27

at each voxel and trying to determine whether the fluorescence signal emitted in that voxel over28

all the rounds is consistent with one of the barcodes (Lee et al., 2014; Moffitt et al., 2016, 2018).29

These two approaches are implemented in e.g. the ‘starfish’ (https://github.com/spacetx/starfish)30

package (under the names of ‘spot-based’ and ‘pixel-based’ approaches, respectively).31

Both of these general approaches face difficulties whenever different rolonies make contributions32

to the same voxel. This can happen in regions of high expression density, and/or insufficient optical33

resolution. In many cases it is desirable to maximize the signal density, to increase the number34

of transcripts detected per cell and therefore the power of any downstream statistical analyses35

— while conversely, for practical reasons, we would like to minimize imaging time and file size,36

encouraging lower imaging resolution. To correctly identify rolony positions and identities in37

images with overlap, it is then necessary to perform some kind of ‘demixing.’ Because of this38

challenge, many current methods simply discard any blobs in regions where strong mixing occurs39

(Chen et al., 2015; Wang et al., 2018; Gyllborg et al., 2020).40

To overcome this challenge, we sought to address the multiplexing problem directly. BARcode41

DEmixing through Non-negative Spatial Regression (BarDensr) is a new approach for detecting42

and demixing rolonies. This approach directly models the physical process which gives rise to the43

observations (Figure 1), including background-noise components, color-mixing, the point-spread44

function of the optics, and several other features. By directly modeling these physical processes,45

we are able to accurately estimate overall transcript expression levels – even when the transcript46

density is so high that it is very difficult to isolate and decode the identity of individual rolonies.47

We provide a Python package for implementing these methods on either CPU or GPU archi-48

tectures (https://github.com/jacksonloper/bardensr). The method requires about two minutes49

of compute time on a p2.xlarge Amazon GPU instance to process a seven-round, four-channels50

1000× 1000-pixel field of view from an experiment targeting 79 different transcripts. We also pro-51

vide an implementation for the NeuroCAAS web-service (Abe et al., 2020), which can be used in a52

drag-and-drop fashion, with no installation required. We compared this method with three alter-53

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.08.17.253666doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.17.253666
http://creativecommons.org/licenses/by/4.0/


Figure 1: BarDensr uses non-negative regression to demix and deconvolve the observed
image stack, yielding a sparse intensity image for each barcode. To find rolonies, we
write down an observation model. We then use sparse non-negative regression to invert the
observation model, yielding demixed and deconvolved intensities.

natives: the spot-based method of starfish; another ‘blobs-first’ approach (Single Round Matching,54

or SRM, based on methods from (Wang et al., 2018; Qian et al., 2020)); and a ‘barcodes-first’55

approach (Correlation approach, or ‘corr,’ based on (Lee et al., 2014; Moffitt et al., 2016, 2018)).56

Both in simulation and real data, BarDensr improves on the state of the art in demixing accuracy.57

2 Methods58

Data59

The experimental images were obtained using an improved version of BARseq (Chen et al., 2019)60

to detect 79 endogenous mRNAs in the mouse primary visual cortex. The Cold Spring Harbor61

Laboratory Animal Care and Use Committee approved all animal procedures and experiments.62

Gene identities were read out using a seven-nucleotide gene identification index (GII), which were63

designed with a minimal hamming distance of three nucleotides between each pair of GIIs.64

Rolonies were prepared as described by (Sun et al., 2020). Imaging was performed on an65

Olympus IX81 inverted scope with a Crest Xlight2 spinning disk confocal, a Photometrics BSI66

Prime camera, and an 89 North LDI 7-line laser source. All images were acquired using an67

Olympus UPLFLN 40x 0.75 NA objective. The microscope was controlled by micro-manager68

(Edelstein et al., 2014).69

See Appendix A for the preprocessing steps for this data, and Appendix E for the process of70

generating the simulation data.71

Notation and Observation Model72

Formally speaking, what is the result of a spatial transcriptomics imaging experiment? For each73

voxel (m) in the tissue, at each imaging round (r), in each color-channel (c), we record a fluores-74

cence intensity. We will use Xm,r,c to denote this fluorescence intensity. Our task is to use X to75
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uncover the presence and identity of rolonies in the tissue.1 Below we describe the parameters76

used to model the physical process that yields these intensities:77

The rolonies, F. The transcripts in the tissue are amplified in place into a ‘rolony’ structure78

which is easy for fluorophores to bind to (Shah et al., 2016). Each voxel m may contain a79

different amount of rolony material, and hence a varying level of fluorescence signal. We refer80

to the amount of material in voxel m for rolonies associated with barcode j as the rolony81

density. We denote this density by Fm,j . The variable F indicates where rolonies are82

and how bright we should expect them to be. This density should always be non-negative.83

Note that F cannot be observed directly – instead, we observe fluorescence signal in different84

rounds and channels, and must use these signal observations to estimate the rolony densities.85

The codebook, B. In each imaging round r, the rolonies associated with gene j will bind to86

specific fluorescently labeled detection probes. We use the binary variable B to indicate87

which imaging rounds and fluorescent probes each gene is associated with. Specifically, we88

let Br,c,j = 1 whenever a rolony with barcode j should bind to a fluorescent probe associated89

with specific color-channel c in imaging round r (and 0 otherwise). Here we assume B is90

known. The vector of values of B for a particular gene j is known as the ‘barcode’ for that91

gene, and the collection B of all the barcodes is known as the ‘codebook.’92

The probe response functions, K, ϕ. If a probe centered at a particular voxel is illuminated93

with a particular wavelength, the probe will emit a certain amount of signal which we can94

record at the corresponding voxel. We may also observe dimmer responses at neighboring95

voxels, due to the possible spreading of the single point object in the optical system. We use96

a non-negative matrix K to denote the point-spread function, i.e., the typical fluorescence97

signal-levels produced at each voxels in the neighborhood of a probe. We use the matrix ϕ98

to represent the responsiveness of each type of fluorescent probe to each wavelength; each99

element of this matrix lies in the range of [0, 1]. Here we assume that the number of types of100

fluorescent probes is the same as the number of color-channels measured (though this could101

be relaxed). We further assume that the voxel-resolution of the rolony density is the same102

as the voxel-resolution of the original images.103

Phasing, ρ. A washing process is applied after each round of imaging. However, in practice this104

washing step may not completely remove all of the reagents from every voxel. This can105

result in a ‘ghost’ of one round appearing in the next rounds. For each color-channel c, we106

let ρc ∈ [0, 1] indicate the fraction of activity which appears as a ‘ghost’ signal in the next107

round.108

Background, a. The images we obtain may also include background fluorescence from the tissue.109

We assume that the background is constant across rounds. We model this effect using a non-110

negative per-voxel value am for each voxel m.111

Per-round per-wavelength gain, α, and baseline, b. The brightness observed from all rolonies112

at a particular color-channel in a particular round may have an associated gain factor. We113

model this gain factor with a non-negative per-round (r) per-channel (c) multiplier αr,c and114

non-negative intercept br,c,.115

Putting all these pieces together, we obtain an observation model. This model states that the
observed brightnesses Xm,r,c should be given by the formulae

Xm,r,c ≈ am + br,c + αr,c

J,M,C∑
j,m′,c′

Km,m′Fm′,jϕc,c′Zr,c′,j ,

Zr,c,j = ρcZr−1,c,j + Br,c,j .

1Throughout we assume that X is preprocessed, including background removal and image registration (see
Appendix A for more detail), hence that there are no systematic shifts of the image between imaging rounds.
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Here the variable Z is used to incorporate the round-phasing effects; i.e., Zr,c,j measures the116

concentration of probes of type c which we would expect at round r, arising from a rolony with117

barcode j. We will also find it convenient to define118

Gr,c,j = αr,c
∑
c′

ϕc,c′Zr,c′,j .

This represents the total contribution of fluorescence signal expected to arise in round r and119

channel c from a rolony of type j. A summary of notation can be found in Table 1.120

Overall, the model introduced above could certainly be expanded to model the physical imaging121

process more accurately, but we found that it was sufficient for our purposes: detecting and122

demixing rolonies.123

Inference124

Our task is to uncover the positions and barcodes of rolonies in the tissue. According to the125

model in the previous section, this information can be obtained from the rolony density variable,126

F. However, F cannot be directly measured; thus our primary task is to estimate F from the127

original image data. To do this we must in a sense invert the observation model specified above:128

the observation model tells us how rolony densities gives rise to the fluorescence signal, but we129

would like to use observations of the fluorescence signal to estimate the rolony densities.130

Using the observation model to estimate the rolony densities F131

We use a sparse non-negative regression framework to estimate the unknown parameters. In this132

estimation we are guided by three ideas:133

• We believe our observation model is approximately correct. We formalize this by saying that134

we believe our squared ‘reconstruction loss’ can be made small. We define this loss by135

Lreconstruction =
∑
m,r,c

Xm,r,c −

am + br,c + αr,c

J,M,C∑
j,m′,c′

Km,m′Fm′,jϕc,c′Zr,c′,j

2

.

Description Dimensions Support
M number of voxels scalar N
C number of types of probes/wavelengths scalar N
R number of rounds scalar N
J number of barcodes scalar N
X observed imaging intensities M ×R× C R+

F spatial rolony density M × J R+

B (known) binary codebook matrix R× C × J {0, 1}
ρ per-channel phasing factor C [0, 1]
Z phased barcodes R× C × J R+

α per-round per-channel scale factor R× C R+

G scaled color-mixed phased barcodes R× C × J R+

b per-round per-channel offset R× C R+

a per-pixel baseline intercept term M R+

K spatial point-spread function M ×M R+

ϕ probe wavelength-response matrix C × C [0, 1]
ω tolerated reconstruction error scalar R+

Table 1: Notation
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• We believe that all of our parameters are non-negative. For example, we do not believe it is136

possible to have negative densities for rolonies at a particular voxel. Likewise, we expect the137

per-round per-channel scaling factors (α) and probe-response terms (ϕ) to be non-negative.138

• We believe that the rolony densities, F, are sparse: many voxels will not contain any rolony139

at all. Ideally we would formalize this idea by putting a penalty on the number of voxels140

with nonzero rolony amplification. However, this penalty is difficult to optimize in practice.141

Instead, following a long history of work in sparse estimation theory (Hastie et al., 2015),142

we enforce this sparsity by placing a linear penalty on the total summed density. We define143

this penalty by144

Lsparsity =
∑

m,r,c,c′,j

αr,cFm,jϕc,c′Zr,c′,j .

(Note that for a general sparse estimation problem, this penalty would be defined using a145

summed absolute value term; however, in our case all parameters are already constrained to146

be non-negative, so this is not necessary.)147

Together, these three ideas suggest constrained optimization as a natural way to estimate our148

parameters. We will seek the non-negative parameters that give the smallest possible value of149

Lsparsity, subject to the constraint that Lreconstruction falls below a noise threshold ω. We provide150

an automatic way to select this noise threshold (see Appendix I), as well as an interactive process151

for the user to select this threshold so that the reconstruction loss appears satisfactory.152

Assuming that B,K are known, this constrained optimization problem can be written as:153

min
F,ρ,α,b,a,ϕ≥0

Lsparsity,

subject to Lreconstruction ≤ ω.
(1)

To solve this optimization problem, we use a projected gradient descent approach. The linear154

structure of the problem makes it possible to pick all learning rates automatically; for example,155

the resulting algorithm reaches convergence for a single 1000×1000 field of view (with a total of 28156

images, with seven rounds and four color-channels) and 81 different barcodes (79 from the original157

experiment, and two additional unused barcodes as described below) in about two minutes on a158

p2.xlarge Amazon GPU instance. Details can be found in Appendix I.159

Before concluding this section, we will address an issue of what is known as ‘identifiability.’
Let us say we have learned a model via our inference method, i.e. we have learned F, ρ, α, b, a, ϕ.
Now let us consider a new model, F′, ρ′, α′, b′, a′, ϕ′, such that

F′ = 4F ρ′ = ρ

α′ = α/2 b′ = b

a′ = a ϕ′ = ϕ/2.

Under this new model, the reconstruction loss is the same and the sparsity loss is the same.160

As far as our inference method is concerned, the two models are identical. It follows that our161

inference procedure simply cannot hope to learn overall scaling factors of this kind. Thus, any162

learned parameters should be understood as being known up to overall scale factors. To resolve163

this ambiguity we normalize α by dividing by its sum (recall that α is non-negative, so this sum164

will be positive) and multiply F by the same factor. Similarly, we divide each row of ϕ by its165

diagonal value and multiply the corresponding column of α by the same value.166

Finding rolonies167

Let us now assume we have used the non-negative regression framework to estimate F (the collec-168

tion of rolony density images, one for each barcode). These per-barcode density images indicate169

the positions of rolonies that belong to a particular barcode; see the left side of Figure 1 for a170
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Figure 2: Rolony densities make it easier to detect rolonies. The left plot shows the max-
projection of the original image across all rounds and channels; detecting blob-like structures in
this image can be challenging, especially when two rolonies are in close proximity. By contrast, the
rolony densities for particular genes are sparser, so it is easier to identify the positions of individual
rolonies in the tissue. The middle and right plots show examples of these rolony densities (in fact,
to make it possible to even visualize the results, we here show the rolonies densities after applying
the point-spread function K; the true rolony densities F are even sparser). The orange marks
represent rolonies detected by a hand-curated approach. Note that the rolony densities appear to
show several rolonies which were not detected by the hand-curated approach (in particular, we see
several bright spots with no orange marks). In Figure 27 and 28, we show that these additional
rolonies do indeed seem to be valid, and were simply missed by the original hand-curated approach.

schematic. We can then apply a blob-finding algorithm to these per-barcode images to find the171

rolonies for each barcode; in practice we simply find local maxima in the per-barcode images.172

Finding rolonies, or ‘blobs,’ in the per-barcode images is easier than finding blobs in the original173

images. See Figure 2 as an example. The per-barcode images include fewer blobs and the blobs174

are smaller, so there are fewer problems with overlapping blobs. More specifically:175

• There are fewer blobs in each rolony density than in the original image stack. In the observed176

images, the intensity measured for each voxel for each wavelength at each round is a sum of177

contributions from all nearby rolonies which emit signal at that wavelength in that round.178

By contrast, the intensity measured at a particular voxel in the per-barcode images is only179

the sum of contributions from rolonies with that one specific barcode.180

• The blobs are smaller in the rolony density than in the original image stack. In the observed181

images, the intensity at a voxel is a contribution from all rolonies which are within the radius182

of the point-spread function K. Recall that this function smears signal from a single voxel183

across all nearby voxels. By contrast, the intensity of a per-barcode image at a particular184

voxel represents the amplification level of rolonies in that one voxel. In this sense, the185

inference process attempts to invert the point-spread function (i.e., perform deconvolution).186

On its own, this inversion process would not be numerically stable; however, the sparsity187

penalty and non-negativity constraint ensures it is numerically well-behaved (Hastie et al.,188

2015).189

The spatial rolony variable F thus represents a demixed and deconvolved version of the raw190

data. The original data is mixed, insofar as each raw intensity represents contributions from many191

barcodes. It is also convolved, insofar as each raw intensity represents contributions from many192

positions in space via the point-spread function. The non-negative sparse regression allows us to193

simultaneously demix and deconvolve, yielding per-barcode images which are cleaner and easier194

to understand.195

Although it is easier to find blobs in the rolony densities, there is still one obstacle to be196

overcome: the threshold. Any blob-finding algorithm must specify an intensity above which a blob197
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is considered real. How can this threshold be chosen? Here we make use of ‘unused barcodes.’198

There could be as many as CR unique barcodes in a codebook for an experiment with R rounds and199

C channels of measurement (assuming only one channel emits signal in each round, which is the200

case in the experiments we studied). However, most of these barcodes are not used in the actual201

experiment. These unused barcodes give us a way to pick a sensible threshold. Along with the real202

codebook, we additionally include several unused barcodes; we enumerated all possible barcodes203

such that each round contained exactly one active channel, then selected uniformly at random204

from the set of barcodes such that each barcode differed from every other barcode in at least205

three rounds. We then run BarDensr on this augmented codebook. Blobs in the rolony densities206

associated with the unused barcodes must correspond to noise, since the true data-generating207

process did not include any signal from such barcodes. We therefore set the threshold to be the208

smallest value which guarantees that no blobs were detected in the unused barcodes. (In practice,209

using just two unused barcodes sufficed to estimate a stable and accurate threshold.)210

Accelerating computation211

The time required to apply BarDensr scales roughly linearly with the number of voxels in the data.212

There are several approaches the BarDensr package uses to relieve the computational burdens of213

working with large datasets:214

1. Exploiting barcode sparsity. In any given patch of the data, many of the barcodes may215

not appear at all. If we can use a cheap method to detect genes which are completely missing216

from a given patch, we can then remove these genes from consideration in that patch, yielding217

faster operations. We call this ‘sparsifying’ the barcodes.218

2. Coarse-to-fine. As we will see below, BarDensr is effective even when the data has low219

resolution. This suggests a simple way to accelerate computation: downsample the data, run220

BarDensr on the downsampled data (which will have fewer voxels), and then use the result221

to initialize the original fine-scale problem. If this initialization is good, fewer iterations of222

the optimization will be necessary to complete the algorithm.223

3. Parallelization. BarDensr can use multiple CPU cores or GPUs (when available) to speed224

up parallel aspects of the optimization (e.g., processing data in spatial patches).225

Details on these methods (which can be used in combination with each other) can be found in226

Appendix H.227

Code availability228

The BarDensr Python package is available from https://github.com/jacksonloper/bardensr. The229

NeuroCAAS implementation of BarDensr can be found at http://www.neurocaas.com/analysis/8.230

This NeuroCAAS implementation requires no software or hardware installation by the user. The231

BarDensr NeuroCAAS app has a simple input-output model. As input, the user must upload a232

stack of images, a codebook, and a configuration file specifying parameters such as the radius of233

the smallest rolonies of interest (see the NeuroCAAS link above for further details regarding the234

data format.) We assume that the images have been registered and background-subtracted before235

input into NeuroCAAS. There are two outputs from BarDensr NeuroCAAS implementation. The236

first output takes the form of a comma-separated-value file listing all entries in the rolony density237

F which have signal greater than zero. The second output is a structured HDF5 file, which stores238

the results of singular value composition (SVD) on the cleaned images for each spot detected; this239

helps the user assess the quality of the spots detected by the algorithm (see the next section as240

well as Figures 9 - 10 for detail). See the NeuroCAAS link provided above for full details. Also241

see Appendix B for further details on the AWS hardware selected here.242
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3 Results243

The rolony densities estimated by BarDensr provide sparse, single images244

to detect spots for individual barcodes.245

As emphasized in Section 2, the sparse non-negative regression approach aims to yield per-gene246

rolony density images which are easy to work with. The cartoon in Figure 1 may help illustrate247

this idea. Our belief is that the true per-gene rolony densities will be sparse images, so the learned248

rolony densities should also be sparse images.249

To test this belief, we applied BarDensr to the experimental data described in Section 2. Figure250

2 compares the raw data with the learned rolony densities for Nrgn and Slc17a7 in a small region251

of the tissue. As hoped, the spatial rolony densities are indeed quite sparse compared to the raw252

data. This ensures that blob-detection is relatively easy. This figure also shows that many of the253

bright spots in the rolony density images appear next to rolony locations found by a hand-curated254

method (see Appendix C for details). For visualization purposes, this figure shows the blurred255

version of the spatial rolony densities (i.e. KF); these make it easier to see the bright spots.256

To get a sense for what all the different genes look like, we also examined the rolony densities257

for all the barcodes (81 in total in this dataset, including two unused barcodes); see Figures 11258

and 12. These sparse images enable us to identify the rolony location easily for each barcode.259

BarDensr provides improved demixing and detection accuracy compared260

to existing approaches.261

To benchmark BarDensr against other methods, we generated simulated data with rolony density,262

gene expression levels, and noise levels matched to the experimental data, as shown in Figure263

3, and then examined how well we could recover the ‘true’ rolonies from the simulated data.264

Qualitative results for several different genes are shown in Figures 20 - 23. Quantitatively, we265

present a Receiver Operating Characteristic curve (ROC curve) in Figure 4, which summarizes266

the percentage of true detected rolonies (also known as ‘1-FNR’, the complement of the False267

Negative Rate (FNR)). Depending on the False Positive Rate (FPR) we are willing to tolerate,268

different detection rates can be achieved; the ROC curve summarizes this relationship.269

We compare BarDensr to several other approaches. Starfish is one package developed for270

analyzing spatial transcriptomics data. This method has many hyperparameters. To give this271

method its best chance, we first tried to find the best parameters manually, and additionally used272

the BayesianOptimization package (Nogueira, 2014) to find the hyperparameters which allowed273

it to perform as well as possible on the simulated data. Figure 4 shows that this performance274

falls short of the detection rates achieved by BarDensr. We also investigated SRM (see Appendix275

C) and a correlation-based method (‘corr’, see Appendix D) for comparison. These two methods276

represent ‘blobs-first’ and ‘barcodes-first’ approaches. BarDensr has better recovery prediction277

than either of these.278

Our simulated data here do not capture the full biological content of the real observed data.279

For example, in real data, the tissue often has some regions with dense rolony concentrations280

(e.g. nuclei) and other regions which are more sparse. In order to quantify performance in more281

realistic biological contexts, we performed a ‘hybrid’ simulation, a la (Pachitariu et al., 2016).282

We started with the original experimental data and injected varying numbers of spots at random283

locations in the image with varying peak intensities (cf. Appendix E). To test if the model is able284

to recover these injected spots with the original image background, we computed the FNR (FPR285

could not be computed here since we do not know the ground truth in the original experimental286

data). We ran two variants on this simulation: one ordinary simulation and one simulation with287

‘dropout,’ in which some rolonies emit a strong bright signal in most of the rounds but simply288

vanishes in one or more rounds (see Appendix E). The results of the dropout and non-dropout289

experiments are shown in Figure 5. As expected, the performance decreases when the intensity of290

the injected spots is smaller. However, as long as the intensity of injected spots was at least half291

the maximum intensity of the original image, BarDensr was able to find all the spots, even in the292
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Figure 3: BarDensr accurately recovers the ground truth in simulated data. The left
plot shows the simulated data in all rounds and channels. Our simulator uses the same barcodes
as the true data, the same distribution of gene prevalence found by a hand-curated approach, a
similar point-spread function and per-round-and-channel scaling α, and a similar density of spots
and noise level. In the right plot, we applied BarDensr to this simulated data, and found that we
were able to largely recover the true rolonies in this simulation. The first column of plots shows
the true positions of rolonies which were used to generate the simulated data. Each plot shows
rolonies for a particular gene. The final column of plots shows the rolony densities learned by
BarDensr. The middle column of plots shows a blurred version of the rolony densities (which are
a bit easier to see) and the spots discovered from these rolony densities. The algorithm accurately
recovers most of the simulated ground truth rolonies, with a few mistakes. In some cases, multiple
rolonies of exactly the same barcode lie right next to each other, but the algorithm identified a
single large rolony instead of several small rolonies. There are also rare false positives (where we
detect a spot that did not exist in the ground truth) and false negatives (where we failed to detect
a spot that did exist in the ground truth).

simulation with dropout; by contrast, the SRM approach was unable to find all the injected spots293

in the hybrid experiment, especially in the dropout variant.294
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Figure 4: BarDensr discovers more correct rolonies in simulated data. What percentage of
rolonies are correctly detected? We use the Receiver Operating Characteristic curve (ROC curve)
to look at this percentage (the complement of False Negative Rates, or 1-FNR) as a function
of the tolerated False Positive Rate (FPR), for BarDensr (red), starfish (orange), Single Round
Matching (SRM, green), as well as the correlation-based method (‘corr’, gray); cf. Appendix C
and D for details on these other methods. Figure 20 and 21 (for the simulation with sparser spots,
top plots of this figure), as well as 22 and 23 (for the simulation with denser spots, bottom plots of
this figure) illustrate these simulation data. In drawing these curves, we consider two qualitatively
different kinds of errors: errors because a rolony isn’t detected at all, and errors because a rolony
is detected but it is assigned the wrong barcode. The dotted lines reflect ROC for the former, the
solid lines reflect ROC for the latter. The left plots show these curves for simulated data. The
right plots show these curves for simulated data with ‘dropout’ – a form of noise present in some
spatial transcriptomic methods (cf. Appendix E for details). For all four kinds of simulations, we
found BarDensr is able to find significantly more spots.

Errors are mostly mis-identification on the barcodes, not missed detec-295

tions.296

We used simulated data to investigate the failures represented by the FPR and FNR described297

above: are they caused by failure in assigning the rolonies to the correct barcodes (‘barcode mis-298
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Figure 5: Hybrid simulation. Showing the False Negative Rates (FNR, y-axis) as the function
of scale intensity (x-axis) and spot number (S, colored lines), without (left) and with (right)
dropout, using BarDensr (top) and SRM (bottom). Scale intensity indicates the intensity of the
injected spots in the simulation, relative to the maximum intensity in each frame in the original
data. See Appendix E for detail.

identification’), or failure in detecting rolonies? To find out, we computed how the failure rates299

would change if mis-identified barcodes were not considered ‘errors.’ We denote this the ‘total hit300

rate’ analysis (cf. Figure 4, dotted lines); both BarDensr and SRM have very high total hit rates301

for the simulated data examined here, indicating that both of these methods detect spots well,302

but sometimes mis-classify the spot identity. See Appendix F for further details.303

BarDensr remains effective on data with low spatial resolution.304

High-resolution imaging can be expensive and time-consuming. BarDensr can also work on low-305

resolution images. To show this, we spatially downsampled the experimental images for each306

frame (each round and each channel). We then fit BarDensr to these lower-resolution images. An307

example is shown in Figure 6 (additional examples with 5× and 10× lower resolutions can be seen308

in Figure 24). These figures show that BarDensr correctly detects the overall expression levels of309

each gene in low-resolution images – even when the downsampling is so extreme that picking out310

individual rolonies is not feasible.311

To test if BarDensr can recover the correct gene expression level when applied on the low-312

resolution data, we also quantified the cell-level gene activity on a larger region where 43 cells are313

detected using a seeded watershed algorithm (see Appendix G for detail). The bottom plots of314

Figure 6 suggest that with 5× downsampled data, the cell-level gene expression, as well as the cell315

clusters, are preserved with high consistency compared to the results of applying the method to316

the original fine scale.317
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Figure 6: BarDensr works on low-resolution data. Top row. The 5× downsampled image
is compared to the original ‘fine scale’ image. All these plots show the max-projection across all
rounds and channels, with the right two showing the zoomed region indicated by the red rectangles
in the left two. Note that it is difficult to visually isolate single spots from the downsampled
image. To test the performance of BarDensr on this low-resolution data, we first run the model
on the original data (i.e., top left), obtain rolony densities, and then finally downsample the
rolony densities (‘run-then-downsample’). Next, we run BarDensr on downsampled data (i.e,. the
second plot on the top row) and examine the estimated rolony densities (‘downsample-then-run’).
Middle row. The rolony densities for a selected gene (Slc17a7 ) estimated using the original
fine scale (left), as well as these two approaches (middle for ‘run-then-downsample’ and right for
‘downsample-then-run’). For a more complete example, see Figure 24. Bottom row. The cell-
level gene expression quantification, for those genes that have more than four spots in the fine
scale in a 1000 × 1000 region. The color of the heatmap indicates the proportion of gene counts
(i.e., the total counts of each gene divided by the total counts of all genes detected in the region).
The x-axis represents the 24 genes that were chosen, ordered based on the counts in the fine scale.
The y-axis represents the cells, ordered based on the hierarchical clustering result from the fine
scale, as shown in the dendrogram on the left. A total of 43 cells are segmented from the original
image using a seeded watershed algorithm (cf. Appendix G). The two different results yield nearly
identical clusterings, indicating that BarDensr recovers gene activity with accuracy sufficient to
cluster cells even given low-resolution images.

BarDensr computations can be scaled up to tens of thousands of barcodes318

via sparsifying and coarsening accelerations.319

In Section 2, we described how the barcode sparsity could help us potentially apply the method to320

a large dataset with more barcodes. To test if we can use a much larger dataset, we considered a321
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Figure 7: Speed-up of BarDensr using coarse-to-fine method. Area Under the ROC curve
(AUROC) as a function of wall clock time. The red curve (‘coarse-to-fine’) is the result where
we fit the model to the two-times-downsampled ‘coarse’ data, followed by running the model at
the original fine scale using the parameters learned from the coarse scale as the initial conditions.
The black curve (‘fine only’) indicates the result of running the model on the original fine scale
for all the iterations. The total number of updates in the model is 20 and 10 for ‘coarse-to-fine’
(the gray line indicates the end of the 20 coarse updates), and is 15 for ‘fine only.’

simulated example with more unique barcodes (53,000 unique barcodes and 17 sequencing rounds).322

With so many barcodes, naively running BarDensr is prohibitively expensive (in both compute323

time and memory) on large datasets. However, we also expect such datasets are extremely sparse324

in terms of barcodes – any given small region of the image is quite unlikely to include rolonies325

from all 53,000 barcodes. This is particularly true when each barcode corresponds to a unique326

cell instead of a unique gene (Chen et al., 2019): a small region of tissue may contain many327

different transcripts, but it will only contain a small number of different cells. Thus we should328

be able to take advantage of this sparsity to speed up BarDensr. We simulated a 50 × 80 small329

region where 40 rolonies were present in total. We then obtained a coarse, downsampled image,330

and then ran BarDensr and learned the parameters for this low-resolution data. If the learned331

parameters from the coarse scale indicated a particular barcode did not appear, then we assumed332

that this barcode should be absent even if we used the data at original resolution. The result in333

Figure 25 shows nearly perfect prediction performance. This problem was quite small, so we could334

also run the method without using any sparsity-based acceleration techniques; we found that the335

unaccelerated version did not outperform the accelerated version, suggesting that BarDensr can be336

used for datasets of this kind with larger number of molecular or cellular barcodes (cf. (Kebschull337

et al., 2016; Han et al., 2018; Chen et al., 2018, 2019)).338

Finally, given a small number of barcodes, BarDensr can run without these acceleration tech-339

niques – but these accelerations are still worth applying, to help cut down on computation times340

and reduce memory usage. We found that these techniques reduced runtime by a factor of four341

(Appendix H). Figure 7 shows the speed-up of the BarDensr using ‘coarse-to-fine’ accelerations.342

Further, as shown in Figure 8, BarDensr performs well while taking advantage of the gene-sparsity343

for each small region after coarsening.344

BarDensr recovers interpretable parameters.345

BarDensr uses a data-driven approach to estimate all the relevant features of the physical model:346

the per-channel phasing factor, the per-round per-channel scale factor, the per-round per-channel347
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Figure 8: BarDensr can take advantage of gene-sparsity. Here we used two different ap-
proaches to analyze a 1000 × 1000 region of the experimental data. The first approach uses
BarDensr naively, applying it directly to the image. The second approach is illustrated on the
left and middle plots. This approach accelerates the method using a ‘coarse-to-fine’ method by
taking advantage of ‘gene-sparsity’, i.e., the fact that many barcodes do not appear in any given
small region. Specifically, we split this region into 4× 4 patches (the borders of these patches are
indicated as the white lines on the left plot). After the relatively fast ‘coarse’ step, the barcodes
that have very low maximum rolony densities were removed before the following ‘fine’ step (cf.
Appendix H for more detail). This keeps only a relatively small number of barcodes to consider
for each patch (ranging from 38 to 65 out of 81 barcodes, as shown in the middle plot), therefore
reducing the computation time and the memory usage for the ‘fine’ step later. Since we are here
analyzing real experimental data, there is no ground truth we can use to compare the efficacy
of the two methods. However, we here show that both methods yield nearly the same result, as
shown in the ROC curves on the right plot. In particular, we can treat one method as the ‘truth’
and construct an ROC curve indicating the accuracy of the other method. We can then do the
reverse, treating the other method as ‘truth.’

offset, the per-pixel background, the per-wavelength response matrix, and the spatial rolony den-348

sities (the latter of which have already been described in detail above). In the data analyzed here,349

we found that the per-channel phasing factor was relatively small, suggesting very little ‘ghosting’350

in this data. The wavelength-response matrix was almost diagonal, although we found some slight351

color-mixing from channel 2 to channel 1, consistent with visual inspection (see the fifth round in352

Figure 16 as an example). This indicates that our model is able to correctly recover the color-353

mixing effects. We also investigated whether all of the features of our model were necessary for the354

purposes of finding rolonies. For each feature of the model, we tried removing that aspect of the355

model and seeing whether the method still performed well. For the data analyzed here, we found356

that the ϕ and ρ parameters were not essential (though they did seem to improve the performance,357

at least qualitatively). By contrast, all of the other parameters were essential; removing any of358

them yielded nonsensical results.359

BarDensr is able to capture the important signal based on the assessment360

on the predicted signal intensities.361

Our algorithm is based upon a physical model of how this data is generated. Rolonies appear at362

different positions in the tissue, they emit fluorescence signal in different conditions, the fluores-363

cence signal is smeared by a point-spread function, and finally we observe this signal, together with364

certain background signal and noise. As long as this model captures all the important features365

of the physical process, observed intensities should match the predicted intensities at each voxel366

in each round and in each channel. To think about this more clearly, let’s define these predicted367
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intensities as the ‘reconstruction’:368

reconstructionm,r,c , am + br,c + αr,c

J,M,C∑
j,m′,c′

Km,m′Fm′,jϕc,c′Zr,c′,j .

To test our model, we can visually compare the reconstruction to the observed data. If the residual369

between the two includes significant highly-structured noise, then it is likely that we are missing370

important aspects of the data. Figures 13 - 18 show the results of these comparisons. They appear371

fairly promising, but certain structured features do appear in the residual. Most strikingly, we372

have found that a minority of rolonies ‘dropout’ for one or more rounds: a rolony may give a373

strong bright signal in most of the rounds but simply vanish in one round. Our current physical374

model does not accommodate this, and this limitation appears in the residual as bright and dark375

spots. However, as mentioned above and shown in the hybrid simulation data in Figure 5, our376

method is robust to these ‘dropout’ effects; it is still able to capture the correct rolony positions377

when it occurs on a small number of rounds.378

Diagnostics based on ‘cleaned’ images are useful to check the accuracy379

of BarDensr.380

The reconstruction is made up of many parts: it has the background component a, the per-round381

per-channel offset and scale terms (α, b), and rolony contributions arising from F, ϕ,Z. As shown382

above, it is straightforward to compare the total reconstruction to the observed data. However,383

this does not isolate the contributions of individual estimated rolonies.384

Therefore we adapted a partial subtraction approach from (Lee et al., 2020). We pick one
barcode, j∗, and focus only on the contributions to the reconstruction from this one barcode. In
particular, we assume that all other aspects of the model are exactly correct. We assume that
a, α, b, ϕ and Z are all exactly right. We further assume that Fj is exactly correct for every j 6= j∗.
Assuming all these aspects of the model were perfect, we can look at what the data would have
looked like if it had only included one type of barcode, namely j∗. We call this counterfactual
simulation the ‘cleaned image’:

X(j∗)
m,r,c = Xm,r,c − am − br,c −

∑
j 6=j∗,m′

Km,m′Fm′,jGr,c,j . (2)

This is the data with all aspects of the model subtracted away – except for the contributions from385

barcode j∗ (see Figure 9 as an example). The cleaned image for the barcode j∗ has much in386

common with the rolony density for j∗. However, X(j∗) differs from Fj∗ in one crucial way. For387

each voxel m, Fj∗ gives exactly one value. However, for each voxel m, X(j∗) gives R × C values388

– one for each round and channel of the experiment. According to our model, however, it should389

be possible to express all these values in terms of a mathematical ‘outer product’:390

X(j∗)
m,r,c ≈ Fj∗,mGj∗,r,c.

In this outer product we see that X
(j∗)
m,r,c (which varies across voxels, rounds, and channels) is the391

product of two objects: the rolony density (which varies across voxels) and the transformed barcode392

G (which varies across rounds and channels) for j∗. This is actually a very strong assumption;393

most tensors would not exhibit this kind of structure. We can empirically check for this ‘rank-one’394

structure by computing the singular value decomposition (SVD) of X
(j∗)
m,r,c. If the SVD yields only395

one strong singular value, then X
(j∗)
m,r,c can be well-approximated by this rank-one outer product,396

and furthermore the SVD yields the correct values for Fj∗,m and Gj∗,r,c. We can compare the397

values for these quantities (as returned by the SVD analysis) to the estimated values (as returned398

by BarDensr). We show some examples in Figure 10 comparing the estimated value of Gj∗ with399

SVD results (a similar but more complete set of the spots can be seen in Figure 19). Note that400

the match isn’t quite perfect (the temporal singular vector of the corresponding cleaned images401
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varies a bit from our estimate). In future work we hope to investigate whether these differences402

could be accounted for by a more accurate physical model. For now, we content ourselves that403

the method is accurate enough to provide a useful diagnostic for the detected rolonies.404

We can also use these cleaned images to help us compare BarDensr with other methods by eye.405

Figure 26 investigates cleaned images for gene Arpp19, comparing the results of our method to406

the hand-curated results. In cases where the results of the two approaches disagree, these cleaned407

images suggest that our results are often reasonable.408

4 Conclusion and future work409

By directly modeling the physical process that gives rise to spatial transcriptomics imaging data,410

we found that BarDensr can correctly detect transcriptomic activity – even when rolonies are411

densely packed in tissue or optical resolution is limited.412

BarDensr is computationally scalable, but so far we have only investigated real-world transcrip-413

tomic experiments with less than a thousand barcodes. To scale to larger barcode libraries we need414

to address the possibility that the barcode library may be unknown or corrupted. In experiments415

with tens of thousands of barcodes, some barcodes present in the data may be unknown to the416

experimentalist. If these barcodes are ignored, the performance of our method may be negatively417

impacted. In the future we hope to adapt our method to learn these barcodes directly, using the418

model outlined in this paper. Together with the computational acceleration approaches used in419

this paper, this would extend BarDensr to larger-scale data with potentially corrupted barcode420

libraries.421
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Figure 9: Using cleaned images and SVD to examine model fit quality and variability.
Top left: spots are identified in Fj∗ for each barcode j∗ using local-max-peak-finding. For the
gene barcode (Deptor) shown here, 19 spots were detected (red dots) and three spots with highest
accuracy are shown on the right panel. The middle and bottom panels show the zoomed-in R×C
plots of the raw image X (middle) and ‘cleaned’ image X(j∗) (bottom) at these three spot locations
for barcode j∗. Note that ‘cleaned’ images are significantly sparser than the raw images, as desired.
Top right: we applied SVD to the cleaned image X(j∗) at these three spot locations. The first two
columns show the zoomed-in image of the original spot (KF)j∗ and the learned weighted barcode
matrix (Gj∗) corresponding to this gene barcode j∗. The top singular vectors are plotted in the
last two columns (showing a good match with Gj∗ and the cropped (KF)j∗). R

2 is the squared
correlation coefficient between X(j∗) and the outer product of these two singular vectors; the high
R2 values seen here indicate that the model accurately summarizes X(j∗).
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Figure 10: Results of SVD analysis of cleaned images for the top high-R2 spots. This
plot summarizes the results of the analysis illustrated in Figure 9. The first column shows (KF)j∗
cropped around the brightest spots; the second column shows the top spatial singular vectors for
the same crops, and the last column shows the top temporal singular vectors for these spots. For
the last column, the top row (above the white line) shows the scaled Gj∗ learned from the model,
and the bottom row shows the corresponding top temporal singular vectors for these spots. Note
that there is some variability visible in these temporal singular vectors. R2 is computed as in
Figure 9. Only six barcodes that are most abundant in the selected region are shown here; Figure
19 provides a more complete illustration.
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Figure 11: Spatial rolony density Fj of all 81 barcodes. These images are the supplement
to Figure 2 in the main text. The rolony densities represent a demixed view of the data. Each
plot corresponds to a single barcode, and indicates the rolony density at different spatial locations.
Above we show these rolony densities for one region in the experimental data. The title for the
plots above indicates the gene associated with the barcode as well as the maximum intensity of
the plot. The orange dots represent rolonies detected by a hand-curated approach.
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Figure 12: Spatial rolony density (KF)j of all 81 barcodes, after applying the point-
spread function. As of Figure 11, these images are the supplement to Figure 2 in the main text,
except we display (KF)j instead of (F)j for each barcode j. Recall that the point-spread function
K has the effect of smearing signal over a spatially localized area. It represents physical processes
which blur the signal of interest. Under the BarDensr model, the signal intensities observed at
each voxel m from a given barcode will arise directly from linear combinations of (KF)m,j over
different barcodes j.
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Figure 13: Original data (X) after normalization for each round and channel. In order
to create clearer visualizations, we noise-normalized the data as described in Appendix A, so that
images from all rounds and channel are on the same scale.
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Figure 14: Data reconstructed from BarDensr. Under the BarDensr model, the fluorescence
signal observed at each voxel in Figure 13 should be approximately given by the equations from
Section 2. We here plot the results of those equations, visualized using the same colormap-intensity
scale as used Figure 13. At least by eye, we see excellent agreement between the data and the
model’s predictions.
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Figure 15: Residuals. As mentioned in Figure 14, the BarDensr model makes predictions about
what the observed data should look like. There is broad agreement, but there is some disagreement.
Here we highlight the the residual between the predictions and the data. Note the difference in scale
compared to the previous two figures.
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Figure 16: Zoomed original data (X) after normalization for each frame. Zoomed in for
one of the target spots (a 20× 20 region). See Figure 13 for more details.
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Figure 17: Zoomed reconstructed data. Zoomed in for the target spots (20× 20), plotted at the
same intensity scale as Figure 16. See Figure 14 for more details.
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Figure 18: Zoomed residual plot. Zoomed in for the target spots (20 × 20). See Figure 15 for
more details.
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Figure 19: Further SVD analysis of cleaned images for the top high-R2 spots. The
figure supplements Figure 10 in the main text, and is structured in the same way, except that
this plot shows more examples (with more barcodes and spots). Each row shows two spots for a
given barcode. The first two columns show (KF)j∗ cropped around the two spots; the third and
forth columns show the top spatial singular vectors for the same crops. The final wide column
shows the top temporal singular vectors for these spots, with the first row (above the thin white
line) showing the scaled Gj∗ learned from the model, and the following two rows showing the
corresponding top temporal singular vectors for these spots. The two spots are ordered by R2,
which is computed as in Figure 9.
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Figure 20: Benchmarking results with no dropout. Comparing starfish, SRM, ‘corr’, and
BarDensr results, to the ground truth. Showing the top six barcodes with highest density (the
gene density was generated randomly, see Appendix E). This figure corresponds to the top left plot
in Figure 4 in the main text. Without dropout, BarDensr accurately detects the barcodes in the
original data.
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Figure 21: Benchmarking results with 50% dropout. Similar to Figure 20 but with dropout
for 50% of the simulated spots. This figure corresponds to the top right plot in Figure 4 in the main
text.
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Figure 22: Benchmarking results with no dropout, using five times denser simulation.
This is the similar process except that the spots density is five times denser than Figure 20 and 21.
This figure corresponds to the bottom left plot in Figure 4 in the main text.
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Figure 23: Benchmarking results with 50% dropout, using five times denser simulation.
Similar to Figure 22 but with dropout for 50% of the simulated spots, for the denser simulation.
Some missing spots (FN) can be observed from our model as well as other two methods (e.g., see
the fifth row Kif5a). False discovery (FP) can also seen in this plot for SRM (e.g., see the third row
Rbfox3 ). This figure corresponds to the bottom right plot in Figure 4 in the main text.
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Figure 24: Further demonstration of BarDensr applied to low-resolution data (sup-
plementing Figure 6.) To test BarDensr’s performance on low-resolution data, we first run
BarDensr on the original data, obtain rolony densities, and then finally downsample the rolony
densities (‘run-then-downsample’). Next, we run BarDensr on downsampled data and look at the
learned rolony densities (‘downsample-then-run’). For highly-expressed genes, these two results
are nearly indistinguishable.
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Figure 25: BarDensr can be scaled up to a larger number of barcodes by using sparsified
image. To test if we can scale up BarDensr, we computed an ROC curve for the method using a
simulated dataset with 53,000 barcodes and 17 sequencing rounds. After running the model on a
5× downsampled 50× 80 pixels simulated image, barcodes that are set to zero at the coarse scale
were removed and the model was run at the original scale, with the parameters learned from the
downsampled image as the initial conditions. See also Appendix H.

35

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.08.17.253666doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.17.253666
http://creativecommons.org/licenses/by/4.0/


Figure 26: Spatial rolony density comparison against hand-curated results. On the top
two plots, we show the rolony density Fj (left) and the blurred rolony density (KF)j (right) for
gene Arpp19, derived from the experimental data. These rolony densities indicate the presence of
Arpp19 -rolonies. However, they might be incorrect, indicating that these detected rolonies might
not be present in the real data. In this figure we investigate this question qualitatively. First, we
compare with the rolony positions detected by a hand-curated method (as represented by orange
circles on the left top plot) with the rolonies suggested by the rolony densities (as indicated by red
crosses on the left top plot). We see a broad agreement. Where there is a point of disagreement, we
can visualize the signal intensities in all the voxels near that point. The two plots on the bottom-
left show the original data from a spot that was detected by BarDensr, but not detected in the
hand-curated results (as indicated as False Positive (FP) in the top left plot); the left columns
show the original image and the right columns show the ‘cleaned’ image (similar to Figure 9, see
Equation 2 for details). The red cross in each round indicates the channels that are activated
by this barcode. These crosses line up well with the observed signal, suggesting BarDensr has
correctly identified a new rolony. It appears that the hand-curated method failed to detect this
rolony because of the presence of nearby rolonies, leading to a mixed signal; BarDensr is specifically
designed to handle these kinds of confusing situations. The two plots on the bottom-right show a
spot which is detected in the hand-curated result but not detected by BarDensr (as indicated as
False Negative (FN) in the top left plot). We show both the original data and the cleaned data, as
in the bottom left plots. In this case, the data do not appear to support the presence of a rolony,
suggesting BarDensr correctly rejected this region as a rolony and the the hand-curated approach
labelled it incorrectly. We conjecture that the hand-curated approach misidentified this as a spot
because of the signal arising from a nearby rolony in round 7, channel 4; this again created a
mixture of signals BarDensr was better equipped to recognize.
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Figure 27: Supplement to Figure 2 for Nrgn . The top plot shows the same spatial rolony
density of Nrgn as in Figure 2. The orange crosses indicate the spots detected in the hand-curated
results. The three spots highlighted with red are further zoomed in the bottom, with their indices
on the titles. These spots were detected to have large signal intensities by BarDensr, but were
not detected in the hand-curated results. The correct barcode frames for Nrgn are indicated with
red crosses in the bottom plots, suggesting that each of these spots appear to be well-modeled as
Nrgn spots.
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Figure 28: Supplement to Figure 2 for Slc17a7 . The top plot shows the same spatial rolony
density of Slac17a7 as in Figure 2. The orange crosses indicate spots that detected by hand-
curated method. The four spots highlighted with red or cyan are further zoomed in the bottom,
with their index on the titles. The first three spots (Spot 1 - 3, shown in red) were found by
BarDensr but were not detected by hand-curated results, as in Figure 27. The fourth spot (Spot
4, shown in cyan) is the spot that is detected by hand-curated results, but no signal detected in
BarDensr. The correct barcode frames for Slc17a7 are indicated with red crosses in the bottom
plots.
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A Data preprocessing508

The data is preprocessed before input into the model as follows: first the data was max-projected509

across all z-stacks. The channel color-mixing was corrected and the background was removed510

using rolling-ball background subtraction (Sternberg, 1983). Then the different image stacks511

were registered to the same voxels, using the Image Alignment Toolbox (ECC image alignment512

algorithm) (Evangelidis and Psarakis, 2008).513

Finally, we performed a crude noise-normalization on each frame. First we estimated the514

noise level on each frame by spatially high-pass filtering (i.e., original image minus a Gaussian-515

filtered image, with a sigma of 2 pixels) to isolate spatially-uncorrelated noise, then computing516

the standard deviation. (See e.g. (Buchanan et al., 2018) for a related approach applied in the517

temporal domain.) Then we divided each original frame by its estimated noise scale to obtain the518

noise-normalized images.519

B Hardware time and cost comparisons520

To develop an efficient implementation of BarDensr on the NeuroCAAS cloud platform (Abe521

et al., 2020), we needed to find the most cost-effective hardware for the job. Using a 1000× 1000522

sized image from the experimental data described in the main text, we ran the model on several523

different AWS instance types. The most cost-effective machine was m5.2xlarge, which completed524

the analysis in three and a half minutes with a total cost of two cents. On the other extreme, the525

p3.2xlarge machine completed the analysis in one minute with a total cost of five cents. As a526

compromise between speed and cost, we settled on the p2.xlarge machine, which completes the527

analysis in two minutes with a total cost of three cents.528

C Single Round Matching (SRM) and ‘hand-curated’ method529

We compared BarDensr against several different alternative methods, including one we call ‘SRM.’530

This method is an implementation of the widely-used ‘blobs-first’ algorithms suggested in the531

literature (Wang et al., 2018; Qian et al., 2020). First, blobs were detected in every channel in532

the first round by finding local maxima on a per-channel basis. These blobs were then used as533

a reference in understanding subsequent rounds (the first round is used as the reference since it534

usually has the least corruption by noise and artifacts, such as phasing and photo-bleaching).535

At each detected rolony position, SRM then read out the signal intensities from all chan-536

nels/rounds as a vector of length R × C. This vector was compared against each barcode in the537

library. Each detected rolony was assigned to the barcode with the greatest similarity (as measured538

by a dot-product). For some rolonies the similarity was low to all barcodes; these rolonies were539

filtered out. Thresholds were determined using the Bayes optimization method from (Nogueira,540

2014).541

The ‘hand-curated’ method in the main text corresponds to SRM described here. After the542

process of SRM with the chosen threshold, we manually checked the detected rolonies and the543

assigned barcodes to make sure that the results were reasonable.544

D Correlation-based method545

We also compared BarDensr against a ‘correlation-based method’ (Moffitt et al., 2016, 2018). This546

approach begins by computing a vector of length R×C for every voxel, indicating the fluorescence547

signal in each round and channel at that voxel. At each voxel, for each barcode, the cosine548

distance between this vector and the barcode was computed. The barcode with the minimum549

cosine distance was assigned to be a potential gene identity for each voxel. Finally, a ‘minimum550

distance image’ was constructed: for each voxel, this image contains the cosine distance between551

that voxel’s R× C vector and the barcode which it is most similar to. Coordinates of blobs were552
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found by a seeking local minima in this image. Thresholds were again determined via (Nogueira,553

2014).554

E Simulation555

Generating arbitrary distribution for genes556

For the simulation benchmarking in Figures 4 and 20-23, we used barcodes from a STARmap557

experiment (developed in (Wang et al., 2018), unpublished data), with total of 57 genes. This558

data is similar to our original experimental data in that it has six rounds and four channels in559

total, and the scale of the number of barcodes is also similar. This data was chosen instead of560

our experimental data in order to directly apply starfish method (the starfish application on our561

original experimental data was not available at the time this analysis was conducted). In creating562

simulations, we wanted to accurately represent the uneven distribution of genes; in real data some563

genes are more abundant than others. Therefore, we began by randomly selecting 10 out of 57564

genes to be ‘abundant’ genes. In generating a dataset with simulated rolonies, we created rolonies565

with these abundant genes roughly ten time more often than the other rolonies.566

Dropout567

We used two setups to generate simulated testing data: without dropout and with dropout. In the568

experimental data, it is commonly observed that a small portion of rolonies disappear/diminish in569

some rounds. (Based on our visual inspection of the experimental data, qualitative dropout events570

were observed in < 5% of the rolonies detected in this data, but we did not attempt to estimate571

this dropout rate precisely.) In the ‘Dropout’ simulations, we tried to mimic this phenomenon.572

Specifically, for the ‘no dropout‘ simulations, we generated the data with the following process.573

1. Generate the spot position with a uniform distribution across the voxels. 2. For each spot574

position, generate the spot identity (gene) using a prespecified gene distribution (as discussed575

above). 3. For each position m and gene j pair from steps 1 and 2, the magnitude of the rolony576

density at (m, j) was generated from a uniform distribution in the range (10, 40). We use these577

values to fill in the rolony density, F. 4. We then generate synthetic data according to the578

BarDensr model. Finally, we add some speckle noise. Note that in our simulation, parameters579

such as the per-frame intensity (α), phasing (ρ), and color-mixing (ϕ) were left out for simplicity.580

For the ‘dropout‘ simulations, 50% of the simulated spots were randomly selected to be the581

‘dropout spots.’ For each ‘dropout spot’, one round is selected randomly and the signal intensity582

for that spot for that round is diminished to 10% of the original signal. The simulation process is583

otherwise the same.584

Hybrid simulation585

To test the efficacy on our model on even more realistic data, we used a ‘hybrid simulation,’586

as in e.g. (Pachitariu et al., 2016). In essence, the hybrid simulation creates a fake dataset by587

superimposing the real data with additional synthetic rolonies to the data. The question is whether588

the algorithm can at least find the synthetic rolonies which were added. The results are shown589

in Figure 5. In generating the synthetic rolonies, we used the codebook used in the original590

experiment, and the genes of the synthetic rolonies were given by the observed gene distribution591

from the hand-curated analysis of the same dataset.592

We ran a few different versions of these simulations. There were several key parameters which593

we varied:594

• We had both ‘dropout‘ and ‘no dropout‘ versions; in the dropout versions some of the595

synthetic rolonies had signal in one round diminished.596

• We could vary the number of synthetic spots which were injected (S). According to the597

hand-curated analysis of the real data, the real data contained approximately 400 spots in598
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this field of view. We investigated how the number of spots affected the results, looking at599

S ∈ {30, 80, 100, 200}.600

• We could vary the intensity of the synthetic spots, relative to the maximum intensity observed601

in the data. We varied this between 10% and 90%.602

F Error analysis603

In simulated data, we can exactly quantify the different kinds of errors that BarDensr makes, by604

comparing against the true rolony positions used to make the simulated data. We first examined605

the ‘total hit rate’ in our Receiver Operating Characteristic curve (ROC curve, shown as the606

dotted lines in Figure 4). For this ROC, we consider a spot to be successfully detected by the607

algorithm as long as the algorithm finds any rolony near the site of a true rolony – even if the608

algorithm incorrectly assigns the gene associated with that true rolony. The ROC for BarDensr609

clings closely to the upper left side of the plot, suggesting nearly perfect performance. We also610

looked at what we call the ‘hit rate’ – for this ROC we consider a spot to be succesfully detected611

only if the algorithm detects a rolony in the right place and of the right gene. Figure 4 shows the612

results, suggesting most errors were caused by gene mis-identification.613

G Cell segmentation614

For the bottom plots on Figure 6, we first segmented the cells in the selected region with the615

following process. We first obtained the max projection across R × C frames from the the image616

stacks. After applying a Gaussian filter with a sigma of 8 pixels, all the pixels with intensity617

lower than 10% of the maximum intensity were assigned to be zero. Finally, we used a watershed618

segmentation algorithm to identify contiguous cellular regions. This results in 47 segmented cells619

in the region. Four of these occupied less than 100 pixels in total and were removed from the620

analysis.621

H Sparsifying and coarse-to-fine622

H.1 Handling tens of thousands of barcodes with sparsifying and coarse-623

to-fine624

To scale up BarDensr, we tested if eliminating unnecessary barcodes could help accelerate compu-625

tation. For this purpose, we set up a simulation with 53,000 barcodes and 17 sequencing rounds,626

similar to the setup in a larger scale experiment such as (Chen et al., 2018) (Figure 25). We627

generated a dataset with 50 × 80 voxels and a total of 40 spots. We then processed this data in628

two steps.629

In the first step (the ‘coarse’ step), the image was five times downsampled, and BarDensr was630

applied to the downsampled data. For each gene, if the maximum intensity for a rolony density631

was lower than 10−5, that gene was considered to be absent.632

In the second step (the ‘sparsified fine’ step), we then applied BarDensr to the original, full-633

resolution data – but only using those barcodes that weren’t ‘absent’ in the previous step. To634

make this approach even faster, we also used the learned parameters from the downsampled data635

as initial conditions for the algorithm’s run on the full-resolution data. Moreover, in this second636

step, the parameter b and α were not updated at all, since we found that they were learned quite637

accurately in the first step.638

After the first step, 71 out of 53,000 barcodes were kept to be used in the second step. This639

sparsified coarse-to-fine approach sped up our analysis by more than a factor of 10.640
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H.2 Coarse-to-fine641

The method described above involves both sparsifying and using a kind of coarse-to-fine approach.642

We also investigated performance using only the coarse-to-fine aspect. These investigations are643

summarized in Figure 7. First, a 1000 × 1000 image was simulated with 20, 000 spots following644

the simulation process described above, with no dropout (Appendix E). The image was then645

downsampled to 500 × 500 and BarDensr was applied to this downsampled data to estimate646

F, α, a and b. with 20 iterations. These parameters were then used as the initial conditions to run647

the model with the full size image (note that in order to use the parameters from the downsampled648

image to initialize the full-resolution model, we needed to upsample F and a). Finally, we tried649

running the model directly on the full-resolution data (without using the downsampled data to get650

initial conditions). We then compared the results. Both approaches work better if they are allowed651

to run longer, because they use an iterative approach to optimize the loss function. Eventually,652

both approaches yield the same results. However, Figure 7 shows that the coarse-to-fine approach653

is able to achieve the best possible performance three times faster.654

H.3 Sparsifying leads to speedups even in the case of a small barcode655

library656

We also tested the sparsifying approach on the experimental data (Figure 8). The original657

1000 × 1000 image was first five times downsampled to obtain a 200 × 200 ‘coarse’ image, and658

the parameters were learned from this downsampled image (‘coarse’ process). After five times659

upsampling of learned F to obtain the image on the original scale, both the original image and the660

upsampled F were split into 4× 4 patches. Each patch is of size 250× 250 (plus 20 pixel edges in661

the end of both dimension, whenever the coverage of the patch does not exceed the image region).662

These 16 patches cover the entire 1000× 1000 image with overlaps on the edge regions. For each663

patch, the barcodes that have the maximum intensity lower than the maximum intensity of the664

two unused barcodes in the upsampled F were considered to be absent from the region. Each665

patch was then used to fit the model at the original scale to learn F and a, but using a smaller666

amount of barcodes for the binary codebook matrix B. For this ‘fine’ process, the parameter b667

and α were not updated but the ones learned from the coarse process were used. After the model668

was run on all the 16 patches, we needed to stitch the results back together into a single result669

for the entire field of view. This is slightly involved, because the patches concerned overlapping670

regions of voxels. Indeed, we insured that the border-regions between any two patches contained671

20 pixels of overlap. For each voxel in these overlap regions, we used the signal from the patch672

whose center was closest to that voxel. The results were compared to the ‘fine only’ approach. We673

filled F with zero for the removed barcodes in each patch, in order to keep the original dimension674

for the following process.675

In order to compare the agreement between ‘sparsifying’ approach and the ‘fine only’ approach,676

we computed two ROC curves. In each curve, one of the results was used as the gold standard for677

the other. Specifically, when using the ‘fine only’ as the gold standard, a threshold was determined678

based on the maximum intensity of the unused barcodes in the ‘fine only’ results, and a binary679

matrix of the size of the original image (1000×1000) was generated for each barcode (‘0’ indicates680

there is no signal, ‘1’ indicates there is signal, for each pixel), which is the final gold standard to681

compare with the sparsifying result. The same process applies when using the sparsifying result as682

the gold standard. For computing ROC, rolonies within 3 pixel radius of F with the same barcode683

j were considered to belong to the same rolony.684
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I Algorithm Details685

The primary computational challenge of this method is to solve a constrained optimization prob-
lem.

min
θ∈Θ

Lsparsity(θ)

subject to Lreconstruction(θ) ≤ ω,

where

Lreconstruction(θ) ,
∑
m,r,c

Xm,r,c −

am + br,c + αr,c

J,M,C∑
j,m′,c′

Km,m′Fm′,jϕc,c′Zr,c′,j

2

Lsparsity(θ) ,
∑

m,r,c,c′,j

αr,cFm,jφc,c′Zr,c′,j

θ = (F, ρ, α, b, a, ϕ) .

Here Θ denotes the set of feasible parameters; in our case, Θ simply requires that all variables686

are at least 10−10. The threshold 10−10 was chosen somewhat arbitrarily and serves to ensure687

numerical stability of the optimization process. Technically we also believe that ρc < 1 for every688

c, but in practice we found it unnecessary to enforce this constraint.689

We approach the reconstruction constraint using Lagrange multipliers. We define:

L(θ, λ) = Lreconstruction(θ) + λLsparsity(θ)

θ∗(λ) = arg min
θ∈Θ
L(θ, λ)

L∗reconstruction(λ) = L(θ∗(λ)).

Assuming we can evaluate L∗reconstruction(λ), we can solve the overall constrained optimization690

problem by taking691

λ∗ = max {λ : L∗reconstruction(λ) ≤ ω}
and taking our final parameters to be θ∗(λ∗). It is unclear whether strong duality holds in this692

case, so the resulting parameters may not be optimal. However, in practice we find that they give693

useful results for uncovering rolonies.694

In conclusion, to solve our overall problem it suffices to be able to solve minθ∈Θ L(θ, λ) for any
fixed λ. We approach this problem via a blockwise coordinate descent approach. Specifically, we
start with an initial guess and iterate through a variety of updates until convergence is achieved.
Throughout, we will use the notations

[x]+ =

{
x if x > 10−10

10−10 otherwise

xmabm,r,c = Xm,r,c − am − br,c
X(j)
m,r,c = Xm,r,c − am − br,c − αr,c

∑
j′ 6=j

∑
m′,c′

Km,m′Fm′,j′ϕc,c′Zr,c′,j′

F̃m,j =
∑
m′

Km,m′Fm′,j .

α update. For each r, c, the relevant portion of the loss for αr,c is given by

L(αr,c) =
∑
m

Xm,r,c −

am + br,c + αr,c
∑
j,c′

F̃m,jϕc,c′Zr,c′,j

2

+ λ
∑
m,c′,j

αr,cFm,jϕc,c′Zr,c′,j + · · · .
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Fixing all other variables, subject to the constraint that αr,c ≥ 10−10, the lowest possible695

value of this loss is given by696

αr,c ←


∑
m

(
xmabm,r,c

∑
j,c′ F̃m,jϕc,c′Zr,c′,j

)
−
∑
m,c′,j Fm,jϕc,c′Zr,c′,j∑

m

(∑
j,c′ F̃m,jϕc,c′Zr,c′,j

)2


+

.

Note that this update can be done in parallel across all r, c.697

ρ update. We update the variable ρ via a line-search. One at a time, we look at ρc and consider698

possible values for this parameter in the interval [ρc/2, 3ρc/2]. We search for values of ρc in699

this interval which minimizes the loss.700

a, b updates. Fixing all other variables, the best possible values for a are easy to find. The same
goes for b. These values are given by

am ←

 1

RC

∑
r,c

Xm,r,c − br,c − αr,c
∑
j,c′

F̃m,jϕc,c′Zr,c′,j


+

brc ←

 1

M

∑
m

Xm,r,c − am − αr,c
∑
j,c′

F̃m,jϕc,c′Zr,c′,j


+

.

F update. We make updates to F one column at a time. We select a random column, j∗, and then
update the values of {Fm,j∗}m∈{1···M}. We update these values via a projected coordinate

descent algorithm. Let f denote the jth column of F and define

gr,c = αr,c
∑
m′,c′

ϕc,c′Zr,c′,j∗

‖g‖22 =
∑
r,c

g2
r,c

φm =
∑
r,c

(∑
m′

(
Km,m′X

(j)
m′,r,c

)
− 1

2
λ

)
gr,c.

In terms of these objects, it is straightforward to show that the relevant portion of the loss701

can be written as702

L(f) = ‖g‖2 ‖Kf‖2 − 2fTφ+ · · · .
We would like to minimize this subject to the constraint that fm ≥ 10−10. To approach703

this problem we use a projected gradient descent approach. We start by selecting a search704

direction, namely the gradient of the Lagrangian:705

∆ = φ− ‖g‖2KTKf.

We then zero out the coordinates of this search directions which point negatively along the706

active constraints:707

∆̃m =

{
0 if fm = 10−10 and ∆m ≤ 0

∆m otherwise.

We then update f by moving it somewhat in this search direction and then forcing it to be708

positive. How far should we move in the search direction? Following (Kim et al., 2013), we709

use the following carefully-chosen step-size:710

f ←

f +
φT ∆̃− ‖g‖2KTK∆̃∥∥∥K∆̃

∥∥∥2 ∆̃


+

.
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If we did not force f to be positive, such updates would yield the best possible distance to711

travel along the search direction. However, due to the positivity-enforcement, one can find712

pathological examples where applying this update actually makes the loss worse. To be safe,713

we use a backtracking procedure; as long as the loss is made actively worse by this step, we714

cut the learning rate in half and try again.715

ϕ update Fix c∗. Let us look at the loss with respect to ϕc∗,1, ϕc∗,2 · · ·ϕc∗,C . We find that it is
given by

L(ϕc∗) =
∑
m,r

xmabm,r,c∗ −
∑
c′

ϕc∗,c′

∑
j,m′

αr,c∗Km,m′Fm′,jZr,c′,j

2

+ λ
∑
c

ϕc∗,c′

∑
m,j

αr,cFm,jZr,c′,j

+ · · · .

Define

Γc1,c2 =
∑
m,r

∑
j,m′

αr,c∗Km,m′Fm′,jZr,c1,j

∑
j,m′

αr,c∗Km,m′Fm′,jZr,c2,j


φc =

∑
m,r

xmabm,r,c∗

∑
j,m′

αr,c∗Km,m′Fm′,jZr,c,j

− 1

2
λ

∑
m,j

αr,c∗Fm,jZr,c,j

 .

Fixing all other variables, the problem of minimizing the loss with respect to ϕc∗ can then
be understood as a quadratic programming problem.

min
ϕc∗

1

2
ϕTc∗Γϕc∗ − ϕTc∗φ

subject to ϕc∗ ≥ 10−10

This problem is low dimensional and easy to solve using an off-the-shelf package. We use716

scipy.optimize.nnls.717

I.1 Selecting ω718

So far, we have assumed that ω used in Equation 1 is a user-provided parameter. This ω repre-719

sents the the maximum tolerated reconstruction error. There are three methods for choosing this720

parameter which we can suggest:721

Interactively. If the observation model is correct, the predicted values of X should be ‘close’722

to the observed values. To discern this, our package provides an interactive method for723

selecting an ω which is satisfactory. This function starts with very large error tolerance724

(specifically we take ω to be half the maximum observed intensity. The function then allows725

the user to visually compare the true observations with the predicted values estimated with726

this value of ω. If the predicted values appear to miss important features of the observed727

data, the user can then reduce ω. The optimization will be re-run (warm-starting from the728

old initial condition, so this does not require very much time), and new predicted values are729

displayed. The function allows the user to continually reduce ω until the user deems that730

all the important features of the observed data are captured by the predicted values.731

Automatically. An automatic method can be achieved by starting with the original data, slightly732

blur it, and take average squared magnitude of the difference. This magnitude can be used733

to estimate the amount of speckle noise in the image. We can then choose ω so that the734

average reconstruction loss at each voxel is less than twice the value of this speckle noise.735
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Via manually-labeled data. If the user is willing to annotate a portion of their data with their736

beliefs about which rolonies are located at which positions, this annotated data can be used737

to select the ω. Specifically, one can select the ω which yields the most accurate rolony738

detection.739

In practice, we find that the interactive method is the most straightforward to use.740
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