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Abstract 

Genome-wide association studies (GWAS) have uncovered thousands of single 

nucleotide polymorphisms (SNPs) that are associated with Parkinson's disease (PD) 

risk. The functions of most of these SNPs, including the cell type they influence, and 

how they affect PD etiology remain largely unknown. To identify functional SNPs, we 

aligned PD risk SNPs within active regulatory regions of DNA in microglia, a cell type 

implicated in PD development. Out of 6,749 ‘SNPs of interest’ from the most recent PD 

GWAS metanalysis, 73 were located in open regulatory chromatin as determined by 

both ATAC-seq and H3K27ac ChIP-seq. We highlight a subset of SNPs that are 

favorable candidates for further mechanistic studies. These SNPs are located in 

regulatory DNA at the SLC50A1, SNCA, BAG3, FBXL19, SETD1A, and NUCKS1 loci. A 

network analysis of the genes with risk SNPs in their promoters, implicated substance 

transport, involving autophagy and lysosomal genes. Our study provides a more 

focused set of risk SNPs and their associated risk genes as candidates for further 
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follow-up studies, which will help identify mechanisms in microglia that increase the risk 

for PD. 

 

Introduction 

 Genetic studies suggest that a significant portion of Parkinson’s disease (PD) risk 

is heritable [1, 2]. Unlike some rare disorders caused by high penetrance mutations in a 

small number of genes, PD is linked to many low penetrance variants with more modest 

influence on disease risk. The latest genome-wide association study (GWAS) of PD has 

identified over 90 independent SNPs that are correlated with increased risk for the 

disease [2]. However, these 90 SNPs tag larger blocks of chromatin that contain many 

other SNPs in linkage disequilibrium. In other words, the independent SNPs can be 

considered surrogates for hundreds of additional SNPs that are co-inherited and 

therefore carry the same statistical association for risk. In total, there are thus tens of 

thousands of SNPs that are associated with increased risk for PD, but not all of them 

are causal for the disease or even functional in relevant cellular and developmental 

contexts. Moreover, the majority of these SNPs are located in non-coding DNA [3]. 

Thus, the first challenges are to 1) determine which SNPs are functional and 2) dissect 

the mechanisms by which each allele of a risk SNP leads to biological differences.  

Multiple strategies are used to define or narrow down which SNPs are functional. 

In this study, we considered a SNP provisionally functional if it was located in active 

regulatory DNA and predicted to disrupt one or more transcription factor binding motifs.  

These SNPs presumably affect the expression of one or more genes through allele-

specific binding of transcription factors. A confirmation of this general mechanism was 
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demonstrated by Soldner et al. [4]. The authors found that two transcription factors, 

EMX2 and NKX6-1, had a lower binding preference for the risk allele of a SNP located 

within an enhancer at the SNCA gene. In turn, this led to a slight increase in SNCA 

expression. For nearly all of the thousands of other PD risk SNPs, similar mechanisms 

have yet to be evaluated. 

A SNP may be functional in one cell type but not another, depending on the cell's 

regulatory landscape. It is therefore essential to assess genetic risk in a cell-type-

specific context. For PD, there are multiple cell types, other than dopaminergic neurons, 

that are likely involved in disease development and progression. Cell types like 

astrocytes, oligodendrocytes, and microglia express PD-associated lysosomal gene 

sets at higher levels than neuronal cell types [5]. Immune cells of the myeloid lineage, 

including CNS resident microglia, also highly express genes at PD associated loci [6-8], 

suggesting that glia and immune cell types are candidates in which to examine genetic 

risk. Although PD risk may manifest in different cell types, here we focus on microglia.  

Microglia are unique in that they are both a glia and an immune cell. There is also an 

extensive body of literature demonstrating the involvement of microglia in PD through 

their role in prolonged CNS inflammation and the propagation of alpha-synuclein [9]. 

However, there is still a limited understanding of the mechanisms leading to microglia 

dysregulation in PD. Evaluating genetic risk mechanisms in microglia will elucidate how 

this cell type may contribute to the risk of developing PD.  

The overall goal of this study was to find functional SNPs and match them to the 

genes that they affect, revealing processes that are altered in microglia during PD. We 

employed multiple strategies to prioritize 6,749 "SNPs of interest,” from the latest 
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GWAS metanalysis [2], down to a subset relevant in microglia. We used ATAC-seq to 

identify SNPs located in regions of open chromatin in iPSC-derived microglia. We also 

used published ATAC-seq and H3K27ac ChIP-seq data sets from primary ex vivo 

microglia tissue [10]. These data sets were combined to identify SNPs located in 

consensus regions of open chromatin surrounded by H3K27ac marks, which demarcate 

active enhancers and promoters. Using this strategy, we report on a list of 73 SNPs as 

candidates for more in-depth mechanistic evaluation in microglia. We also found that 

multiple SNPs are located in the promoters of genes involved in the transport of 

substances in and between cells. Many of these genes are linked to 

lysosomal/autophagy functions, indicating that these processes may be impaired in 

microglia during PD. 

 

Materials and Methods 

iPSC-derived microglia cell cultures 

Induced pluripotent stem cells (iPSCs) were obtained from ATCC (ACS-1019, 

DYS0100). For maintenance, they were cultured in StemFlex medium (ThermoFisher, 

A3349401) on Geltrex LDEV-free reduced growth factor basement membrane 

(ThermoFisher, A1413201). When cells reached 80% confluency, they were passaged 

using ReLeSR (STEMCELL technologies, 05872). For a detailed protocol of iPSC 

differentiation to microglia, see McQuade et al. [11]. Briefly, iPSCs were differentiated 

into hematopoietic progenitor cells (HPCs) over the course of 11 days using the 

STEMdiff Hematopoietic kit (STEMCELL technologies, 05310). Non-adherent cells were 

then collected and analyzed, using FLOW, for the presence of CD43. About 96% of 
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these cells were CD43+. Roughly 100,000 HPCs per well were seeded into a 6-well 

plate in custom made media containing DMEM/F12 (ThermoFisher, 11320033), 2X 

insulin transferrin selenite (Gibco, 41400045), 2X B27 (Gibco, 17504044), 0.5X N2 

(ThermoFisher, 17502048), 1X glutamax (Gibco, 35050061), 1X non-essential amino 

acids (Gibco, 11140050), 5 µg/mL human insulin (Sigma, 12643), 400 µM 

monothioglycerol (Sigma, M1753), and 1X pen strep (Gibco, 15140-122). For the first 

24 days, new medium was added every other day starting on day 2, and supplemented 

with 100 ng/mL IL-34 (Peprotech, 200-34), 50 ng/mL TGFβ1 (Peprotech, 100-21), and 

25 ng/mL M-CSF (Peprotech, 300-25), just before adding the media to cells. On day 25, 

all media was changed and supplemented with 100 ng/mL CD200 (Novoprotein, C311) 

and 100 ng/mL CX3CL1 (300-31), in addition to the three cytokines listed above. Fresh 

medium containing all five cytokines was added to the cells on day 27. On day 28, cells 

were cryopreserved in BamBanker (Wako, NC9582225). Expression of microglia 

specific markers Iba1 and TMEM119 were confirmed using immunofluorescence. 

 

ATAC-seq 

Microglia were thawed and cultured for at least one week prior to an ATAC-seq 

experiment. Samples that yielded the best fragmentation started from a total of 10K, 

31K, and 100K cells. The pre-specified number of cells were aliquoted into 1.5 mL tubes 

and centrifuged at 400 xg for 7 minutes. The supernatant was removed, and the cells 

were washed once with 50 µl ice-cold PBS. The cells were then resuspended in ice-cold 

Lysis Buffer containing resuspension buffer (1M Tris-HCl (final conc. = 10mM), 5 M 

NaCl (final conc. = 10 mM), 1M MgCl2 (final conc. = 3 mM), and nuclease-free H2O), 
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10% NP-40 (final conc. = 0.1% v/v), 10% Tween-20 (final conc. = 0.1% v/v), and 1% 

Digitonin (Promega, G9441) (final conc. = 0.01% v/v). Cells were then incubated on ice 

for 3 minutes. One mL of wash buffer (990 µl resuspension buffer + 10 µl Tween-20 

(final conc. = 0.01% v/v) was added to each tube. The tubes were then inverted 3X 

gently and centrifuged at 500 xg for 5 minutes. For each sample, 10 µl of transposition 

mix (7.5 µl 2X TD Buffer (Illumina, FC-121-1030), 2.05 µl 1X PBS, 0.15 µl 10% Tween-

20 (final conc. = 0.1 v/v), 1% Digitonin (final conc. = 0.01% v/v), and 0.15 nuclease-free 

H2O) was added. Five µl of ATM (Illumina, FC-121-1030) was then added separately to 

each sample. The samples were incubated for 60 minutes on a thermomixer at 1,000 

rpm. Following incubation, the samples were placed on ice, and 5 µl of NT buffer 

(Illumina, FC-121-1030) was added to each tube to neutralize the tagmentation 

reaction. Tubes were then centrifuged at 300 xg at 20°C for 1 minute and incubated at 

room temp for 5 minutes. DNA purification was done using the Zymo clean and 

concentrator kit (Zymo, D4014). 

 

For library generation, 5 µl of Illumina Nextera DNA unique Dual Indexes (Illumina, 

20027214) plus 25 µl NEBNext High-Fidelity 2X PCR Master Mix (NEB, M0541L) was 

added to 20 µl of purified transposed DNA. The transposed fragments were amplified 

starting at 72°C for 5 minutes, 98°C for 30 seconds and then five cycles of 98°C for 10 

seconds, 63°C for 30 seconds, and 72°C for 1 minute. qPCR was used to determine 

how many additional cycles to run on each sample. The PCR mix was composed of 5 µl 

of the partially amplified library from the previous step, 0.5 µl Illumina primer 1 (25 µM, 

5’-AATGATACGGCGACCACCGA-3’), 0.5 µl Illumina primer 2 (25 µM, 5’-
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CAAGCAGAAGACGGCATACGA-3’), 0.75 µl 20X Eva Green, and 5 µl NEBNext High-

Fidelity 2X PCR Master Mix. Cycle conditions were set to 98°C for 30 seconds, and 20 

cycles of 98°C for 10 seconds, 63°C for 30 seconds, and 72°C for 1 minute. The R vs. 

cycle number was plotted on a linear scale. Additional cycles were calculated by 

determining the number of cycles needed to reach 1/3 of the maximum R. PCR was 

continued on the remaining partially amplified libraries for the appropriate number of 

cycles calculated in the previous step.  

 

Size selection and Sequencing of ATAC-seq Libraries 

Library quantification, size selection, and sequencing were carried out by the genomics 

core at VAI. PCR amplified libraries were size selected for fragments 200-800 bp in 

length using double-sided SPRI selection (0.5x followed by 1x) with KAPA Pure beads 

(Kapa Biosystems). The quality and quantity of the finished libraries were assessed 

using a combination of Agilent DNA High Sensitivity chip (Agilent Technologies, Inc.), 

and QuantiFluor® dsDNA System (Promega Corp., Madison, WI, USA). 75 bp, paired-

end sequencing was performed on an Illumina NextSeq 500 sequencer using a 150 bp 

sequencing kit (v2) (Illumina Inc., San Diego, CA, USA) to produce a minimum of 50M 

paired-reads per library. Base-calling was done by Illumina NextSeq Control Software 

(NCS) v2.0, and the output of NCS was demultiplexed and converted to FastQ format 

with Illumina Bcl2fastq v1.9.0. 
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Identification of ATAC-seq peaks 

Four replicates of one iPSC-derived microglia cell line and thirteen replicates of ATAC-

seq data from different primary microglia samples (published data) were used to find 

consensus ATAC-seq peaks. ATAC-seq peak data from primary microglia were 

obtained from dbGAP deposited by the Glass lab [10]. All data from iPSC-derived and 

primary microglia were processed the same way. Sequencing depth for iPSC-derived 

microglia was about 40-50 million, and read length was about 75 base pairs. For 

primary microglia, samples were sequenced to a depth ranging from 20-50 million 

reads, and the read length ranged from 47-76 base pairs [10]. Using Trimgalore, reads 

were trimmed or removed if they were below 20 bp in length. Forward and reverse 

reads for iPSC-derived microglia, and single-end reads for primary microglia were then 

aligned to the hg19 genome using the default settings for BWA v0.7.17 [12]. Multiqc 

v1.0 [13] was then run on all samples following alignment. Samblaster v0.1.24 [14] was 

used to sort and mark duplicate reads in bam files, and Samtools v1.9 [15] was used to 

remove duplicate reads and index the bam files. Peaks were then called using MACS2 

v2.1.1 [16] default parameters. GenomicRanges v3.11 [17] was used to generate a 

consensus peak set (starting from narrowPeak files). We used peaks present in 3/4 

samples for iPSC-derived microglia and peaks that were present in 10/13 primary 

microglia samples.  

 

PD risk SNPs and their overlap with ATAC-seq peaks 

The list of 6,749 SNPs was obtained from the Nalls et al. bioRxiv version [18] from a 

supplemental file labeled “SNPs of interest tagging genes for functional inferences and 
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networks analysis.” Using Bedtools, we searched for overlaps between the location of 

PD risk SNPs and ATAC-seq peaks from iPSC-derived microglia. The intersecting 

regions were then evaluated in IGV for SNPs that overlapped or were in close proximity 

(within 100 bp) of ATAC-seq and H3K37ac ChIP-seq peaks from primary microglia. In 

this analysis, we found a total of 73 SNPs, which we then ranked by GWAS p-value 

(Supplemental Table S1). 

 

Analysis for correlation of degree from allelic balance vs. effect size 

To calculate the degree from allelic balance for each SNP, we took the absolute value 

of 0.5 minus the allele frequency. To calculate the effect size of each SNP, we took the 

absolute value of 1 minus the odds ratio. The association between the degree from 

allelic balance and the log(odds) was estimated using R v3.6.0 (https://cran.r-

project.org/) via a robust linear regression and MM estimation [19]. 

 

SNP annotation and network analysis 

The locations of the 73 SNPs in ATAC-seq peaks were annotated using ChIPseeker 

v3.11 [20]. We then took the top 38 genes from supplemental Table 1, with SNPs in 

their promoters, and entered them into the MSigDB database [21, 22] to evaluate any 

overlap with GO or immunologic gene sets. Default parameters, including an FDR q-

value less than 0.05, were used. The GO gene sets that were manually selected are 

derived from the Gene Ontology Resource [23, 24]. The gene sets for the immunologic 

categories come from individual studies [25-28]. Their GSE numbers can be found in 

Figure 3 B. 
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Results 

ATAC-seq peaks in iPSC-derived microglia vs. primary microglia 

We evaluated genetic risk in microglia using the iPSC-derived microglia model 

developed by McQuade et al. [11]. Following the differentiation of iPSCs to mature 

microglia, we performed ATAC-seq to map genome-wide regions of accessible 

chromatin. iPSC-derived model systems represent a promising alternative to primary 

tissue due to their relative ease of creation and experimental manipulation. However, 

culturing cells in an in vitro environment may affect the chromatin landscape [10]. 

Therefore, to augment our newly generated ATAC-seq data from iPSC-derived 

microglia, we also obtained ATAC-seq data from 13 ex vivo primary microglia samples 

published by the Glass laboratory. [10]. For these samples, microglia were isolated from 

the brain tissue of 13 different patients ranging in age from 2 to 17 years. These 

samples were also obtained from various regions, including the temporal cortex, the 

frontal cortex, the occipital cortex, and the cerebellum. We combined the data sets to 

identify active chromatin regions in iPSC-derived microglia shared with a heterogeneous 

population of primary microglia. Presumably, these common loci are relevant to the 

function of a broad range of microglia types. Peak sets for iPSC-derived microglia (both 

overlapping and non-overlapping with primary microglia) can be found in the 

supplement (Supplemental Table S2 and S3). 

Many ATAC peaks are shared between iPSC-derived microglia and primary 

microglia. Out of 73,276 peaks present in iPSC-derived microglia, 60,139 (~82%) 

overlap with primary microglia (Figure 1 A). An example of peak consistency at a 

particular locus is shown in Figure 1 B around CX3CR1, a gene known to be expressed 
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in microglia. For subsequent data analyses, we used the peaks present in both iPSC-

derived and primary microglia.  

 

Finding candidate functional SNPs  

We identified SNPs that are potentially functional by searching in regions of open 

chromatin (mapped using ATAC-seq). In addition to using ATAC-seq, we also obtained 

published H3K27ac ChIP-seq data [10] from 3 primary microglia samples to further 

identify SNPs within regulatory regions. Although SNPs likely function in multiple ways, 

those that reside in these regions may function by disrupting transcription factor binding, 

leading to changes in gene expression [29]. To identify such SNPs, we first overlaid the 

location of PD risk “SNPs of interest” from Nalls et al. [18] with iPSC-derived and 

primary microglia ATAC-seq peaks. Out of 6,749 SNPs, 73 were located in ATAC peaks 

and were in or within 100 bp of an H3K27ac ChIP-seq peak present in primary microglia 

(Supplemental Table S1). We observed a significant positive correlation (p-value = 3.24 

x 10-3) between the degree of deviation from allelic balance and effect size on risk 

(Supplemental Figure S1), indicating, as expected, that rarer SNPs have higher 

penetrance and a more substantial influence on PD risk.  

From the 73 SNPs in ATAC peaks, we highlight six top candidate risk SNPs (Figure 

2) based on GWAS p-value and magnitude of effect on risk (odds ratio). The top-

ranking SNP based on both p-value (2.208x10-27) and odds ratio (1.97) is rs12726330. It 

is located within the promoter of SLC50A1, which is a gene that encodes for the protein 

SWEET1 [30], whose function is not completely known [31]. The second candidate 

rs2737004 (p-value = 7.60x10-11), is located within a potential enhancer in an intron of 
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SNCA. SNCA codes for the protein alpha-synuclein, which is mostly known as a 

presynaptic neuronal protein that regulates neurotransmission [32].  Rs144814361 is 

located within the 5’UTR/promoter of the BAG3. This SNP has the third-lowest p-value 

(9.07x10-11) and the second-highest odds ratio (1.55). BAG3 is a gene that is critical for 

preventing apoptosis during aging and under conditions of stress [33]. Rs3813020 has 

the fourth-lowest p-value (2.05x10-10). It is in the promoter of FBXL19. FBXL19 is a 

member of the Skp1-Cullin-F-box family of E3 ubiquitin ligases that regulates the 

ubiquitination and degradation of inflammatory cytokines like TNF‐α, IL‐1β, and IL‐6 

[34]. Rs4889599 (p-value = 7.34x10-10) is located in the promoter of SETD1A. SETD1A 

is a histone methyltransferase complex component that regulates mono, di, and 

trimethylation of histone H3 at Lys4 [35]. Lastly, rs823114, with the 7th lowest p-value 

(4.35x10-09), and a less significant SNP, rs7536483, are located in the promoter of 

NUCKS1 (Nuclear casein kinase and cyclin-dependent kinase substrate 1). NUCKS1 is 

a chromatin-associated protein with a role in the DNA damage response, DNA repair, 

metabolism, and inflammatory and immune responses, but its overall function is still 

unknown [36]. Other than rs4889599, we observed that these SNPs are located in 

ATAC-peaks that are flanked by H3K27ac ChIP-seq peaks. This pattern is what we 

typically consider optimal when evaluating candidate loci because it is indicative of 

nucleosome displacement, likely due to transcription factor occupancy where the ATAC-

seq peak is in the middle of the H3K27ac peak.  

We used MotifbreakR to evaluate which SNPs potentially regulate gene expression 

via altered transcription factor binding (Supplemental Figure S4) [37]. Figure 3 shows 

the top three transcription factors, based on the strongest allele-specific effect on 
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binding, for the top four ranking SNPs in Supplemental Table S1. Allele-specific binding 

of these transcription factors may affect the expression of SLC501A, SNCA, BAG3, 

FBXL19, or multiple genes in cis or trans. Some transcription factors like RAD21, 

ZNF143, and CTCF regulate gene expression through the facilitation of chromatin 

looping [38-40]. Other transcription factors in Figure 3, like ETS1, IRF3, and REST, 

have diverse functions, including developmental regulation, regulation of genes involved 

in cellular responses and immunity, and epigenetic remodeling, respectively [41-43].  

  

Multi-SNP network analysis of SNPs in promoters 

As a first step to identify gene networks that may be altered in microglia during 

PD, we mapped the location of the 73 “SNPs of interest” in ATAC-seq peaks. 

Unexpectedly, the majority, 53 (~72%), were located in promoters (Figure 3 A). 

Although each SNP may affect multiple genes, the most likely risk gene for this set of 

SNPs is the gene linked to those promoters. Thus, we took the top ranking 38 genes 

with SNPs in their promoters (listed in Supplemental Table S1) and computed overlaps 

with gene sets from MSigDb [21, 22, 44]. Gene sets queried for overlap originate from 

the Gene Ontology (GO) Network and from individual studies that have curated 

immunologic signatures categories (see methods for more details). Before running the 

analyses, a significance threshold of FDR q-value < 0.05 was set. Gene sets belonging 

to immunologic signatures categories showed a significant overlap. The most significant 

categories were related to GO gene sets involved in cellular localization of 

substances/macromolecules. Many of the proteins in these categories, like STX4, 
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BAG3, CYLD, VAMP4, and others, have known roles in autophagy and lysosomal 

protein degradation [45-49]. 

 

Discussion 

Here we aimed to find a subset of PD-associated SNPs located in regions of 

active regulatory DNA in microglia in order to identify functional risk SNPs in this cell 

type. In doing so, we substantially narrowed down 6,749 PD associated SNPs to a more 

tractable list of 73 SNPs. All of these SNPs are predicted to disrupt transcription factor 

binding motifs, suggesting that they may be functional via allele-dependent gene 

expression that consequently increases risk for PD. 

Although a comprehensive analysis of the 73 SNPs in ATAC-seq peaks is our long-

term goal, we have highlighted some top-ranking SNPs as candidates for immediate 

mechanistic follow up. For brevity, we only discuss two SNPs within genes that have 

been previously linked to PD. Rs2737004 is located within SNCA in a likely intergenic 

enhancer and may therefore affect the expression of the protein (alpha-synuclein) 

encoded by SNCA. Expression data (eQTL data) from GTEx does indeed show that the 

GG genotype of rs2737004, with G being the allele that carries the risk, is associated 

with increased expression of SNCA in the cortex.  However, these findings have yet to 

be validated in microglia. In terms of a mechanism that may explain the allele-specific 

expression of SNCA, rs2737004 disrupts three separate binding motifs for CTCF 

(Figure 4 and Supplemental Table S4). CTCF can serve as an activator, a repressor, or 

an insulator, to block the interaction between enhancers and promoters [50]. Alterations 
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in CTCF binding may, therefore, allow for the unregulated expression of SNCA or other 

genes. 

Alterations in the expression level and the sequence of alpha-synuclein have been 

linked to familial and sporadic forms of PD [51, 52]. However, many aspects of alpha-

synuclein’s functions are still under investigation. Alpha-synuclein is known to function 

within microglia, though its roles in neurons are usually emphasized in the literature. 

Studies have shown that alpha-synuclein can act as a chaperone through its interaction 

with Hsp70 [53, 54]. Hsp70 plays an essential role in protein quality control under 

conditions of stress [55]. It is therefore likely to be an important protein in microglia as 

this cell type is highly responsive to any changes that disturb homeostasis in the brain 

[56]. Indeed, Hsp70 can enhance phagocytosis by macrophages [57]. In addition, 

impairment of HSP70/HSP90 pathways leads to increased protein aggregation [58]. 

Thus, although not yet shown, alterations in the expression of SNCA may indirectly 

affect the Hsp70-mediated process of protein clearance in microglia.  

Another strong candidate for follow up studies is rs144814361, located in the 

promoter of BAG3. BAG3 (Bcl associate athanogene 3) is a member of the BAG family 

of antiapoptotic proteins that, like alpha-synuclein, functions as a co-chaperone to 

regulate the activity of Hsp70 [33]. One of its key functions is to coordinate the selective 

degradation of misfolded and aggregated protein through selective macro-autophagy 

[33, 59]. This process is especially critical as an adaptive response under conditions of 

stress or aging [46]. BAG3 is linked to multiple age-related neurodegenerative 

disorders, including ALS, Alzheimer's disease, and Parkinson’s disease [33, 60], and 

plays a protective role by removing disease-associated protein aggregates [60-62]. 
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Work described by Cao et al. showed that BAG3 expression was increased in the 

midbrain of SNCAA53T transgenic mice and in cultured neuronal cells overexpressing 

wild-type SNCA [63]. The authors also found that BAG3 overexpression enhanced 

autophagy and the clearance of alpha-synuclein. This study demonstrates the relevance 

of BAG3 as a vital mediator of protein quality control during stress and aging in neurons. 

However, BAG3’s involvement in autophagy and lysosomal protein clearance in 

microglia has yet to be determined. 

The role of both SNCA and BAG3 as co-chaperones to Hsp70 suggests that stress-

related protein clearance may be a mechanism in microglia that is influenced by multiple 

genetic variants. Further experimental validation is needed to determine if rs2737004 

and rs144814361 affect the expression of SNCA and BAG3, respectively, and if so, 

what the observable effects are on microglia function. 

For our network analysis, we searched for genes, with risk SNPs in ATAC peaks 

at their promoters, that overlapped immune pathways, due to the importance of 

microglia in the CNS immune response. A number of the genes singled out by this 

analysis are interesting due to their relevance to inflammatory cells. We only discuss 

SLC50A1, which has the most significant p-value out of the 73 SNPs in Supplemental 

Table S1. SLC50A1 encodes for the sugar transporter SWEET1. There is little known 

about its function [31], but as a glucose transporter, it could significantly impact the 

function of immune cells such as microglia. Activation of immune cells requires 

increased glucose utilization, which is in part mediated by the upregulation of glucose 

transporters [64].  Alterations in SLC50A1 expression may consequently affect microglia 

activation, but this has yet to be validated.  
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Consistent with the role of SNCA and BAG3 in protein clearance, multiple other 

genes from our network analysis (Figure 3) are linked to lysosomal and autophagy 

functions. For example, STX4 facilitates the fusion of autophagosomes to the plasma 

membrane [49]. CYLD, a deubiquitinase specific for lysine63-linked polyubiquitin 

chains, has been shown to play a role in neurodegeneration by removing ubiquitin from 

synaptic proteins, preventing their autophagic removal [65]. NMD3 is a 60S ribosomal 

subunit protein that, when inhibited, may induce autophagy and, when hyperactive, may 

decrease autophagy [66, 67]. Loss of VAMP4, a vesicle-associated membrane protein, 

has been linked to the accumulation of dysfunctional lysosomes and reduced 

autophagic lysosomal degradation [48]. In addition to the genes mentioned above, other 

genes from this network analysis are associated with autophagic and lysosomal 

processes. Most of the SNPs in these genes' promoters have eQTL values that show 

expression levels of these genes in various tissues is allele-dependent, implying that 

autophagy and lysosomal pathways may be affected by many of these SNPs.  

Prior studies indicate that autophagy/lysosomal processes are altered in PD, and 

they point to specific genes such as PINK1, LRRK2, GBA, and ATP13A2 that may be 

involved, but much of these findings are from multiple cell types or neuronal populations 

[68]. For microglia, our data shows that, except for a SNP in LRRK2, there are no 

“SNPs of interest” located in ATAC peaks at regulatory DNA at well-known PD 

associated lysosomal genes. Instead, the genes listed in Figure 3 may be the ones 

specifically affected in microglia and are the ones involved in autophagy and lysosomal 

dysfunction in this cell type during PD. Indeed, microglia have been shown to play an 

important role, more so than other cell types, in the degradation of alpha-synuclein, 
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which is mediated through their lysosomal and autophagy functions [69]. However, 

there are still a limited number of studies investigating the role of lysosomal and 

autophagic dysfunction in microglia during PD. Further studies are needed to confirm if 

the genes in Figure 3 or other genes belonging to the same network are affected by the 

risk variants we highlight in this study. This additional work will help to shed light on the 

contribution of microglia to PD risk. 

There is much work to be done to validate the target risk genes of the 73 SNPs 

identified in this study. When defining risk genes, as we have done here, a common 

approach is to take the nearest genes to the SNP. Whereas this approach has provided 

substantial insight into PD related pathways, it may not reveal the full extent of gene 

targets because a SNP may affect genes multiple kilobases away or even on different 

chromosomes [70]. Therefore, it will be essential to validate our preliminary findings with 

further experimental follow-up studies. Techniques such as genomic editing, using 

CRISPR/Cas9 to either create a small lesion at the SNP or exchange one allele for the 

other, followed by RNA-seq, allows for the evaluation of allele-specific effects on gene 

expression. High-resolution chromatin conformation capture assays like 3C and 4C can 

then be utilized to confirm regulatory DNA-gene contacts affected by a risk SNP. The 

identified risk genes can then be evaluated, as a set, for any associations with biological 

processes, revealing potential mechanisms for further hypothesis testing. 

Our data provide a starting point for dissecting genetic risk in microglia. Although 

multiple gene networks, such as those involved in inflammation, may be affected by PD 

risk SNPs, our assessment of individual SNPs like the ones at BAG3 and SNCA, and 

our multi-SNPs network analysis, supports the hypothesis that autophagy/lysosomal 
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processes may be altered within microglia in PD. The extent to which microglia 

contributes to defects in autophagy and lysosomal functions in PD remains an opened 

question that should be addressed due to potential impacts on alpha-synuclein 

aggregation. We advocate for more post-GWAS testing of these risk variants to uncover 

genetic factors that increase PD risk. There are currently no treatments to modify the 

progression of PD. Additional studies that build on our findings will help understand the 

complex genetic etiology of PD and identify alternative disease-modifying targets. 
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Supplemental Figure Legends 

Supplemental Table S1. 73 PD risk SNPs in ATAC-seq peaks in microglia. The 

SNPs in this table are ranked based on significance (GWAS p-value for risk). SNPs are 
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listed with GWAS statistics from Nalls et al. [2]. ChIPseeker annotations are listed in the 

last column. 

 

Supplemental Table S2. ATAC-seq peaks from iPSC-derived microglia 

 

Supplemental Table S3. ATAC-seq peaks shared by iPSC-derived and primary 

microglia 

 

Supplemental Table S4. MotifbreakR results for 73 SNPs. Transcription factors that 

are not expressed in microglia were excluded. 
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Figure 1: Comparison of ATAC-seq peaks in iPSC-derived microglia to primary 

microglia. (A) Euler diagram of the overlap between primary and iPSC-derived 

microglia ATAC-seq peaks. (B) IGV screenshot of 3 replicates of one iPSC-derived 

microglia cell line (blue) and three different primary microglia cell lines (one replicate of 

each) (orange) at the CX3CR1 locus. Blue and Orange bars represent peaks called by 

MACS2 [16]. 
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Figure 2: Six candidate risk SNPs. IGV screenshot of top candidate risk SNPs (red 

lines marked with arrows). These SNPs overlap peaks from iPSC-derived microglia 

(blue) and primary microglia (orange). They are also surrounded by H3K27ac histone 

marks (green).  
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Figure 3. Assessment of SNPs' location in ATAC peaks and network analyses of genes 

containing SNPs in their promoters. (A) Pie chart showing the location of 73 risk SNPs in 

consensus primary and iPSC-derived microglia ATAC peaks. The majority of SNPs (53) are 

located in promoters. (B) Table, from MSigDB [22, 44], of the categories/gene sets that 

significantly overlap genes with SNPs in their promoter. (C) Diagram showing which genes 

overlap which categories from the MSigDB analysis. In part B, the numbers in the first column of 

the table correspond to the gene set number in the figure in part C.  
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Figure 4. Transcription factors disrupted by risk SNPs 

For each of the four top SNPs in Supplemental Table S1, three consensus DNA binding 

motifs are shown. These motifs are predicted to have allele-specific protein binding 

affinity. 
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Supplemental Figure S1. Relationship between the degree from allelic balance 

and effect size of 73 SNPs in ATAC-peaks. The absolute values of allele frequencies 

normalized to 0.5 were plotted against the absolute values of odds ratios normalized to 

1.  
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