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Abstract
The gut microbiome exhibits extreme compositional variation between hominid hosts.
However, it is unclear how this variation impacts host physiology, and whether this effect can be

mediated through microbial regulation of host gene expression in interacting epithelial cells.
Here, we characterized the transcriptional response of colonic epithelial cells in vitro to live
microbial communities extracted from humans, chimpanzees, gorillas, and orangutans. We found
most host genes exhibit a conserved response, whereby they respond similarly to the four
hominid microbiomes, while some genes respond only to microbiomes from specific host
species. Genes that exhibit such a divergent response are associated with relevant intestinal
diseases in humans, such as inflammatory bowel disease and Crohn’s disease. Lastly, we found
that inflammation-associated microbial species regulate the expression of host genes previously
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35 associated with inflammatory bowel disease, suggesting health-related consequences for
36 species-specific host-microbiome interactions across hominids.


https://doi.org/10.1101/2020.08.17.255059
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.255059; this version posted August 17, 2020. The copyright holder for this prepyint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

37 Introduction

38 The microbiome of the primate gastrointestinal tract plays an important role in host

39 physiology and health. Extreme variation in the gut microbiome has been observed between

40 healthy human individuals; this variation is even more pronounced between different species of
41 great apes (Human Microbiome Project Consortium, 2012; Nishida & Ochman, 2019).

42 Microbiome composition is strongly correlated with the species of the host, a pattern known as
43 co-diversification. Within hominids and other nonhuman primates, co-diversification between
44 host and microbial symbionts has led to overall microbiome composition clustering along the

45 expected phylogenetic relationships of the host species, including bacterial, archeal and

46 eukaryotic groups within the gut microbiome (Amato, et al., 2019; Mann et al., 2019; Moeller et
47 al., 2012; Ochman et al., 2010; Raymann et al., 2017). However, reports show that these

48 phylogenetic constraints are flexible, depending on diet and subsistence strategy (Gomez et al.,
49 2019). For example, compared with industrialized human groups, small scale rural or agricultural
50 human populations share a greater number of gut microbiome traits with wild nonhuman

51 primates (Amato, et al., 2019; Gomez et al., 2019).

52 Different hominid species harbor many of the same bacterial phyla in the gastrointestinal
53 tract, but in varying abundances. For example, both the human and chimpanzee guts are

54 primarily colonized by Bacteroidetes and Firmicutes, but the chimpanzee gut also harbors higher
55 abundances of microbial phyla that are relatively rare in humans, including Actinobacteria,

56 Euryarcheaota, Tenericutes, and Verrucomicrobia (Nishida & Ochman, 2019; Ochman et al.,

57 2010). Gorillas, besides also displaying presence of these rare taxa, harbor greater abundances of
58 Chloroflexi, Tenericutes, and Fibrobacteres (Gomez et al., 2015, 2016; Hicks et al., 2018).

59 Although the orangutan microbiome has not been characterized as thoroughly, a previous report
60 has shown that orangutan guts harbor higher diversity in archaeal lineages compared to other

61 great apes, in addition to similar microbial phyla as gorillas and chimpanzees (Delsuc et al.,

62 2014; Raymann et al., 2017). At lower microbial taxonomic levels, very different microbial

63 species are present in human and chimpanzee microbiomes, resulting in greater divergence

64 (Nishida & Ochman, 2019).

65 Overall gut microbiome composition is shaped by a combination of host genetics, host

66 physiology, and environmental factors. Studies have shown that host genetic variation influences
67 microbiome composition within humans, but has yet to be studied in other hominids (Blekhman
68 etal., 2015; Goodrich et al., 2014). Among environmental influences, diet has a large impact on
69 the primate gut microbiome (Gomez, et al., 2016; Hicks et al., 2018; Nagpal et al., 2018). Most
70 non-human great ape species in the wild and in captivity subsist on a primarily plant-based diet
71 of fruit and vegetation that is occasionally supplemented by animal protein, such as meat or

72 insects (Tutin & Fernandez, 1993; Vogel et al., 2015; Watts et al., 2012). In contrast, human diets
73 are usually omnivorous and highly variable depending on cultural influences, agricultural
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74 practices, geographic location, and individual dietary preferences (Lang et al., 2018; Wu et al.,
75 2011). Other environmental factors that can influence microbiome composition between primates
76 1include variation in geography, seasonality, and other social behaviors such as grooming

77 (Grieneisen et al., 2019; Tung et al., 2015). In addition, physiological differences between

78 primate species, such as differences in gut morphology and digestive processes, also contribute
79 to differences in microbiome composition (Amato, et al., 2019). Although a large effort has been
80 made to characterize the factors that influence variation in the microbiome, it is unclear how

81 wvariation in microbiome composition between great ape species can impact relevant host

82 phenotypes.

83 A likely mechanism by which the microbiome can affect host physiology is through

84 regulating the expression of host genes in interacting intestinal epithelial cells (Luca et al., 2018;

85 Richards et al., 2016, 2019). Studies in animal models have demonstrated that gut microbiota can

86 drive changes in host gene expression by altering epigenetic programming, such as histone

87 modification, transcription factor binding, and methylation (Camp et al., 2014; Krautkramer et

88 al., 2016; Pan et al., 2018; Qin et al., 2018). For example, Camp et al. found that the microbiome

89 drives the differential expression of transcription factors enriched in accessible binding sites

90 (Camp et al., 2014). In addition, Pan et al. found that the microbiome can alter DNA methylation

91 1n the gut epithelial cells of mice (Pan et al., 2018). Moreover, in cell culture, inter-individual

92 wvariation in microbiome composition can drive differential responses in host gene expression at

93 the intestinal level (Richards et al., 2019). However, we do not know how interspecies variation

94 1in the microbiome affects gene regulation in host cells. When considering the microbiota

95 variation amongst great ape species and their influences on host gene expression, in vivo studies

96 in experimental animal models are limited. Furthermore, in vivo experiments can be confounded

97 by a multitude of factors, such as differences in diet between the animal model species and the

98 primate species of interest, microbiota colonization history of the animal model, and inherent

99 differences in the genetic backgrounds between the animal model and the primate species (Luca
100 etal., 2018).

101 Here, we use an in vitro experimental system (Richards et al., 2016, 2019) to assess host
102 gene expression changes in response to diverse gut microbiota from four great ape species:

103 humans (Homo sapiens), and captive chimpanzees (Pan troglodytes), gorillas (Gorilla gorilla
104 gorilla), and orangutans (Pongo abelii). This experimental design allows us to determine causal
105 relationships between gut microbiome composition and gene expression changes in colonic

106 epithelial cells that are induced by the microbiome while controlling for potentially confounding
107 environmental and technical effects (Richards et al., 2016, 2019). We have leveraged this design
108 to ascertain how host genes respond to between-species variation in microbiome composition
109 across hominids, characterize the function of host genes that respond to microbiota from each
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great ape species, and identify microbial taxa and pathways that likely drive expression of
specific host genes.

Results

To assess how host genes respond to variation in the microbiome, we extracted live
microbiota from 19 fecal samples from four hominid species (4 humans, 3 chimpanzees, 6
gorillas, and 3 orangutans), and treated human colonic epithelial cells (colonocytes) with the
extracted microbiota using an experimental technique from a previously published method (see
SI Table 1) (Richards et al., 2016, 2019). We quantified changes in gene expression in the
colonocytes as a response to the primate microbiota using RNA-seq (Fig. 1A). Additionally, we
used 16S rRNA sequencing and shotgun metagenomics to characterize the composition of the
microbiome in these samples. A principal coordinate analysis of Bray-Curtis dissimilarities

confirmed that the microbiome samples cluster by primate host species of origin (Fig 1B; SI Fig.

1). This observation is consistent with previous findings showing that the phylogenetic
relationship between primate host species is reflected in their microbiomes (Ochman et al.,
2010), and that interspecies microbiome distinctions between wild apes is maintained in the
captive individuals included in our study.

The bacterial composition of the samples confirmed clear distinctions between hominid
species at the phylum level (Fig. 1C, SI Fig. 2), with nine of the most abundant microbial phyla
showing significantly different levels between hominid species (Kruskal-Wallis test,
Benjamini-Hochberg FDR <0.1, SI Table 2). The human microbiome samples have a high
relative abundance of Bacteroidetes and Firmicutes, which have both been previously identified
as dominant phyla in the human gut (Human Microbiome Project Consortium, 2012; Turnbaugh
et al., 2007). In addition, Actinobacteria abundance is significantly different between hominid
species (Kruskal-Wallis Test, Benjamini-Hochberg g-value = 0.00567; ANOVA,
Benjamini-Hochberg g-value = 3.82x107°), with chimpanzees showing the greatest abundance
(see Fig. 1C). Furthermore, we identified 21 microbial species that are differentially abundant
between hominid host species (SI Table 3, Kruskal Wallis, Benjamini-Hochberg FDR <0.1).
Examples of several microbes that have variable abundance across species, including
Bacteroides ovatus, which shows higher abundance in humans compared to other hominids;
Phascolarctobacterium succinatutens, which shows lower abundance in humans compared to
other hominids; and Prevotella copri, which has higher abundance in gorilla and orangutan, are
shown in Fig. 1D.

To characterize the host response to the microbiome, we used likelihood ratio tests
combined with a negative binomial model (DESeq?2) to identify host genes that change their
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expression after inoculation with microbiomes from the four hominid host species (see
Methods). We identified 4,329 host genes that respond to the microbiome of at least one hominid
species (Fig. 2A, Benjamini-Hochberg FDR<0.1). The majority of differentially expressed genes
(2,261 genes, 52%) respond to the microbiomes of all four hominids (see Fig. 2A, 2B; full
dataset available in SI Table 4; see Methods). Despite this overall consistent response, we find
164 host genes that respond in a species-specific manner; namely, respond to the microbiome of
one hominid species but not the other three. For example, SHROOM3 responds to the human
microbiome, but shows no response to the chimpanzee, gorilla, and orangutan microbiomes (Fig.
2C). Similarly, B3GAT2, DUSP11, and DARS? respond in a species-specific manner to the
chimpanzee, gorilla, and orangutan microbiomes, respectively (Fig. 2C). We also find 394 host
genes that respond to microbiomes from two hominid species; e.g., CBRI responds to orangutan
and gorilla microbiomes (Fig. 2C). Likewise, 1,313 host genes respond to microbiomes from
three hominid species, and 13,531 genes show no response to any of the hominid microbiomes
(e.g., INVS;, see Fig. 2C).

To understand how genes with a host species-specific response may interact with each
other, we visualized interaction networks for differentially expressed host genes that respond to
microbiomes from each hominid species (Krdamer et al., 2014)(Ingenuity Pathway Analysis,
http://www.ingenuity.com; Fig. 3A, 3B, SI Fig. 3, SI Fig. 4; see Methods). The most significant
interaction network of host genes that respond only to human microbiomes is enriched with
functional categories related to cancer, cell death and survival, and organismal injuries and
abnormalities (Fig. 3A, SI Table 5). This is consistent with previous studies showing that the
microbiome may influence host disease through changes in host gene regulation, but also
suggests that this effect may be specific to human microbiomes (Camp et al., 2014; Krautkramer
et al., 2016; Pan et al., 2018; Qin et al., 2018). By comparison, the most significant interaction
network of genes that respond specifically to orangutan microbiomes is enriched for functional
categories related to carbohydrate metabolism, lipid metabolism, and small molecule
biochemistry (Fig. 3B, SI Table 6). This is consistent with the observation that orangutan diets,
compared to that of gorillas or chimpanzees, could incorporate a greater proportion of ripe fruits
and highly digestible/simple sugars in peak seasons (up to 100% dependence on fruit) (Remis,
1997; Taylor, 2006). In addition, previous reports point to a highly diverse archeal community in
orangutans compared to other apes, which could be associated with an increased capacity to
metabolize highly fermentable plant materials (Raymann et al., 2017). For functions enriched in
the most significant networks for genes that respond only to gorilla microbiomes and only to
chimpanzee microbiomes, see SI Table 7 and SI Table 8.

To further characterize the biological functions represented by host genes that respond to
variation in hominid microbiomes, we categorized differentially expressed genes into two
groups: low-divergence genes, which show a similar magnitude and direction of response to the
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four hominid microbiomes, and high-divergence genes, which show a highly variable response to
the four hominid microbiomes (following the approach of Hagai and colleagues (Hagai et al.,
2018); see Methods and SI Table 9). We find that low-divergence genes, namely, differentially
expressed genes that show a similar response to microbiomes from all four primate species, tend
to be enriched for functions related to basic cell processes, such as RNA processing, cell cycle,
and RNA metabolic processing (Fig. 3C, Benjamini-Hochberg FDR<O0.1, SI Tables 10-15). This
suggests that these genes are likely involved in basic host responses to bacterial cells, rather than
response to specific microbial features. Interestingly, high-divergence genes, namely, genes that
respond differently to the microbiomes from the four primate host species, tend to be enriched
for categories related to disease, inflammation, and cancer (Fig. 3C, SI Fig. 5, SI Fig. 6). Of
note, colorectal cancer, rheumatoid arthritis, and Salmonella infection functional categories are
enriched among high-divergence genes, and have all been associated with gut microbiome
composition in previous studies (Dahmus et al., 2018; Ferreira et al., 2011; Scher & Abramson,
2011). Moreover, when considering host genes that have been previously associated with
complex human traits through genome wide association studies (GWAS) using data in the
GWAS Catalog (Buniello et al., 2019), we find that high-divergence genes are enriched with
traits and diseases that have also been linked to the microbiome, such as Crohn’s Disease,
Inflammatory Bowel Disease, and body mass index (Fig. 3D; see Methods). This might indicate
that these complex disease phenotypes may be modulated by differences in composition of the
gut microbial community through the regulation of these key host genes.

Next, we sought to identify genes whose response is directly correlated with the
abundance of specific microbial taxa. To do so, we used mixed linear models that integrated host
response transcriptomic data (via RNA-seq) and microbial species abundance information data
(via shotgun metagenomics; see Methods). We identified 25 microbial species that drive the
expression of 80 differentially expressed host genes across the four hominids (Fig. 4A and SI
Table 16, 162 host gene-microbial taxon pairs in total, Benjamini-Hochberg FDR<0.05). A
heatmap of the interactions reveals two roughly defined major clusters, one of which includes a
subcluster of host genes that are downregulated by microbial taxa that are rare or absent in
humans but present in the other hominids, such as Prevotella copri, Methanobrevibacter
(unclassified), and Phascolarctobacterium succinatutens (highlighted in Fig. 4A; also see Fig.
1D for P. copri and P. succinatutens abundances across hominids). Genes that are downregulated
in the presence of these microbial species are significantly enriched for several immune-related
pathways, such as cytokine activity, IL-7 signaling, malaria, Legionellosis, and TNF signaling
(SI Tables 17-20). Using a similar method, we identified 89 microbial pathways that drive the
expression of 310 unique host genes for a total of 2061 significant microbial pathway-host gene
interactions (Benjamini-Hochberg FDR<0.05). For simplicity, we focused on the top 48
microbial pathways that drive the expression of the top 44 unique host genes (Fig. 4B and SI
Table 21), with a total of 216 microbial pathway-host genes pairs (examples of specific
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interactions can be found in SI Fig. 7). Clustering of this interaction data revealed three main
clusters (I, II, IIT), with genes in cluster I associated with pathways that are more abundant in
humans compared to other hominid microbiomes. These host genes are enriched in functional
categories related to inflammation and infectious disease, including Legionellosis, malaria, and
pertussis, and overlap with genes found in the cluster described above in the species-level
analysis (SI Table 22).

To investigate specific host gene-microbe interactions, we considered the network of all
high-divergence host genes for which expression is driven by microbial species (28 host genes
and 14 microbial species; Benjamini-Hochberg FDR<0.01). We find that certain microbial taxa
are represented in highly connected nodes and likely control the regulation of several
high-divergence host genes (Fig. 4C). For example, two Bacteroides species, B. ovatus and B.
uniformis, drive the expression of several host genes, including LIF and DUSPS5 respectively,
both of which have been previously associated with inflammation (Habibian et al., 2017; Yue et
al., 2015). Bacteroides is a highly abundant microbial genus in the human gut and is known to
have mixed effects on human health (Wexler, 2007). Notably, B. ovatus is highly abundant in the
human microbiome samples, but is at low abundances in the orangutan gut microbiomes and
entirely absent in the chimpanzee and gorilla microbiomes (Fig. 1D, FDR<0.1).

To explore the possible phenotypic consequences of host genes for which expression is
driven by certain microbial species, we integrated gene-trait associations identified through
transcription-wide association study (TWAS). TWAS identifies associations between gene
expression and complex traits by considering genetically predicted gene expression from
expression quantitative trait locus (eQTL) studies and SNP-trait associations from GWAS. We
considered genes implicated in 114 complex traits through Probabilistic TWAS (Zhang et al.,
2019), and found that expression of 44 out of 57 high-divergence host genes is associated with
43 complex phenotypes (Fig 4D). These include diseases and phenotypes previously linked to
the gut microbiome, including Crohn’s disease, inflammatory bowel disease, ulcerative colitis,
body mass index, body fat percentage, and schizophrenia (Fig. 4D, SI Table 23). We found
several microbial taxa that have higher abundance in the non-human microbiomes, including P.
copri, and P. succinatutens, which have previously been hypothesized to have protective effects,
downregulate the expression of host gene L/F, which has been linked to ulcerative colitis,
inflammatory bowel disease, and Crohn’s disease in our TWAS analysis (Fig. 4C, Fig.4D) (De
Vadder et al., 2016; Morgan et al., 2012). These results are consistent with findings from the
enrichment analysis reported in Fig. 3C and Fig. 3D, where we found phenotypes related to
inflammation were driven by high-divergence genes. Furthermore, we find that Eubacterium
rectale and B. ovatus, microbes that have higher abundance in humans and that have been
previously associated with inflammatory bowel disease (Noor et al., 2010; Zhang et al., 2017),
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255 upregulate the expression of CSF3, which has been reported as upregulated in ulcerative colitis
256 patients (de Lange & Barrett, 2015; Hotte et al., 2012)

257 To investigate specific host gene-pathway interactions, we constructed a network of the
258 most significant interactions between microbial pathways and high-divergence host genes as
259 described above (Fig 4E; see Methods). We find that nine of these 17 host genes, including

260 DUSPS, CYR61, NFKBIZ, PTGS2, IL6, CXCLS, IL36G, ILIB, and IL36RN (all displayed at the
261 top layer in Fig. 4E) have been implicated in immune function or inflammation (Cox et al.,

262 2004; Emre & Imhof, 2014; Gales et al., 2013; Habibian et al., 2017; Horber et al., 2016; Miiller
263 etal., 2018; Onoufriadis et al., 2011; Ren & Torres, 2009; Rincon, 2012; Wang et al., 2017). We
264 found that these genes are associated with several microbial pathways, including

265 Phosphopanthothenate biosynthesis I, chorismate biosynthesis, UDP-N-acetylmuramoyl

266 pentapeptide biosynthesis II (lysine-containing), and UDP-N-acetylmuramoyl pentapeptide

267 biosynthesis I (meso-diaminopimelate containing).

268 Discussion

269 Interactions between hominid hosts and their microbiomes have been an underexplored
270 area of research, and the complexity of the host-microbiome relationship makes identifying the
271 specific microbial features that causally impact the host phenotype inherently challenging. Here,
272 we use an in vitro model to assess how gut microbiomes from different host species impact gene
273 regulation, which is a likely mechanism for microbes to drive changes in host phenotype and
274 health. Inoculating host colonic epithelial cells with live gut microbiome communities from four
275 great ape species, we find that most host genes are regulated similarly by microbiomes from all
276 four hominid microbiomes. However, some host genes are regulated only by microbiomes from a
277 single hominid; these genes are enriched with immunity functions and are involved in the

278 development of inflammatory bowel disease.

279 Chimpanzees, gorillas, and orangutans are our closest extant relatives, making these

280 species an important study system for understanding human evolution as well as the genetic and
281 environmental etiology of human-specific diseases. Distinct physiological, cognitive, and

282 behavioral differences between primate species are hypothesized to be the result of changes in
283 host gene regulation (Britten & Davidson, 1971; Enard et al., 2002; Gilad et al., 2006; King &
284 Wilson, 1975). Indeed, studies have identified genes showing a species-specific expression

285 pattern, and genes for which regulation likely evolves under natural selection (Blekhman et al.,
286 2008; Brawand et al., 2011). Here, we show that microbiomes of different hominid species elicit
287 different gene expression responses in the same type of intestinal epithelial cells (human

288 colonocytes). Although we show that most host genes respond to microbiomes from different
289 hominids in a similar manner, we also identified genes that exhibit a species-specific response.
290 Thus, it may be tempting to hypothesize that some of the species-specific differences in gene


https://paperpile.com/c/DzIopg/Kzewb+WnrXz
https://paperpile.com/c/DzIopg/W6CTT+ArDLj+LTx7f+XPIGj+cCnYe+CUUpp+PnVte+CSWlw+wHYOl+2bSQ7
https://paperpile.com/c/DzIopg/W6CTT+ArDLj+LTx7f+XPIGj+cCnYe+CUUpp+PnVte+CSWlw+wHYOl+2bSQ7
https://paperpile.com/c/DzIopg/W6CTT+ArDLj+LTx7f+XPIGj+cCnYe+CUUpp+PnVte+CSWlw+wHYOl+2bSQ7
https://paperpile.com/c/DzIopg/lEyHY+C6u9g+CDlqN+e5far
https://paperpile.com/c/DzIopg/lEyHY+C6u9g+CDlqN+e5far
https://paperpile.com/c/DzIopg/GVEWW+PvYE6
https://paperpile.com/c/DzIopg/GVEWW+PvYE6
https://doi.org/10.1101/2020.08.17.255059
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.255059; this version posted August 17, 2020. The copyright holder for this prg[ﬂi
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. Iti

291
292
293
294
295
296
297
298

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

available under aCC-BY-NC-ND 4.0 International license.

expression observed previously are driven by interactions with the gut microbiome. These
species-specific microbiome-regulated host genes might facilitate host-specific adaptations to
physiological or dietary constraints; for example, our analysis indicates that genes with a
response to only orangutan microbiomes are enriched for carbohydrate metabolism, lipid
metabolism, and small molecule biochemistry, which suggests that the interaction of the
orangutan microbiome and colonic epithelial cells may aid in digestion of specific
macronutrients, especially those associated with diets rich in high-energy, highly digestible plant
sources (e.g. ripe fruit).

In addition to environmental adaptations, species-specific responses to the microbiota
may indicate tightly controlled symbiotic relationships that may result in disease phenotypes
when altered. We find that high-divergence genes — namely, genes that respond discordantly to
microbiomes from different hominid species — are enriched for traits associated with disease,
such as inflammation and aberrant apoptosis. This suggests that genes with a response highly
sensitive to the variation across hominid microbiomes may possibly play a role in host disease
traits. These genes are also significantly associated with relevant disease traits in the GWAS
catalog and in our TWAS analysis, including Crohn’s Disease (CD) and Inflammatory Bowel
Disease (IBD). Significant distinctions exist in gut microbiome composition and diversity across
apes with marked differences in subsistence strategies: for instance, industrialized human
societies and primates in captivity have lower gut microbiome diversity and show higher
incidences of noncommunicable diseases than small-scale human populations and wild
non-human primates, respectively (Clayton et al., 2016; Gomez, et al., 2016). Thus, one
hypothesis is that these unique features of the microbiome are causal for the development of
diseases common in humans living in industrialized areas, but not in non-industrialized human
populations or in non-human wild primates, such as IBD. Our results are consistent with this
hypothesis, and further suggest that a mechanism by which the microbiome can affect disease
risk 1s through regulating the expression of host genes in interacting colonic epithelial cells. For
example, we found that several microbes that have lower abundance in humans compared to the
other hominids, including P. copri and P. succinatutens, downregulate the expression of the gene
LIF, which has been associated with IBD (SI Fig. 8). This suggests that these microbes may
confer a protective effect through regulation of host genes, and their absence in humans is
possibly detrimental. Conversely, we found that microbes that have higher abundance in humans
compared to the other hominids, including B. ovatus and E. rectale, upregulate the expression of
CSF3, which has been associated with inflammatory bowel disease (SI Fig. 8). This suggests that
these microbes may have a human-specific pathogenic effect. Moreover, some of the genes we
found to be regulated by the microbiome in a species-specific manner, such as ILIB, IL6, IL36G,
IL36RN, and CXCLS, have been previously implicated in IBD (Gijsbers et al., 2004; Khor et al.,
2011; Miiller et al., 2018; Parisinos et al., 2018; Russell et al., 2016; Schulze et al., 2008), while
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others, such as DUSP5, CYR61, NFKBIZ, and PTGS?2, have rules in immune response (Cox et
al., 2004; Emre & Imhof, 2014; Habibian et al., 2017; Horber et al., 2016).

Our ability to interpret these results in a comparative evolutionary context is limited by
the unavailability of colonocytes from the non-human hominids in the study. The non-human
hominids in the study are all captive, thus their microbiomes might not be representative of wild
animals (Clayton et al., 2016); however, we find that the microbiomes used in this study still
cluster by host species identity, and between-species variation in microbiome composition is
preserved. Another limitation of our analysis is that the taxonomic profiling of metagenomic
shotgun sequencing data relies on databases that are biased towards microbes residing in human
microbiomes, and might impact our ability to detect and accurately quantify certain microbes in
the non-human samples. Moreover, the in vitro approach used here represents a simplified
version of the complex interactions occurring at the organismal level. Nevertheless, our approach
allows for tightly controlled experimental conditions that can be tailored to the specific question
of interest, by focusing on the relevant host cell type and microbiomes, and massively reducing
confounding effects of cellular composition and the environment. Indeed, our approach allows
controlling for various factors that may affect both the microbiome and host gene regulation,
such as organismal-level variables (e.g., infection and hormones), host genetic variation,
environmental factors (e.g., host diet), and oscillations and circadian dynamics in the
microbiome and host gene expression.

In conclusion, we find that gut microbial communities from different hominids mostly
elicit a conserved regulatory response in host cells, whereby most host genes respond similarly to
hominid microbiomes. However, we also find that some host genes show a divergent response,
and a number of host genes respond only to microbiomes from one hominid species and not the
others. These genes are enriched in functional categories related to immunity and inflammation,
and are over-represented in pathways involved in autoinflammatory diseases, such as IBD and
Crohn'’s disease. These results represent an important step towards understanding the causal
relationships between variation in the gut microbiome across hominids and the regulation of
intestinal epithelial cells. We hope that future studies will expand on this work using organoid
culture and animal models to characterize the contribution of specific microbes to the
development of disease through regulation of host genes.
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Methods

Sample acquisition and live microbiota extraction

See SI Table 1 for full details about the human and non-human primate fecal samples
used in this analysis. Non-human fecal samples from gorillas and orangutans were collected from
captive animals immediately after defecation. One orangutan who donated two samples was on a
low dose of antibiotics for chronic colitis. Samples were collected as soon as possible (within an
hour of defecation) into a 50mL conical tube containing 20mL of cryoprotectant solution
consisting of a 50:50 mixture of glycerol and saline solution. The cryoprotectant was filter
sterilized through a 0.22 pm filter. Samples were shaken vigorously to distribute the
cryoprotectant. Gorilla and orangutan samples were stored at -80°C within 1 hour after collection
and shipped to the lab on dry ice. Chimpanzee samples were stored at -20°C within 1 hour of
collection and then shipped to the U.S. lab on dry ice within one day. Human fecal samples were
purchased from OpenBiome and arrived frozen on dry ice. The following briefly describes the
protocol by which OpenBiome processes stool samples. The sample is collected by OpenBiome
and given to a technician within 1 hour of defecation. The mass of the sample is measured and
transferred to a sterile biosafety cabinet. The stool sample is put into a sterile filter bag, and a
sterile filtered dilutant of 12.5% glycerol is added with a normal saline buffer (0.90% [wt/vol]
NacCl in water). The sample solution is then introduced to a homogenizer blender for 60 s and
aliquoted into sterile bottles. The bottles are then immediately frozen at —80°C. Any sample not
fully processed within 2 hours of passage is destroyed.

To extract fecal microbiota from the non-human primate samples, inside a sterile
low-oxygen cabinet we placed fecal material into a sterilized disposable standard commercial
blender cup, added 20ml glycerol to reach approximately 30mL glycerol and 200mL normal
saline buffer (0.90% [wt/vol] NaCl in water). Fecal material was blended until fully
homogenized (about 1-2 min). Blended material was transferred to the same side of the
membrane in a 330-micron filter bag and the liquid suspension of the bacterial community was
collected on the other side of the filter. The resulting microbiota suspension was then mixed and
aliquoted into small tubes and stored at -80°C.

The research and sample collection in this study complied with protocols approved
through the University of Minnesota Institutional Animal Care and Use Committee.

Colonocyte with hominid-derived microbiota treatment experiment

The experimental protocol used for the treatment of colonocytes with microbiota has
previously been described in Richards et al., 2016 (Richards et al., 2016). Experiments were
conducted using primary human colonic epithelial cells (HCoEpiC, lot: 9763), hereby called
colonocytes (ScienCell Research Laboratories, Carlsbad, California, USA, 2950). The cells were
cultured on plates or flasks coated with poly-l-lysine (PLL), according to the supplier’s
specifications (ScienCell 0413). Colonocytes were cultured in colonic epithelial cell medium
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406 supplemented with colonic epithelial cell growth supplement and penicillin-streptomycin

407 according to the manufacturer’s protocol (ScienCell 2951) at 37 °C with 5% CO,. At 24 hours
408 before treatment, cells were changed to antibiotic-free medium and moved to an incubator at 37
409 °C, 5% CO,, and a reduced 5% O,.

410 Fecal microbiota were not thawed until the day of the experiment. Prior to treatment, the
411 microbiota was thawed at 30 °C, and the microbial density (OD,,,) was assessed via a

412 spectrophotometer (Bio-Rad SmartSpec 3000). Medium was removed from the colonocytes and
413 fresh antibiotic-free medium was added to the cells, with a final microbial ratio of 10:1

414 microbe:colonocyte in each well. Additional wells containing only colonocytes were also

415 cultured in the same 24-well plate for use as controls.

416 After 2 hours, the wells were scraped on ice, pelleted, and washed with cold

417 phosphate-buffered saline (PBS) and then resuspended in lysis buffer (Dynabeads mRNA Direct
418 kit, ThermoFisher Scientific, Waltham, Massachusetts, USA) and stored at —80 °C until

419 extraction of colonocyte RNA for RNA-seq. We conducted both metagenomic shotgun

420 sequencing and 16s rRNA sequencing on the microbiomes at four points: before preparation

421 (raw), after preparation (prepared), cultured with colonocytes (colonocytes) and cultured without
422 colonocytes (control). Human fecal microbiome samples were purchased as "prepared" from
423 Openbiome and therefore were not sequenced raw.

424 RNA-seq experiment and data processing

425 Poly-adenylated mRNA was isolated from thawed cell lysates using the Dynabeads

426 mRNA Direct Kit (Ambion) following the manufacturer’s instructions. RNA-seq libraries were
427 prepared using a protocol modified from the NEBNext Ultradirectional (NEB) library

428 preparation protocol to use Barcodes from BIOO Scientific added by ligation, as described in
429 Richards et al. (Richards et al., 2019). The libraries were then pooled and sequenced on two
430 lanes of the Illumina Next-seq 500 in the Luca/Pique-Regi laboratory using the high output kits
431 for 75 cycles to obtain paired-end reads. Reads were 80 bp in length. Read counts ranged

432 between 12,632,223 and 36,747,968 reads per sample, with a mean of 18,726,038 and median of
433 16,993,999 reads per sample.

434 FastQC was used to determine quality of reads from raw data (FastQC, version 0.11.5).
435 Trimmomatic was used to trim adapters. FastQC was again used to determine quality of reads
436 after trimming of adapters (Trimmomatic version 0.33). Transcripts were aligned to database
437 GRCh38 and was performed using HISAT2 (HISAT2 version 2.0.2)(Kim et al., 2019). After
438 alignment, read counts ranged between 10,817,737 and 33,592,529 aligned reads per sample,
439 with a mean of 17,142,585.72 and a median of 15,542,693.5 aligned reads per sample. Overall,
440 the average alignment rate was ~70% across samples (SI Fig. 9). The R ‘Subread’ package with
441 the ‘featureCounts’ program was used to make the transcript abundance file (R version 3.3.3,
442 Subread version 1.4.6).
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16s rRNA sequencing

Sequencing on the 16s rRNA V4 region was performed at the University of Minnesota
Genomics Center using the protocol described in Gohl et. al, 2016 (Gohl et al., 2016). DNA
isolated from fecal samples was quantified with qPCR and the V4 region of the 16s rRNA gene
was amplified using PCR with barcodes for multiplexing.
The forward indexing primer sequence is -
AATGATACGGCGACCACCGAGATCTACACIIS]TCGTCGGCAGCGTC and the reverse
indexing primer sequence is -
CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTCGG (where the bolded
regions are the p5 and p7 flow cell adapters and [i5] and [17] refer to the index sequence codes
used by Illumina). The qPCR step starts with an initial denaturing step at 95 °C for 5 min
followed by 35 cycles of denaturation (20s at 98 °C), annealing (15s at 66 °C) and elongation (1
min at 72 °C). After qPCR, samples are normalized to 167,000 molecules/ul. This is based on
the volume of sample used for PCR1 (3ul), so 500,000 molecules is roughly 10x the target
sequencing coverage. The next PCR (PCR1) step is similar to the qPCR step, except with only
25 cycles of denaturation, annealing and elongation. After the first round of amplification, PCR1
products are diluted 1:100 and 5ul of 1:100 PCR1 is used in the second PCR reaction. The next
step (PCR?2) is similar to the previous two PCR protocols, except with only 10 cycles of
denaturation, annealing and elongation. Next, Pooled samples were denatured with NaOH,
diluted to 8 pM in Illumina’s HT1 buffer, spiked with 15% PhiX, and heat denatured at 96 °C for
2 minutes immediately prior to loading. A MiSeq 600 cycle v3 kit was used to sequence the
sample. The following Nextera adapter sequences for post-run trimming are also used. For read 1
CTGTCTCTTATACACATCTCCGAGCCCACGAGACNNNNNNNNATCTCGTATGCCGTCT
TCTGCTTG and for read 2 -
CTGTCTCTTATACACATCTGACGCTGCCGACGANNNNNNNNGTGTAGATCTCGGTGGT
CGCCGTATCATT

Metagenomic shotgun sequencing

Metagenomic shotgun sequencing on prepared microbiota samples was performed at the
University of Minnesota Genomics Center (UMGC). DNA samples were quantified using a
fluorimetric PicoGreen assay. For a sample to pass QC, it needs to quantify greater than 0.2
ng/ul. If the samples pass QC they enter the TruSeq NexteraXT DNA library preparation queue.
gDNA samples were converted to Illumina sequencing libraries using Illumina’s NexteraX T
DNA Sample Preparation Kit (Cat. # FC-130-1005). 1 ng of gDNA is simultaneously
fragmented and tagged with a unique adapter sequence. This “tagmentation” step is mediated by
a transposase. The tagmented DNA is simultaneously indexed and amplified 12 PCR cycles.
Final library size distribution is validated using capillary electrophoresis and quantified using
fluorimetry (PicoGreen). Truseq libraries were hybridized to a NextSeq (either Single Read or
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Paired End). Clustering occurs on-board where the bound library molecules are clonally
amplified and sequenced using Illumina’s SBS chemistry. NextSeq uses 2-color chemistry to
image the clusters. Upon completion of read 1, a 7 base paired index read is performed in the
case of single indexed libraries. If dual indexing was used during library preparation, 2 separate
8 or 10 base pair index reads are performed. Finally, clustered library fragments were
re-synthesized in the reverse direction thus producing the template for paired end read 2. Base
call (.bcl) files for each cycle of sequencing are generated by [llumina Real Time Analysis (RTA)
software. The base call files are demultiplexed and then converted to index specific fastq files
using the MiSeq Reporter software on-instrument.

Characterizing microbiota

To identify microbial features from the metagenomic shotgun sequencing data, including
taxa and pathway abundances, we used the HUMANN?2 pipeline with Metaphlan2 (HUMAnNN2
v0.11.1, Metaphlan2 v0.2.6.0)(Franzosa et al., 2018; Truong et al., 2015). FastQC v0.11.7 was
used to determine quality of sequencing reads before trimming. Sequencing adapters were
trimmed from the raw reads using Trimmomatic (Trimmomatic v0.33) (Bolger et al., 2014).
FastQC v0.11.7 was again used to determine quality of sequencing reads after trimming the
sequencing adapters from the reads (SI Fig. 10). Metaphlan2 was used to assign taxonomy at all
taxonomic levels to the sequencing reads in each sequencing file, and in particular to get relative
abundances of microbial taxa for each sample. The HUMANN?2 pipeline utilizes bowtie v0.2.2
for read alignment (Langmead & Salzberg, 2012), DIAMOND v0.8.22 for high throughput
protein alignment (Buchfink et al., 2015), MinPath (Ye & Doak, 2009) for pathway
reconstruction from protein family predictions. The UniRef90 database was used for determining
gene family abundances (Suzek et al., 2015). We found a total of 166 named microbial species
detected in at least one sample (SI Fig. 11).

Principal Coordinate Analysis of Samples

Using the 16s rRNA data from the fecal microbiota samples, we used the R package
‘DADA2’ (DADA2, version 1.2.2) to identify amplicon sequence variants (ASVs) from the
reads(Callahan et al., 2016). DADA2 was used to filter and trim sequences from raw reads.
Forward reads were trimmed to position 240 and reverse reads were trimmed to position 160.
Reads were truncated at the first quality score less than or equal to 2. Reads with more than two
errors were discarded after truncation. Amplicon sequences were dereplicated using the function
‘derepFastq.” Sample composition was inferred using the ‘dada’ function. Chimeras were
removed using ‘removeBimeraDenovo.” We assigned taxonomy to the resulting ASVs using
‘assignTaxonomy.’ Using the R package ‘vegan’ (version 2.5-3), we calculated Bray-Curtis
dissimilarities and plotted these as a principal coordinate analysis plot (Fig. 1B).

Species-specific differential expression analysis
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We filtered the RNA-seq counts table so that we only consider protein coding genes,
reducing the number of considered genes from 60,674 to 19,715. Host genes were filtered for
only protein coding genes using the R package ‘biomaRt” with ensembl build 37. Within
DESeq2 (DESeq?2 version 1.14.1), RNA-seq counts were further filtered such that each gene had
to be present at least once over all the samples, leaving 17860 tested genes (Love et al., 2014).
DESeq2 uses a negative binomial model to model the count data while it also estimates an
appropriate size factor to normalize each sample by its sequencing depth. Additionally, the
overdispersion parameter governing the negative binomial distribution is estimated per each gene
and using a regularization approach that can monitor outliers and adjust for the mean-variance
dependency. The parameter governing the mean gene expression after adjusting to its sequencing
depth is modeled as a linear combination that incorporates known batch effects (i.e., plate) and
the effect of the biological variable of interest (i.e., each microbiome):

Host gene expression ~ ExperimentPlate + Microbiome effects.

or, in mathematical terms:

N

S P
Ynj :Z BjsMnS + ZijP”P
p

Where Y »j Tepresents the internal DEseq parameter for mean gene expression for gene j and

experiment n, M, is the treatment indicator (control or microbiome for species s), and the [35”

parameter is the microbiome effect for each species. To model plate as a known batch effect we
use P,, and [5;; for the plate indicator variable and its effect on gene expression.

For four hominid microbiomes, 2*=16 effect configurations are possible (for each species

combination of which parameters Bj‘f =0), and we ran a likelihood test for each configuration

L, : a gene can respond to a single primate microbiome (chimp, gorilla, human, or orangutan), a
gene can respond to two of the four primate microbiomes (chimp-gorilla, chimp-human,
chimp-orangutan, gorilla-human, gorilla-orangutan, human-orangutan), a gene can respond to
three of the four primate microbiomes (chimp-gorilla-human, chimp-human-orangutan,
chimp-gorilla-orangutan, or gorilla-human-orangutan), a gene can respond to all four primate
microbiomes, or a gene can show no response to any of the four primate microbiomes. The no
response case is considered the base case, or null model for all the likelihood ratio tests
performed.

To identify genes that respond to microbiomes from a specific primate species and to
detect the total number of differentially expressed genes that respond to each of the fifteen
possible non-null combinations of primate microbiomes we ran a likelihood ratio test against the
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base model, which assumes that the host gene shows no response: Host gene expression ~
Experiment Plate and all the coefficients are zero. After determining across all genes and
configurations which were statistically significant FDR<10%. We used the likelihood statistics
L for each gene j and configuration i to calculate the most probably configuration

P(HD)=L;/SL; .

Enrichment analysis
Enrichment analysis was performed using Ingenuity Pathway Analysis (IPA, QIAGEN
Inc., https://www.giagenbioinformatics.com/products/ingenuity-pathway-analysis, ). We

analyzed genes that show a response to microbiomes from a specific primate species. Here, we
define those genes as genes that are upregulated or downregulated in response to a specific
primate host species, or that show no response to microbiomes from that primate species and
show a response to the other three primate host species. For example, genes that show a response
only to human microbiomes will be upregulated or downregulated in response to human
microbiomes, or show no response to human microbiomes and a response to chimpanzee, gorilla,
and orangutan microbiomes. Genes that show a response to three species but not the fourth are
also showing a species specific response to the fourth primate species.

We further validated these results using the R package ‘ClusterProfiler’ for enrichment
analysis using all detected genes present in at least one sample as the background set
(ClusterProfiler v3.2.14, Fig. 3C) (Yu et al., 2012). We used ENRICHR for enrichment analysis
of the high and low-divergence genes and extracted the top ten response categories from the GO
Biological, GO Molecular, KEGG, and Reactome databases (SI Fig. 5, SI Fig. 6)(Chen et al.,
2013; Kuleshov et al., 2016).

To identify enrichment of high-divergence genes among genes that were previously found
to be associated with complex human disease and traits, we used data from the GWAS catalog
(Buniello et al., 2019). Since each GWAS has a different distribution of p-values and
significance cutoffs, we chose to use a set of —log,,(p-value) cutoffs in the range of 8-50 (plotted
along the x axis in Fig. 3D). For a given trait, we identified the overlap between the genes
significantly associated with the disease at each cutoff and high-divergence genes34, and
calculated a fold enrichment (plotted along the y axis in Fig. 3D), defined as the ratio of
observed/expected overlap between the two gene sets. We used a Fisher Exact Test to calculate a
p-value for each cutoff, and traits for which this value was significant after FDR corrections were
marked with a colored line in Fig. 3D.

K-means clustering was performed using the ‘kmeans’ function in base R (version 3.3.3)
on the cluster of microbes P. copri, Methanobrevibacter and P. succinatutens for the genes in
Fig. 4A. Enrichment analysis was performed using ENRICHR on the two clusters of genes. A
k-means clustering analysis was also performed on the full set of microbial pathway-host gene
correlations in Fig. 4B to produce three clusters of genes.
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Log fold change of genes by primate species
To calculate the fold changes for each gene for each of the four primate species, we used
a similar DESeq2 model to the one described above:

Gene expression ~ ExperimentPlate + Species

or, in mathematical terms:

S P

Here, Species is a vector indicating which primate species the microbiome sample originated
from, and ExperimentPlate controls for the batch effect as before, but we just test the marginal
effect of each species-specific parameter BJ.SS being not different than the untreated control [SJC .

We use the contrast argument in DESeq2 to extract comparisons of each primate species against
the control. Thus, this resulted in log fold change calculations for each gene as it responds to
each of the four primate species’ microbiomes. These values are available in SI Tables 24-27.

Divergence scores for differentially expressed, conserved genes
Using DESeq2, we identified genes that responded to microbiome treatment. The model
to determine whether a gene responds to treatment, we used the following model:

Gene expression ~ ExperimentPlate + Treatment

Where ExperimentPlate controls for the batch effect of the experiment, and Treatment is a binary
vector indicating whether the colonocytes are treated with a microbiome or act as a control for
the experiment. Mathematically:

T P
Ynj:u-'-ﬁj T”+§ijP”P

Where Y, ; represents the internal DEseq mean gene expression parameter for gene j and
experiment n as before, T, is the treatment indicator (control = 0 or microbiome = 1), and the
[SJT parameter is the microbiome effect. Plate effects are modeled as before. To model plate as a
known batch effect we use P, and ij;’ for the plate indicator variable and its effect on gene

expression.

Log fold changes for each gene were calculated as described above, and then used to
calculate a divergence metric for each gene. We used a similar divergence calculation as
described in Hagai et al. (Hagai et al., 2018). Namely, for the genes identified as responding to
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treatment with microbiomes, we used the log fold changes for each species in the following
equation:

Divergence = logz[% 2 J(logF C primate; — logF' C primatej)Q]

Following Hagai et al., the top 25% of genes were assigned a “high-divergence” status,
and the lowest 25% of genes were assigned a “low-divergence” status. These genes were used in
the enrichment analyses described below.

The rest of the genes are considered “medium divergence” genes. These genes are used in
the enrichment analysis as a background set (Fig. 3A, Fig. 3C).

Pairwise correlations between host genes and microbial species and pathways

Using the microbial species abundances calculated from the metagenomic shotgun
sequencing, we ran correlation analysis between genes that are differentially expressed with
respect to treatment with microbiota and abundances of microbial species. Metaphlan2 reports
microbial species as a proportion of the total microbial community per sample. Microbial species
were filtered such that only microbial species present in at least half of the samples and that
reached a total summed relative abundance of 9% were included in the analysis, leaving 36
microbial species. We applied a center log-ratio transformation to the filtered microbial species
abundance data. Microbial pathways were filtered such that the total of each pathway had to be
greater than a summed threshold of 8000 reads per kilobase (RPK), leaving 95 microbial
pathways to be included in the analysis. Microbial pathways were normalized using the centered
log ratio transformation in a similar manner to the microbial species.

Using DESeq2, we identified which microbial species or pathways are associated with
differentially expressed genes using the following model:

Gene Expression ~ ExperimentPlate + Treatment + Microbial feature abundance

Mathematically:

_ P T A()
Y=+ 2B5Pm+B; T+ BJ- Afn
p

Where Y ,j Tepresents the internal DEseq parameter for gene expression for gene j and
experiment n as before, T, is the treatment indicator (control = 0 or microbiome = 1), and the
BJT parameter is the microbiome effect. Plate effects are modeled as before. The parameter

[S?V)Af is used to model the effect of the microbiome feature (i.e., microbial species or
n

pathway) f on gene expression. We statistically test effect [3’;‘(") # 0in a separate DESeq model
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run for each feature £ We used an FDR correction on the combined results from all models. The
microbial species abundance is a continuous numeric value that represents that center log ratio
transformed relative abundance of the microbial feature /A o for each sample 7.

TWAS analysis

To directly investigate whether discovered effects on gene expression may contribute to
complex traits, we considered PTWAS gene-trait associations for 114 traits from Zhang et
al.(Zhang et al., 2019). PTWAS utilizes probabilistic €QTL annotations derived from
multi-variant Bayesian fine-mapping analysis of eQTL data across 49 tissues from GTEx v8 to
detect associations between gene expression levels and complex trait risk. Using the host genes
that were highly correlated with a microbial species and fell into the high-divergence category
(FDR<0.05), we overlapped the significant results with genes causally implicated in complex
traits across all tissues by Zhang et al. (PTWAS scan, 5% FDR). We repeated the same analysis
with the host genes that were highly correlated with a microbial pathway (FDR<0.01) and fell
into the high-divergence category.

Data Availability

Raw data for 16s rRNA sequencing, RNA-sequencing, and metagenomic shotgun
sequencing are available on the Sequence Read Archive (SRA) under submission ID
SUB7918466. For data tables used in this analysis, including tables for RNA-seq gene
expression counts, metagenomic shotgun sequencing species abundances, amplicon sequence
variant abundances, pathway abundances and metadata, see our Figshare project under the same
title as the manuscript at https://figshare.com/account/home#/projects/87626.

Competing interests
The authors have no competing interests to report.

int
ade


https://paperpile.com/c/DzIopg/DiiBV
https://figshare.com/account/home#/projects/87626
https://doi.org/10.1101/2020.08.17.255059
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.255059; this version posted August 17, 2020. The copyright holder for this pr:
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It i

667

668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

available under aCC-BY-NC-ND 4.0 International license.

References

Amato, K. R., G Sanders, J., Song, S. J., Nute, M., Metcalf, J. L., Thompson, L. R., Morton, J.
T., Amir, A., ] McKenzie, V., Humphrey, G., Gogul, G., Gaftney, J., L Baden, A., A O
Britton, G., P Cuozzo, F., Di Fiore, A., ] Dominy, N., L Goldberg, T., Gomez, A., ... R
Leigh, S. (2019). Evolutionary trends in host physiology outweigh dietary niche in
structuring primate gut microbiomes. The ISME Journal, 13(3), 576-587.
https://doi.org/10.1038/s41396-018-0175-0

Amato, K. R., Mallott, E. K., McDonald, D., Dominy, N. J., Goldberg, T., Lambert, J. E.,
Swedell, L., Metcalf, J. L., Gomez, A., Britton, G. A. O., Stumpf, R. M., Leigh, S. R., &
Knight, R. (2019). Convergence of human and Old World monkey gut microbiomes
demonstrates the importance of human ecology over phylogeny. Genome Biology, 20(1),
201. https://doi.org/10.1186/s13059-019-1807-z

Blekhman, R., Goodrich, J. K., Huang, K., Sun, Q., Bukowski, R., Bell, J. T., Spector, T. D.,
Keinan, A., Ley, R. E., Gevers, D., & Clark, A. G. (2015). Host genetic variation impacts
microbiome composition across human body sites. Genome Biology, 16, 191.
https://doi.org/10.1186/s13059-015-0759-1

Blekhman, R., Oshlack, A., Chabot, A. E., Smyth, G. K., & Gilad, Y. (2008). Gene regulation in
primates evolves under tissue-specific selection pressures. PLoS Genetics, 4(11), e1000271.
https://doi.org/10.1371/journal.pgen.1000271

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics , 30(15), 2114-2120.
https://doi.org/10.1093/bioinformatics/btul 70

Brawand, D., Soumillon, M., Necsulea, A., Julien, P., Csardi, G., Harrigan, P., Weier, M., Liechti,
A., Aximu-Petri, A., Kircher, M., Albert, F. W., Zeller, U., Khaitovich, P., Griitzner, F.,
Bergmann, S., Nielsen, R., Pddbo, S., & Kaessmann, H. (2011). The evolution of gene
expression levels in mammalian organs. Nature, 478(7369), 343—-348.
https://doi.org/10.1038/nature10532

Britten, R. J., & Davidson, E. H. (1971). Repetitive and non-repetitive DNA sequences and a
speculation on the origins of evolutionary novelty. The Quarterly Review of Biology, 46(2),
111-138. https://doi.org/10.1086/406830

Buchfink, B., Xie, C., & Huson, D. H. (2015). Fast and sensitive protein alignment using
DIAMOND. Nature Methods, 12(1), 59—60. https://doi.org/10.1038/nmeth.3176

Buniello, A., MacArthur, J. A. L., Cerezo, M., Harris, L. W., Hayhurst, J., Malangone, C.,
McMahon, A., Morales, J., Mountjoy, E., Sollis, E., Suveges, D., Vrousgou, O., Whetzel, P.
L., Amode, R., Guillen, J. A., Riat, H. S., Trevanion, S. J., Hall, P., Junkins, H., ...
Parkinson, H. (2019). The NHGRI-EBI GWAS Catalog of published genome-wide
association studies, targeted arrays and summary statistics 2019. Nucleic Acids Research,
47(D1), D1005-D1012. https://doi.org/10.1093/nar/gky1120

int
ade


http://paperpile.com/b/DzIopg/0G8ie
http://paperpile.com/b/DzIopg/0G8ie
http://paperpile.com/b/DzIopg/0G8ie
http://paperpile.com/b/DzIopg/0G8ie
http://paperpile.com/b/DzIopg/0G8ie
http://paperpile.com/b/DzIopg/0G8ie
http://paperpile.com/b/DzIopg/0G8ie
http://paperpile.com/b/DzIopg/0G8ie
http://paperpile.com/b/DzIopg/0G8ie
http://paperpile.com/b/DzIopg/0G8ie
http://dx.doi.org/10.1038/s41396-018-0175-0
http://paperpile.com/b/DzIopg/9gj3h
http://paperpile.com/b/DzIopg/9gj3h
http://paperpile.com/b/DzIopg/9gj3h
http://paperpile.com/b/DzIopg/9gj3h
http://paperpile.com/b/DzIopg/9gj3h
http://paperpile.com/b/DzIopg/9gj3h
http://paperpile.com/b/DzIopg/9gj3h
http://paperpile.com/b/DzIopg/9gj3h
http://paperpile.com/b/DzIopg/9gj3h
http://dx.doi.org/10.1186/s13059-019-1807-z
http://paperpile.com/b/DzIopg/ygtp4
http://paperpile.com/b/DzIopg/ygtp4
http://paperpile.com/b/DzIopg/ygtp4
http://paperpile.com/b/DzIopg/ygtp4
http://paperpile.com/b/DzIopg/ygtp4
http://paperpile.com/b/DzIopg/ygtp4
http://paperpile.com/b/DzIopg/ygtp4
http://paperpile.com/b/DzIopg/ygtp4
http://dx.doi.org/10.1186/s13059-015-0759-1
http://paperpile.com/b/DzIopg/GVEWW
http://paperpile.com/b/DzIopg/GVEWW
http://paperpile.com/b/DzIopg/GVEWW
http://paperpile.com/b/DzIopg/GVEWW
http://paperpile.com/b/DzIopg/GVEWW
http://paperpile.com/b/DzIopg/GVEWW
http://paperpile.com/b/DzIopg/GVEWW
http://dx.doi.org/10.1371/journal.pgen.1000271
http://paperpile.com/b/DzIopg/4XaYW
http://paperpile.com/b/DzIopg/4XaYW
http://paperpile.com/b/DzIopg/4XaYW
http://paperpile.com/b/DzIopg/4XaYW
http://paperpile.com/b/DzIopg/4XaYW
http://paperpile.com/b/DzIopg/4XaYW
http://paperpile.com/b/DzIopg/4XaYW
http://dx.doi.org/10.1093/bioinformatics/btu170
http://paperpile.com/b/DzIopg/PvYE6
http://paperpile.com/b/DzIopg/PvYE6
http://paperpile.com/b/DzIopg/PvYE6
http://paperpile.com/b/DzIopg/PvYE6
http://paperpile.com/b/DzIopg/PvYE6
http://paperpile.com/b/DzIopg/PvYE6
http://paperpile.com/b/DzIopg/PvYE6
http://paperpile.com/b/DzIopg/PvYE6
http://paperpile.com/b/DzIopg/PvYE6
http://dx.doi.org/10.1038/nature10532
http://paperpile.com/b/DzIopg/CDlqN
http://paperpile.com/b/DzIopg/CDlqN
http://paperpile.com/b/DzIopg/CDlqN
http://paperpile.com/b/DzIopg/CDlqN
http://paperpile.com/b/DzIopg/CDlqN
http://paperpile.com/b/DzIopg/CDlqN
http://paperpile.com/b/DzIopg/CDlqN
http://dx.doi.org/10.1086/406830
http://paperpile.com/b/DzIopg/4YYSj
http://paperpile.com/b/DzIopg/4YYSj
http://paperpile.com/b/DzIopg/4YYSj
http://paperpile.com/b/DzIopg/4YYSj
http://paperpile.com/b/DzIopg/4YYSj
http://paperpile.com/b/DzIopg/4YYSj
http://dx.doi.org/10.1038/nmeth.3176
http://paperpile.com/b/DzIopg/Brqdt
http://paperpile.com/b/DzIopg/Brqdt
http://paperpile.com/b/DzIopg/Brqdt
http://paperpile.com/b/DzIopg/Brqdt
http://paperpile.com/b/DzIopg/Brqdt
http://paperpile.com/b/DzIopg/Brqdt
http://paperpile.com/b/DzIopg/Brqdt
http://paperpile.com/b/DzIopg/Brqdt
http://paperpile.com/b/DzIopg/Brqdt
http://dx.doi.org/10.1093/nar/gky1120
https://doi.org/10.1101/2020.08.17.255059
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.255059; this version posted August 17, 2020. The copyright holder for this pr:
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It i

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743

available under aCC-BY-NC-ND 4.0 International license.

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P.
(2016). DADAZ2: High-resolution sample inference from Illumina amplicon data. Nature
Methods, 13(7), 581-583. https://doi.org/10.1038/nmeth.3869

Camp, J. G, Frank, C. L., Lickwar, C. R., Guturu, H., Rube, T., Wenger, A. M., Chen, J.,
Bejerano, G., Crawford, G. E., & Rawls, J. F. (2014). Microbiota modulate transcription in
the intestinal epithelium without remodeling the accessible chromatin landscape. Genome
Research, 24(9), 1504—-1516. https://doi.org/10.1101/gr.165845.113

Chen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G. V., Clark, N. R., & Ma’ayan,
A. (2013). Enrichr: interactive and collaborative HTMLS5 gene list enrichment analysis tool.
BMC Bioinformatics, 14, 128. https://doi.org/10.1186/1471-2105-14-128

Clayton, J. B., Vangay, P., Huang, H., Ward, T., Hillmann, B. M., Al-Ghalith, G. A., Travis, D.
A., Long, H. T., Tuan, B. V., Minh, V. V., Cabana, F., Nadler, T., Toddes, B., Murphy, T,
Glander, K. E., Johnson, T. J., & Knights, D. (2016). Captivity humanizes the primate
microbiome. Proceedings of the National Academy of Sciences of the United States of
America, 113(37), 10376—10381. https://doi.org/10.1073/pnas.1521835113

Cox, D. G., Pontes, C., Guino, E., Navarro, M., Osorio, A., Canzian, F., Moreno, V., & Bellvitge
Colorectal Cancer Study Group. (2004). Polymorphisms in prostaglandin synthase
2/cyclooxygenase 2 (PTGS2/COX2) and risk of colorectal cancer. British Journal of
Cancer, 91(2), 339-343. https://doi.org/10.1038/sj.bjc.6601906

Dahmus, J. D., Kotler, D. L., Kastenberg, D. M., & Kistler, C. A. (2018). The gut microbiome
and colorectal cancer: a review of bacterial pathogenesis. Journal of Gastrointestinal
Oncology, 9(4), 769-777. https://doi.org/10.21037/j20.2018.04.07

de Lange, K. M., & Barrett, J. C. (2015). Understanding inflammatory bowel disease via
immunogenetics. Journal of Autoimmunity, 64, 91-100.
https://doi.org/10.1016/j.jaut.2015.07.013

Delsuc, F., Metcalf, J. L., Wegener Parfrey, L., Song, S. J., Gonzilez, A., & Knight, R. (2014).
Convergence of gut microbiomes in myrmecophagous mammals. Molecular Ecology, 23(6),
1301-1317. https://doi.org/10.1111/mec.12501

De Vadder, F., Kovatcheva-Datchary, P., Zitoun, C., Duchampt, A., Bickhed, F., & Mithieux, G.
(2016). Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal
Gluconeogenesis. Cell Metabolism, 24(1), 151-157.
https://doi.org/10.1016/j.cmet.2016.06.013

Emre, Y., & Imhof, B. A. (2014). Matricellular protein CCN1/CYR61: a new player in
inflammation and leukocyte trafficking. Seminars in Immunopathology, 36(2), 253-259.
https://doi.org/10.1007/s00281-014-0420-1

Enard, W., Khaitovich, P., Klose, J., Zollner, S., Heissig, F., Giavalisco, P., Nieselt-Struwe, K.,
Muchmore, E., Varki, A., Ravid, R., Doxiadis, G. M., Bontrop, R. E., & Péébo, S. (2002).
Intra- and interspecific variation in primate gene expression patterns. Science, 296(5566),
340-343. https://doi.org/10.1126/science.1068996

int
ade


http://paperpile.com/b/DzIopg/rxZiG
http://paperpile.com/b/DzIopg/rxZiG
http://paperpile.com/b/DzIopg/rxZiG
http://paperpile.com/b/DzIopg/rxZiG
http://paperpile.com/b/DzIopg/rxZiG
http://paperpile.com/b/DzIopg/rxZiG
http://paperpile.com/b/DzIopg/rxZiG
http://dx.doi.org/10.1038/nmeth.3869
http://paperpile.com/b/DzIopg/j0o3w
http://paperpile.com/b/DzIopg/j0o3w
http://paperpile.com/b/DzIopg/j0o3w
http://paperpile.com/b/DzIopg/j0o3w
http://paperpile.com/b/DzIopg/j0o3w
http://paperpile.com/b/DzIopg/j0o3w
http://paperpile.com/b/DzIopg/j0o3w
http://paperpile.com/b/DzIopg/j0o3w
http://dx.doi.org/10.1101/gr.165845.113
http://paperpile.com/b/DzIopg/cixvg
http://paperpile.com/b/DzIopg/cixvg
http://paperpile.com/b/DzIopg/cixvg
http://paperpile.com/b/DzIopg/cixvg
http://paperpile.com/b/DzIopg/cixvg
http://paperpile.com/b/DzIopg/cixvg
http://dx.doi.org/10.1186/1471-2105-14-128
http://paperpile.com/b/DzIopg/7KJay
http://paperpile.com/b/DzIopg/7KJay
http://paperpile.com/b/DzIopg/7KJay
http://paperpile.com/b/DzIopg/7KJay
http://paperpile.com/b/DzIopg/7KJay
http://paperpile.com/b/DzIopg/7KJay
http://paperpile.com/b/DzIopg/7KJay
http://paperpile.com/b/DzIopg/7KJay
http://paperpile.com/b/DzIopg/7KJay
http://dx.doi.org/10.1073/pnas.1521835113
http://paperpile.com/b/DzIopg/cCnYe
http://paperpile.com/b/DzIopg/cCnYe
http://paperpile.com/b/DzIopg/cCnYe
http://paperpile.com/b/DzIopg/cCnYe
http://paperpile.com/b/DzIopg/cCnYe
http://paperpile.com/b/DzIopg/cCnYe
http://paperpile.com/b/DzIopg/cCnYe
http://paperpile.com/b/DzIopg/cCnYe
http://dx.doi.org/10.1038/sj.bjc.6601906
http://paperpile.com/b/DzIopg/xR5hr
http://paperpile.com/b/DzIopg/xR5hr
http://paperpile.com/b/DzIopg/xR5hr
http://paperpile.com/b/DzIopg/xR5hr
http://paperpile.com/b/DzIopg/xR5hr
http://paperpile.com/b/DzIopg/xR5hr
http://paperpile.com/b/DzIopg/xR5hr
http://dx.doi.org/10.21037/jgo.2018.04.07
http://paperpile.com/b/DzIopg/WnrXz
http://paperpile.com/b/DzIopg/WnrXz
http://paperpile.com/b/DzIopg/WnrXz
http://paperpile.com/b/DzIopg/WnrXz
http://paperpile.com/b/DzIopg/WnrXz
http://paperpile.com/b/DzIopg/WnrXz
http://paperpile.com/b/DzIopg/WnrXz
http://dx.doi.org/10.1016/j.jaut.2015.07.013
http://paperpile.com/b/DzIopg/lw4V3
http://paperpile.com/b/DzIopg/lw4V3
http://paperpile.com/b/DzIopg/lw4V3
http://paperpile.com/b/DzIopg/lw4V3
http://paperpile.com/b/DzIopg/lw4V3
http://paperpile.com/b/DzIopg/lw4V3
http://paperpile.com/b/DzIopg/lw4V3
http://dx.doi.org/10.1111/mec.12501
http://paperpile.com/b/DzIopg/EQjVe
http://paperpile.com/b/DzIopg/EQjVe
http://paperpile.com/b/DzIopg/EQjVe
http://paperpile.com/b/DzIopg/EQjVe
http://paperpile.com/b/DzIopg/EQjVe
http://paperpile.com/b/DzIopg/EQjVe
http://paperpile.com/b/DzIopg/EQjVe
http://paperpile.com/b/DzIopg/EQjVe
http://dx.doi.org/10.1016/j.cmet.2016.06.013
http://paperpile.com/b/DzIopg/ArDLj
http://paperpile.com/b/DzIopg/ArDLj
http://paperpile.com/b/DzIopg/ArDLj
http://paperpile.com/b/DzIopg/ArDLj
http://paperpile.com/b/DzIopg/ArDLj
http://paperpile.com/b/DzIopg/ArDLj
http://paperpile.com/b/DzIopg/ArDLj
http://dx.doi.org/10.1007/s00281-014-0420-1
http://paperpile.com/b/DzIopg/e5far
http://paperpile.com/b/DzIopg/e5far
http://paperpile.com/b/DzIopg/e5far
http://paperpile.com/b/DzIopg/e5far
http://paperpile.com/b/DzIopg/e5far
http://paperpile.com/b/DzIopg/e5far
http://paperpile.com/b/DzIopg/e5far
http://paperpile.com/b/DzIopg/e5far
http://dx.doi.org/10.1126/science.1068996
https://doi.org/10.1101/2020.08.17.255059
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.255059; this version posted August 17, 2020. The copyright holder for this pr:
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It i

744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

available under aCC-BY-NC-ND 4.0 International license.

Ferreira, R. B. R., Gill, N., Willing, B. P., Antunes, L. C. M., Russell, S. L., Croxen, M. A., &
Finlay, B. B. (2011). The intestinal microbiota plays a role in Salmonella-induced colitis
independent of pathogen colonization. PloS One, 6(5), €20338.
https://doi.org/10.1371/journal.pone.0020338

Franzosa, E. A., Mclver, L. J., Rahnavard, G., Thompson, L. R., Schirmer, M., Weingart, G.,
Lipson, K. S., Knight, R., Caporaso, J. G., Segata, N., & Huttenhower, C. (2018).
Species-level functional profiling of metagenomes and metatranscriptomes. Nature
Methods, 15(11), 962-968. https://doi.org/10.1038/s41592-018-0176-y

Gales, D., Clark, C., Manne, U., & Samuel, T. (2013). The Chemokine CXCLS in
Carcinogenesis and Drug Response. ISRN Oncology, 2013, 859154.
https://doi.org/10.1155/2013/859154

Gijsbers, K., Van Assche, G., Joossens, S., Struyf, S., Proost, P., Rutgeerts, P., Geboes, K., & Van
Damme, J. (2004). CXCR1-binding chemokines in inflammatory bowel diseases:
down-regulated IL-8/CXCLS production by leukocytes in Crohn’s disease and selective
GCP-2/CXCL6 expression in inflamed intestinal tissue. European Journal of Immunology,
34(7), 1992-2000. https://doi.org/10.1002/ej1.200324807

Gilad, Y., Oshlack, A., Smyth, G. K., Speed, T. P., & White, K. P. (2006). Expression profiling in
primates reveals a rapid evolution of human transcription factors. Nature, 440(7081),
242-245. https://doi.org/10.1038/nature04559

Gohl, D. M., Vangay, P., Garbe, J., MacLean, A., Hauge, A., Becker, A., Gould, T. J., Clayton, J.
B., Johnson, T. J., Hunter, R., Knights, D., & Beckman, K. B. (2016). Systematic
improvement of amplicon marker gene methods for increased accuracy in microbiome
studies. Nature Biotechnology, 34(9), 942-949. https://doi.org/10.1038/nbt.3601

Gomez, A., Petrzelkova, K. J., Burns, M. B., Yeoman, C. J., Amato, K. R., Vickova, K., Modry,
D., Todd, A., Jost Robinson, C. A., Remis, M. J., Torralba, M. G., Morton, E., Umana, J. D.,
Carbonero, F., Gaskins, H. R., Nelson, K. E., Wilson, B. A., Stumpf, R. M., White, B. A.,
... Blekhman, R. (2016). Gut Microbiome of Coexisting BaAka Pygmies and Bantu
Reflects Gradients of Traditional Subsistence Patterns. Cell Reports, 14(9), 2142-2153.
https://doi.org/10.1016/j.celrep.2016.02.013

Gomez, A., Petrzelkova, K., Yeoman, C. J., Vickova, K., Mrazek, J., Koppova, 1., Carbonero, F.,
Ulanov, A., Modry, D., Todd, A., Torralba, M., Nelson, K. E., Gaskins, H. R., Wilson, B.,
Stumpf, R. M., White, B. A., & Leigh, S. R. (2015). Gut microbiome composition and
metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host
ecology. Molecular Ecology, 24(10), 2551-2565. https://doi.org/10.1111/mec.13181

Gomez, A., Rothman, J. M., Petrzelkova, K., Yeoman, C. J., Vlckova, K., Umafia, J. D., Carr,
M., Modry, D., Todd, A., Torralba, M., Nelson, K. E., Stumpf, R. M., Wilson, B. A.,
Blekhman, R., White, B. A., & Leigh, S. R. (2016). Temporal variation selects for
diet-microbe co-metabolic traits in the gut of Gorilla spp. The ISME Journal, 10(2),
514-526. https://doi.org/10.1038/isme;j.2015.146

int
ade


http://paperpile.com/b/DzIopg/pOUYC
http://paperpile.com/b/DzIopg/pOUYC
http://paperpile.com/b/DzIopg/pOUYC
http://paperpile.com/b/DzIopg/pOUYC
http://paperpile.com/b/DzIopg/pOUYC
http://paperpile.com/b/DzIopg/pOUYC
http://paperpile.com/b/DzIopg/pOUYC
http://paperpile.com/b/DzIopg/pOUYC
http://dx.doi.org/10.1371/journal.pone.0020338
http://paperpile.com/b/DzIopg/KEzPj
http://paperpile.com/b/DzIopg/KEzPj
http://paperpile.com/b/DzIopg/KEzPj
http://paperpile.com/b/DzIopg/KEzPj
http://paperpile.com/b/DzIopg/KEzPj
http://paperpile.com/b/DzIopg/KEzPj
http://paperpile.com/b/DzIopg/KEzPj
http://paperpile.com/b/DzIopg/KEzPj
http://dx.doi.org/10.1038/s41592-018-0176-y
http://paperpile.com/b/DzIopg/PnVte
http://paperpile.com/b/DzIopg/PnVte
http://paperpile.com/b/DzIopg/PnVte
http://paperpile.com/b/DzIopg/PnVte
http://paperpile.com/b/DzIopg/PnVte
http://paperpile.com/b/DzIopg/PnVte
http://paperpile.com/b/DzIopg/PnVte
http://dx.doi.org/10.1155/2013/859154
http://paperpile.com/b/DzIopg/MzfJW
http://paperpile.com/b/DzIopg/MzfJW
http://paperpile.com/b/DzIopg/MzfJW
http://paperpile.com/b/DzIopg/MzfJW
http://paperpile.com/b/DzIopg/MzfJW
http://paperpile.com/b/DzIopg/MzfJW
http://paperpile.com/b/DzIopg/MzfJW
http://paperpile.com/b/DzIopg/MzfJW
http://dx.doi.org/10.1002/eji.200324807
http://paperpile.com/b/DzIopg/lEyHY
http://paperpile.com/b/DzIopg/lEyHY
http://paperpile.com/b/DzIopg/lEyHY
http://paperpile.com/b/DzIopg/lEyHY
http://paperpile.com/b/DzIopg/lEyHY
http://paperpile.com/b/DzIopg/lEyHY
http://paperpile.com/b/DzIopg/lEyHY
http://dx.doi.org/10.1038/nature04559
http://paperpile.com/b/DzIopg/2UNg4
http://paperpile.com/b/DzIopg/2UNg4
http://paperpile.com/b/DzIopg/2UNg4
http://paperpile.com/b/DzIopg/2UNg4
http://paperpile.com/b/DzIopg/2UNg4
http://paperpile.com/b/DzIopg/2UNg4
http://paperpile.com/b/DzIopg/2UNg4
http://paperpile.com/b/DzIopg/2UNg4
http://dx.doi.org/10.1038/nbt.3601
http://paperpile.com/b/DzIopg/yHlG2
http://paperpile.com/b/DzIopg/yHlG2
http://paperpile.com/b/DzIopg/yHlG2
http://paperpile.com/b/DzIopg/yHlG2
http://paperpile.com/b/DzIopg/yHlG2
http://paperpile.com/b/DzIopg/yHlG2
http://paperpile.com/b/DzIopg/yHlG2
http://paperpile.com/b/DzIopg/yHlG2
http://paperpile.com/b/DzIopg/yHlG2
http://paperpile.com/b/DzIopg/yHlG2
http://dx.doi.org/10.1016/j.celrep.2016.02.013
http://paperpile.com/b/DzIopg/0crnN
http://paperpile.com/b/DzIopg/0crnN
http://paperpile.com/b/DzIopg/0crnN
http://paperpile.com/b/DzIopg/0crnN
http://paperpile.com/b/DzIopg/0crnN
http://paperpile.com/b/DzIopg/0crnN
http://paperpile.com/b/DzIopg/0crnN
http://paperpile.com/b/DzIopg/0crnN
http://paperpile.com/b/DzIopg/0crnN
http://dx.doi.org/10.1111/mec.13181
http://paperpile.com/b/DzIopg/qc02a
http://paperpile.com/b/DzIopg/qc02a
http://paperpile.com/b/DzIopg/qc02a
http://paperpile.com/b/DzIopg/qc02a
http://paperpile.com/b/DzIopg/qc02a
http://paperpile.com/b/DzIopg/qc02a
http://paperpile.com/b/DzIopg/qc02a
http://paperpile.com/b/DzIopg/qc02a
http://paperpile.com/b/DzIopg/qc02a
http://dx.doi.org/10.1038/ismej.2015.146
https://doi.org/10.1101/2020.08.17.255059
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.255059; this version posted August 17, 2020. The copyright holder for this pr:
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It i

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821

available under aCC-BY-NC-ND 4.0 International license.

Gomez, A., Sharma, A. K., Mallott, E. K., Petrzelkova, K. J., Jost Robinson, C. A., Yeoman, C.
J., Carbonero, F., Pafco, B., Rothman, J. M., Ulanov, A., Vickova, K., Amato, K. R.,
Schnorr, S. L., Dominy, N. J., Modry, D., Todd, A., Torralba, M., Nelson, K. E., Burns, M.
B., ... Leigh, S. R. (2019). Plasticity in the Human Gut Microbiome Defies Evolutionary
Constraints. mSphere, 4(4). https://doi.org/10.1128/mSphere.00271-19

Goodrich, J. K., Waters, J. L., Poole, A. C., Sutter, J. L., Koren, O., Blekhman, R., Beaumont,
M., Van Treuren, W., Knight, R., Bell, J. T., Spector, T. D., Clark, A. G., & Ley, R. E.
(2014). Human genetics shape the gut microbiome. Cell, 159(4), 789—799.
https://doi.org/10.1016/j.cell.2014.09.053

Grieneisen Laura E., Charpentier Marie J. E., Alberts Susan C., Blekhman Ran, Bradburd
Gideon, Tung Jenny, & Archie Elizabeth A. (2019). Genes, geology and germs: gut
microbiota across a primate hybrid zone are explained by site soil properties, not host
species. Proceedings of the Royal Society B: Biological Sciences, 286(1901), 20190431.
https://doi.org/10.1098/rspb.2019.0431

Habibian, J. S., Jefic, M., Bagchi, R. A., Lane, R. H., McKnight, R. A., McKinsey, T. A.,
Morrison, R. F., & Ferguson, B. S. (2017). DUSP5 functions as a feedback regulator of

TNFa-induced ERK1/2 dephosphorylation and inflammatory gene expression in adipocytes.

Scientific Reports, 7(1), 12879. https://doi.org/10.1038/s41598-017-12861-y

Hagai, T., Chen, X., Miragaia, R. J., Rostom, R., Gomes, T., Kunowska, N., Henriksson, J., Park,
J.-E., Proserpio, V., Donati, G., Bossini-Castillo, L., Vieira Braga, F. A., Naamati, G.,
Fletcher, J., Stephenson, E., Vegh, P., Trynka, G., Kondova, I., Dennis, M., ... Teichmann,
S. A. (2018). Gene expression variability across cells and species shapes innate immunity.
Nature, 563(7730), 197-202. https://doi.org/10.1038/s41586-018-0657-2

Hicks, A. L., Lee, K. J., Couto-Rodriguez, M., Patel, J., Sinha, R., Guo, C., Olson, S. H.,
Seimon, A., Seimon, T. A., Ondzie, A. U., Karesh, W. B., Reed, P., Cameron, K. N., Lipkin,
W. 1., & Williams, B. L. (2018). Gut microbiomes of wild great apes fluctuate seasonally in
response to diet. Nature Communications, 9(1), 1786.
https://doi.org/10.1038/s41467-018-04204-w

Horber, S., Hildebrand, D. G., Lieb, W. S., Lorscheid, S., Hailfinger, S., Schulze-Osthoff, K., &
Essmann, F. (2016). The Atypical Inhibitor of NF-xB, IkB(, Controls Macrophage
Interleukin-10 Expression. The Journal of Biological Chemistry, 291(24), 12851-12861.
https://doi.org/10.1074/jbc.M116.718825

Hotte, N. S. C., Salim, S. Y., Tso, R. H., Albert, E. J., Bach, P., Walker, J., Dicleman, L. A.,
Fedorak, R. N., & Madsen, K. L. (2012). Patients with inflammatory bowel disease exhibit
dysregulated responses to microbial DNA. PloS One, 7(5), €37932.
https://doi.org/10.1371/journal.pone.0037932

Human Microbiome Project Consortium. (2012). Structure, function and diversity of the healthy
human microbiome. Nature, 486(7402), 207-214. https://doi.org/10.1038/nature11234

Khor, B., Gardet, A., & Xavier, R. J. (2011). Genetics and pathogenesis of inflammatory bowel

int
ade


http://paperpile.com/b/DzIopg/OXt2k
http://paperpile.com/b/DzIopg/OXt2k
http://paperpile.com/b/DzIopg/OXt2k
http://paperpile.com/b/DzIopg/OXt2k
http://paperpile.com/b/DzIopg/OXt2k
http://paperpile.com/b/DzIopg/OXt2k
http://paperpile.com/b/DzIopg/OXt2k
http://paperpile.com/b/DzIopg/OXt2k
http://paperpile.com/b/DzIopg/OXt2k
http://dx.doi.org/10.1128/mSphere.00271-19
http://paperpile.com/b/DzIopg/LW2yh
http://paperpile.com/b/DzIopg/LW2yh
http://paperpile.com/b/DzIopg/LW2yh
http://paperpile.com/b/DzIopg/LW2yh
http://paperpile.com/b/DzIopg/LW2yh
http://paperpile.com/b/DzIopg/LW2yh
http://paperpile.com/b/DzIopg/LW2yh
http://paperpile.com/b/DzIopg/LW2yh
http://dx.doi.org/10.1016/j.cell.2014.09.053
http://paperpile.com/b/DzIopg/Adv8r
http://paperpile.com/b/DzIopg/Adv8r
http://paperpile.com/b/DzIopg/Adv8r
http://paperpile.com/b/DzIopg/Adv8r
http://paperpile.com/b/DzIopg/Adv8r
http://paperpile.com/b/DzIopg/Adv8r
http://paperpile.com/b/DzIopg/Adv8r
http://paperpile.com/b/DzIopg/Adv8r
http://paperpile.com/b/DzIopg/Adv8r
http://dx.doi.org/10.1098/rspb.2019.0431
http://paperpile.com/b/DzIopg/W6CTT
http://paperpile.com/b/DzIopg/W6CTT
http://paperpile.com/b/DzIopg/W6CTT
http://paperpile.com/b/DzIopg/W6CTT
http://paperpile.com/b/DzIopg/W6CTT
http://paperpile.com/b/DzIopg/W6CTT
http://paperpile.com/b/DzIopg/W6CTT
http://dx.doi.org/10.1038/s41598-017-12861-y
http://paperpile.com/b/DzIopg/WuM0v
http://paperpile.com/b/DzIopg/WuM0v
http://paperpile.com/b/DzIopg/WuM0v
http://paperpile.com/b/DzIopg/WuM0v
http://paperpile.com/b/DzIopg/WuM0v
http://paperpile.com/b/DzIopg/WuM0v
http://paperpile.com/b/DzIopg/WuM0v
http://paperpile.com/b/DzIopg/WuM0v
http://dx.doi.org/10.1038/s41586-018-0657-2
http://paperpile.com/b/DzIopg/0U4vs
http://paperpile.com/b/DzIopg/0U4vs
http://paperpile.com/b/DzIopg/0U4vs
http://paperpile.com/b/DzIopg/0U4vs
http://paperpile.com/b/DzIopg/0U4vs
http://paperpile.com/b/DzIopg/0U4vs
http://paperpile.com/b/DzIopg/0U4vs
http://paperpile.com/b/DzIopg/0U4vs
http://paperpile.com/b/DzIopg/0U4vs
http://dx.doi.org/10.1038/s41467-018-04204-w
http://paperpile.com/b/DzIopg/LTx7f
http://paperpile.com/b/DzIopg/LTx7f
http://paperpile.com/b/DzIopg/LTx7f
http://paperpile.com/b/DzIopg/LTx7f
http://paperpile.com/b/DzIopg/LTx7f
http://paperpile.com/b/DzIopg/LTx7f
http://paperpile.com/b/DzIopg/LTx7f
http://paperpile.com/b/DzIopg/LTx7f
http://dx.doi.org/10.1074/jbc.M116.718825
http://paperpile.com/b/DzIopg/Kzewb
http://paperpile.com/b/DzIopg/Kzewb
http://paperpile.com/b/DzIopg/Kzewb
http://paperpile.com/b/DzIopg/Kzewb
http://paperpile.com/b/DzIopg/Kzewb
http://paperpile.com/b/DzIopg/Kzewb
http://paperpile.com/b/DzIopg/Kzewb
http://paperpile.com/b/DzIopg/Kzewb
http://dx.doi.org/10.1371/journal.pone.0037932
http://paperpile.com/b/DzIopg/4vEMs
http://paperpile.com/b/DzIopg/4vEMs
http://paperpile.com/b/DzIopg/4vEMs
http://paperpile.com/b/DzIopg/4vEMs
http://paperpile.com/b/DzIopg/4vEMs
http://paperpile.com/b/DzIopg/4vEMs
http://dx.doi.org/10.1038/nature11234
http://paperpile.com/b/DzIopg/mTrMl
https://doi.org/10.1101/2020.08.17.255059
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.255059; this version posted August 17, 2020. The copyright holder for this pr:
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It i

822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860

available under aCC-BY-NC-ND 4.0 International license.

disease. Nature, 474(7351), 307-317. https://doi.org/10.1038/nature10209
Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome

alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37(8),

907-915. https://doi.org/10.1038/s41587-019-0201-4

King, M. C., & Wilson, A. C. (1975). Evolution at two levels in humans and chimpanzees.
Science, 188(4184), 107—116. https://doi.org/10.1126/science.1090005

Kramer, A., Green, J., Pollard, J., Jr, & Tugendreich, S. (2014). Causal analysis approaches in
Ingenuity Pathway Analysis. Bioinformatics , 30(4), 523-530.
https://doi.org/10.1093/bioinformatics/btt703

Krautkramer, K. A., Kreznar, J. H., Romano, K. A., Vivas, E. 1., Barrett-Wilt, G. A., Rabaglia,
M. E., Keller, M. P., Attie, A. D., Rey, F. E., & Denu, J. M. (2016). Diet-Microbiota
Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues. Molecular
Cell, 64(5), 982-992. https://doi.org/10.1016/j.molcel.2016.10.025

Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., Koplev,
S., Jenkins, S. L., Jagodnik, K. M., Lachmann, A., McDermott, M. G., Monteiro, C. D.,
Gundersen, G. W., & Ma’ayan, A. (2016). Enrichr: a comprehensive gene set enrichment
analysis web server 2016 update. Nucleic Acids Research, 44(W1), W90-W97.
https://doi.org/10.1093/nar/gkw377

Lang, J. M., Pan, C., Cantor, R. M., Tang, W. H. W., Garcia-Garcia, J. C., Kurtz, 1., Hazen, S. L.,
Bergeron, N., Krauss, R. M., & Lusis, A. J. (2018). Impact of Individual Traits, Saturated
Fat, and Protein Source on the Gut Microbiome. mBio, 9(6).
https://doi.org/10.1128/mBi0.01604-18

Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature
Methods, 9(4), 357-359. https://doi.org/10.1038/nmeth.1923

Love, M. L., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550.
https://doi.org/10.1186/s13059-014-0550-8

Luca, F., Kupfer, S. S., Knights, D., Khoruts, A., & Blekhman, R. (2018). Functional Genomics
of Host-Microbiome Interactions in Humans. Trends in Genetics: TIG, 34(1), 30—40.
https://doi.org/10.1016/j.tig.2017.10.001

Mann, A. E., Mazel, F., Lemay, M. A., Morien, E., Billy, V., Kowalewski, M., Di Fiore, A., Link,

A., Goldberg, T. L., Tecot, S., Baden, A. L., Gomez, A., Sauther, M. L., Cuozzo, F. P, Rice,
G. A. O., Dominy, N. J., Stumpf, R., Lewis, R. J., Swedell, L., ... Wegener Parfrey, L.

int
ade

(2019). Biodiversity of protists and nematodes in the wild nonhuman primate gut. The ISME

Journal. https://doi.org/10.1038/s41396-019-0551-4

Moeller, A. H., Degnan, P. H., Pusey, A. E., Wilson, M. L., Hahn, B. H., & Ochman, H. (2012).
Chimpanzees and humans harbour compositionally similar gut enterotypes. Nature
Communications, 3, 1179. https://doi.org/10.1038/ncomms2159

Morgan, X. C., Tickle, T. L., Sokol, H., Gevers, D., Devaney, K. L., Ward, D. V., Reyes, J. A.,


http://paperpile.com/b/DzIopg/mTrMl
http://paperpile.com/b/DzIopg/mTrMl
http://paperpile.com/b/DzIopg/mTrMl
http://paperpile.com/b/DzIopg/mTrMl
http://paperpile.com/b/DzIopg/mTrMl
http://dx.doi.org/10.1038/nature10209
http://paperpile.com/b/DzIopg/MtV8j
http://paperpile.com/b/DzIopg/MtV8j
http://paperpile.com/b/DzIopg/MtV8j
http://paperpile.com/b/DzIopg/MtV8j
http://paperpile.com/b/DzIopg/MtV8j
http://paperpile.com/b/DzIopg/MtV8j
http://paperpile.com/b/DzIopg/MtV8j
http://dx.doi.org/10.1038/s41587-019-0201-4
http://paperpile.com/b/DzIopg/C6u9g
http://paperpile.com/b/DzIopg/C6u9g
http://paperpile.com/b/DzIopg/C6u9g
http://paperpile.com/b/DzIopg/C6u9g
http://paperpile.com/b/DzIopg/C6u9g
http://dx.doi.org/10.1126/science.1090005
http://paperpile.com/b/DzIopg/01nyT
http://paperpile.com/b/DzIopg/01nyT
http://paperpile.com/b/DzIopg/01nyT
http://paperpile.com/b/DzIopg/01nyT
http://paperpile.com/b/DzIopg/01nyT
http://paperpile.com/b/DzIopg/01nyT
http://paperpile.com/b/DzIopg/01nyT
http://dx.doi.org/10.1093/bioinformatics/btt703
http://paperpile.com/b/DzIopg/oUm5v
http://paperpile.com/b/DzIopg/oUm5v
http://paperpile.com/b/DzIopg/oUm5v
http://paperpile.com/b/DzIopg/oUm5v
http://paperpile.com/b/DzIopg/oUm5v
http://paperpile.com/b/DzIopg/oUm5v
http://paperpile.com/b/DzIopg/oUm5v
http://paperpile.com/b/DzIopg/oUm5v
http://dx.doi.org/10.1016/j.molcel.2016.10.025
http://paperpile.com/b/DzIopg/LIxos
http://paperpile.com/b/DzIopg/LIxos
http://paperpile.com/b/DzIopg/LIxos
http://paperpile.com/b/DzIopg/LIxos
http://paperpile.com/b/DzIopg/LIxos
http://paperpile.com/b/DzIopg/LIxos
http://paperpile.com/b/DzIopg/LIxos
http://paperpile.com/b/DzIopg/LIxos
http://paperpile.com/b/DzIopg/LIxos
http://dx.doi.org/10.1093/nar/gkw377
http://paperpile.com/b/DzIopg/U8Yoe
http://paperpile.com/b/DzIopg/U8Yoe
http://paperpile.com/b/DzIopg/U8Yoe
http://paperpile.com/b/DzIopg/U8Yoe
http://paperpile.com/b/DzIopg/U8Yoe
http://paperpile.com/b/DzIopg/U8Yoe
http://paperpile.com/b/DzIopg/U8Yoe
http://paperpile.com/b/DzIopg/U8Yoe
http://dx.doi.org/10.1128/mBio.01604-18
http://paperpile.com/b/DzIopg/jdyof
http://paperpile.com/b/DzIopg/jdyof
http://paperpile.com/b/DzIopg/jdyof
http://paperpile.com/b/DzIopg/jdyof
http://paperpile.com/b/DzIopg/jdyof
http://paperpile.com/b/DzIopg/jdyof
http://dx.doi.org/10.1038/nmeth.1923
http://paperpile.com/b/DzIopg/H3WvW
http://paperpile.com/b/DzIopg/H3WvW
http://paperpile.com/b/DzIopg/H3WvW
http://paperpile.com/b/DzIopg/H3WvW
http://paperpile.com/b/DzIopg/H3WvW
http://paperpile.com/b/DzIopg/H3WvW
http://paperpile.com/b/DzIopg/H3WvW
http://dx.doi.org/10.1186/s13059-014-0550-8
http://paperpile.com/b/DzIopg/WM0Ie
http://paperpile.com/b/DzIopg/WM0Ie
http://paperpile.com/b/DzIopg/WM0Ie
http://paperpile.com/b/DzIopg/WM0Ie
http://paperpile.com/b/DzIopg/WM0Ie
http://paperpile.com/b/DzIopg/WM0Ie
http://paperpile.com/b/DzIopg/WM0Ie
http://dx.doi.org/10.1016/j.tig.2017.10.001
http://paperpile.com/b/DzIopg/33oEp
http://paperpile.com/b/DzIopg/33oEp
http://paperpile.com/b/DzIopg/33oEp
http://paperpile.com/b/DzIopg/33oEp
http://paperpile.com/b/DzIopg/33oEp
http://paperpile.com/b/DzIopg/33oEp
http://paperpile.com/b/DzIopg/33oEp
http://dx.doi.org/10.1038/s41396-019-0551-4
http://paperpile.com/b/DzIopg/4LnRA
http://paperpile.com/b/DzIopg/4LnRA
http://paperpile.com/b/DzIopg/4LnRA
http://paperpile.com/b/DzIopg/4LnRA
http://paperpile.com/b/DzIopg/4LnRA
http://paperpile.com/b/DzIopg/4LnRA
http://paperpile.com/b/DzIopg/4LnRA
http://dx.doi.org/10.1038/ncomms2159
http://paperpile.com/b/DzIopg/aOqmJ
https://doi.org/10.1101/2020.08.17.255059
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.255059; this version posted August 17, 2020. The copyright holder for this pr:
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It i

861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899

available under aCC-BY-NC-ND 4.0 International license.

Shah, S. A., LeLeiko, N., Snapper, S. B., Bousvaros, A., Korzenik, J., Sands, B. E., Xavier,
R. J., & Huttenhower, C. (2012). Dysfunction of the intestinal microbiome in inflammatory
bowel disease and treatment. Genome Biology, 13(9), R79.
https://doi.org/10.1186/gb-2012-13-9-r79

Miiller, A., Hennig, A., Lorscheid, S., Grondona, P., Schulze-Osthoff, K., Hailfinger, S., &
Kramer, D. (2018). IxB( is a key transcriptional regulator of IL-36-driven psoriasis-related
gene expression in keratinocytes. Proceedings of the National Academy of Sciences of the
United States of America, 115(40), 10088—10093. https://doi.org/10.1073/pnas.1801377115

Nagpal, R., Shively, C. A., Appt, S. A., Register, T. C., Michalson, K. T., Vitolins, M. Z., &
Yadav, H. (2018). Gut Microbiome Composition in Non-human Primates Consuming a
Western or Mediterranean Diet. Frontiers in Nutrition, 5, 28.
https://doi.org/10.3389/fnhut.2018.00028

Nishida, A. H., & Ochman, H. (2019). A great-ape view of the gut microbiome. Nature Reviews.
Genetics. https://doi.org/10.1038/s41576-018-0085-z

Noor, S. O., Ridgway, K., Scovell, L., Kemsley, E. K., Lund, E. K., Jamieson, C., Johnson, I. T.,
& Narbad, A. (2010). Ulcerative colitis and irritable bowel patients exhibit distinct
abnormalities of the gut microbiota. BMC Gastroenterology, 10, 134.
https://doi.org/10.1186/1471-230X-10-134

Ochman, H., Worobey, M., Kuo, C.-H., Ndjango, J.-B. N., Peeters, M., Hahn, B. H., &
Hugenholtz, P. (2010). Evolutionary relationships of wild hominids recapitulated by gut
microbial communities. PLoS Biology, 8(11), €e1000546.
https://doi.org/10.1371/journal.pbio.1000546

Onoufriadis, A., Simpson, M. A., Pink, A. E., Di Meglio, P., Smith, C. H., Pullabhatla, V.,
Knight, J., Spain, S. L., Nestle, F. O., Burden, A. D., Capon, F., Trembath, R. C., & Barker,
J.N. (2011). Mutations in IL36RN/IL1F5 are associated with the severe episodic
inflammatory skin disease known as generalized pustular psoriasis. American Journal of
Human Genetics, 89(3), 432—437. https://doi.org/10.1016/j.ajhg.2011.07.022

Pan, W.-H., Sommer, F., Falk-Paulsen, M., Ulas, T., Best, P., Fazio, A., Kachroo, P., Luzius, A.,
Jentzsch, M., Rehman, A., Miiller, F., Lengauer, T., Walter, J., Kiinzel, S., Baines, J. F.,
Schreiber, S., Franke, A., Schultze, J. L., Biackhed, F., & Rosenstiel, P. (2018). Exposure to
the gut microbiota drives distinct methylome and transcriptome changes in intestinal
epithelial cells during postnatal development. Genome Medicine, 10(1), 27.
https://doi.org/10.1186/s13073-018-0534-5

Parisinos, C. A., Serghiou, S., Katsoulis, M., George, M. J., Patel, R. S., Hemingway, H., &
Hingorani, A. D. (2018). Variation in Interleukin 6 Receptor Gene Associates With Risk of
Crohn’s Disease and Ulcerative Colitis. Gastroenterology, 155(2), 303-306.¢2.
https://doi.org/10.1053/j.gastro.2018.05.022

Qin, Y., Roberts, J. D., Grimm, S. A., Lih, F. B., Deterding, L. J., Li, R., Chrysovergis, K., &
Wade, P. A. (2018). An obesity-associated gut microbiome reprograms the intestinal

int
ade


http://paperpile.com/b/DzIopg/aOqmJ
http://paperpile.com/b/DzIopg/aOqmJ
http://paperpile.com/b/DzIopg/aOqmJ
http://paperpile.com/b/DzIopg/aOqmJ
http://paperpile.com/b/DzIopg/aOqmJ
http://paperpile.com/b/DzIopg/aOqmJ
http://paperpile.com/b/DzIopg/aOqmJ
http://paperpile.com/b/DzIopg/aOqmJ
http://dx.doi.org/10.1186/gb-2012-13-9-r79
http://paperpile.com/b/DzIopg/XPIGj
http://paperpile.com/b/DzIopg/XPIGj
http://paperpile.com/b/DzIopg/XPIGj
http://paperpile.com/b/DzIopg/XPIGj
http://paperpile.com/b/DzIopg/XPIGj
http://paperpile.com/b/DzIopg/XPIGj
http://paperpile.com/b/DzIopg/XPIGj
http://paperpile.com/b/DzIopg/XPIGj
http://dx.doi.org/10.1073/pnas.1801377115
http://paperpile.com/b/DzIopg/fL299
http://paperpile.com/b/DzIopg/fL299
http://paperpile.com/b/DzIopg/fL299
http://paperpile.com/b/DzIopg/fL299
http://paperpile.com/b/DzIopg/fL299
http://paperpile.com/b/DzIopg/fL299
http://paperpile.com/b/DzIopg/fL299
http://paperpile.com/b/DzIopg/fL299
http://dx.doi.org/10.3389/fnut.2018.00028
http://paperpile.com/b/DzIopg/ncFIe
http://paperpile.com/b/DzIopg/ncFIe
http://paperpile.com/b/DzIopg/ncFIe
http://paperpile.com/b/DzIopg/ncFIe
http://dx.doi.org/10.1038/s41576-018-0085-z
http://paperpile.com/b/DzIopg/PFmfu
http://paperpile.com/b/DzIopg/PFmfu
http://paperpile.com/b/DzIopg/PFmfu
http://paperpile.com/b/DzIopg/PFmfu
http://paperpile.com/b/DzIopg/PFmfu
http://paperpile.com/b/DzIopg/PFmfu
http://paperpile.com/b/DzIopg/PFmfu
http://paperpile.com/b/DzIopg/PFmfu
http://dx.doi.org/10.1186/1471-230X-10-134
http://paperpile.com/b/DzIopg/nyhhG
http://paperpile.com/b/DzIopg/nyhhG
http://paperpile.com/b/DzIopg/nyhhG
http://paperpile.com/b/DzIopg/nyhhG
http://paperpile.com/b/DzIopg/nyhhG
http://paperpile.com/b/DzIopg/nyhhG
http://paperpile.com/b/DzIopg/nyhhG
http://paperpile.com/b/DzIopg/nyhhG
http://dx.doi.org/10.1371/journal.pbio.1000546
http://paperpile.com/b/DzIopg/2bSQ7
http://paperpile.com/b/DzIopg/2bSQ7
http://paperpile.com/b/DzIopg/2bSQ7
http://paperpile.com/b/DzIopg/2bSQ7
http://paperpile.com/b/DzIopg/2bSQ7
http://paperpile.com/b/DzIopg/2bSQ7
http://paperpile.com/b/DzIopg/2bSQ7
http://paperpile.com/b/DzIopg/2bSQ7
http://paperpile.com/b/DzIopg/2bSQ7
http://dx.doi.org/10.1016/j.ajhg.2011.07.022
http://paperpile.com/b/DzIopg/1awQf
http://paperpile.com/b/DzIopg/1awQf
http://paperpile.com/b/DzIopg/1awQf
http://paperpile.com/b/DzIopg/1awQf
http://paperpile.com/b/DzIopg/1awQf
http://paperpile.com/b/DzIopg/1awQf
http://paperpile.com/b/DzIopg/1awQf
http://paperpile.com/b/DzIopg/1awQf
http://paperpile.com/b/DzIopg/1awQf
http://paperpile.com/b/DzIopg/1awQf
http://dx.doi.org/10.1186/s13073-018-0534-5
http://paperpile.com/b/DzIopg/DS6uh
http://paperpile.com/b/DzIopg/DS6uh
http://paperpile.com/b/DzIopg/DS6uh
http://paperpile.com/b/DzIopg/DS6uh
http://paperpile.com/b/DzIopg/DS6uh
http://paperpile.com/b/DzIopg/DS6uh
http://paperpile.com/b/DzIopg/DS6uh
http://paperpile.com/b/DzIopg/DS6uh
http://dx.doi.org/10.1053/j.gastro.2018.05.022
http://paperpile.com/b/DzIopg/MRpZg
http://paperpile.com/b/DzIopg/MRpZg
https://doi.org/10.1101/2020.08.17.255059
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.255059; this version posted August 17, 2020. The copyright holder for this pr:
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It i

900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938

available under aCC-BY-NC-ND 4.0 International license.

epigenome and leads to altered colonic gene expression. Genome Biology, 19(1), 7.
https://doi.org/10.1186/s13059-018-1389-1

Raymann, K., Moeller, A. H., Goodman, A. L., & Ochman, H. (2017). Unexplored Archaeal
Diversity in the Great Ape Gut Microbiome. mSphere, 2(1).
https://doi.org/10.1128/mSphere.00026-17

Remis, M. J. (1997). Western lowland gorillas (Gorilla gorilla gorilla) as seasonal frugivores: use
of variable resources. American Journal of Primatology, 43(2), 87-109.
https://doi.org/3.0.CO;2-T">10.1002/(SICI)1098-2345(1997)43:2<87::AID-AJP1>3.0.CO;2
-T

Ren, K., & Torres, R. (2009). Role of interleukin-1beta during pain and inflammation. Brain
Research Reviews, 60(1), 57—64. https://doi.org/10.1016/j.brainresrev.2008.12.020

Richards, A. L., Burns, M. B., Alazizi, A., Barreiro, L. B., Pique-Regi, R., Blekhman, R., &
Luca, F. (2016). Genetic and transcriptional analysis of human host response to healthy gut
microbiota. mSystems, 1(4). https://doi.org/10.1128/mSystems.00067-16

Richards, A. L., Muehlbauer, A. L., Alazizi, A., Burns, M. B., Findley, A., Messina, F., Gould, T.
J., Cascardo, C., Pique-Regi, R., Blekhman, R., & Luca, F. (2019). Gut Microbiota Has a
Widespread and Modifiable Effect on Host Gene Regulation. mSystems, 4(5).
https://doi.org/10.1128/mSystems.00323-18

Rincon, M. (2012). Interleukin-6: from an inflammatory marker to a target for inflammatory
diseases. Trends in Immunology, 33(11), 571-577. https://doi.org/10.1016/5.1t.2012.07.003

Russell, S. E., Horan, R. M., Stefanska, A. M., Carey, A., Leon, G., Aguilera, M., Statovci, D.,
Moran, T., Fallon, P. G., Shanahan, F., Brint, E. K., Melgar, S., Hussey, S., & Walsh, P. T.
(2016). IL-36a expression is elevated in ulcerative colitis and promotes colonic
inflammation. Mucosal Immunology, 9(5), 1193—1204. https://doi.org/10.1038/mi.2015.134

Scher, J. U., & Abramson, S. B. (2011). The microbiome and rheumatoid arthritis. Nature
Reviews. Rheumatology, 7(10), 569-578. https://doi.org/10.1038/nrrheum.2011.121

Schulze, H. A., Hisler, R., Mah, N., Lu, T., Nikolaus, S., Costello, C. M., & Schreiber, S. (2008).
From model cell line to in vivo gene expression: disease-related intestinal gene expression
in IBD. Genes and Immunity, 9(3), 240-248. https://doi.org/10.1038/gene.2008.11

Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B., Wu, C. H., & UniProt Consortium. (2015).
UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity
searches. Bioinformatics , 31(6), 926-932. https://doi.org/10.1093/bioinformatics/btu739

Taylor, A. B. (2006). Feeding behavior, diet, and the functional consequences of jaw form in
orangutans, with implications for the evolution of Pongo. Journal of Human Evolution,
50(4), 377-393. https://doi.org/10.1016/j.jhevol.2005.10.006

Truong, D. T., Franzosa, E. A., Tickle, T. L., Scholz, M., Weingart, G., Pasolli, E., Tett, A.,
Huttenhower, C., & Segata, N. (2015). MetaPhlAn2 for enhanced metagenomic taxonomic
profiling. Nature Methods, 12(10), 902—903. https://doi.org/10.1038/nmeth.3589

Tung, J., Barreiro, L. B., Burns, M. B., Grenier, J.-C., Lynch, J., Grieneisen, L. E., Altmann, J.,

int
ade


http://paperpile.com/b/DzIopg/MRpZg
http://paperpile.com/b/DzIopg/MRpZg
http://paperpile.com/b/DzIopg/MRpZg
http://paperpile.com/b/DzIopg/MRpZg
http://paperpile.com/b/DzIopg/MRpZg
http://paperpile.com/b/DzIopg/MRpZg
http://dx.doi.org/10.1186/s13059-018-1389-1
http://paperpile.com/b/DzIopg/RfwLp
http://paperpile.com/b/DzIopg/RfwLp
http://paperpile.com/b/DzIopg/RfwLp
http://paperpile.com/b/DzIopg/RfwLp
http://paperpile.com/b/DzIopg/RfwLp
http://paperpile.com/b/DzIopg/RfwLp
http://paperpile.com/b/DzIopg/RfwLp
http://dx.doi.org/10.1128/mSphere.00026-17
http://paperpile.com/b/DzIopg/6v5lG
http://paperpile.com/b/DzIopg/6v5lG
http://paperpile.com/b/DzIopg/6v5lG
http://paperpile.com/b/DzIopg/6v5lG
http://paperpile.com/b/DzIopg/6v5lG
http://paperpile.com/b/DzIopg/6v5lG
http://paperpile.com/b/DzIopg/6v5lG
http://paperpile.com/b/DzIopg/6v5lG
http://paperpile.com/b/DzIopg/wHYOl
http://paperpile.com/b/DzIopg/wHYOl
http://paperpile.com/b/DzIopg/wHYOl
http://paperpile.com/b/DzIopg/wHYOl
http://paperpile.com/b/DzIopg/wHYOl
http://paperpile.com/b/DzIopg/wHYOl
http://dx.doi.org/10.1016/j.brainresrev.2008.12.020
http://paperpile.com/b/DzIopg/hwKvZ
http://paperpile.com/b/DzIopg/hwKvZ
http://paperpile.com/b/DzIopg/hwKvZ
http://paperpile.com/b/DzIopg/hwKvZ
http://paperpile.com/b/DzIopg/hwKvZ
http://paperpile.com/b/DzIopg/hwKvZ
http://paperpile.com/b/DzIopg/hwKvZ
http://dx.doi.org/10.1128/mSystems.00067-16
http://paperpile.com/b/DzIopg/ykEI5
http://paperpile.com/b/DzIopg/ykEI5
http://paperpile.com/b/DzIopg/ykEI5
http://paperpile.com/b/DzIopg/ykEI5
http://paperpile.com/b/DzIopg/ykEI5
http://paperpile.com/b/DzIopg/ykEI5
http://paperpile.com/b/DzIopg/ykEI5
http://paperpile.com/b/DzIopg/ykEI5
http://dx.doi.org/10.1128/mSystems.00323-18
http://paperpile.com/b/DzIopg/CUUpp
http://paperpile.com/b/DzIopg/CUUpp
http://paperpile.com/b/DzIopg/CUUpp
http://paperpile.com/b/DzIopg/CUUpp
http://paperpile.com/b/DzIopg/CUUpp
http://paperpile.com/b/DzIopg/CUUpp
http://dx.doi.org/10.1016/j.it.2012.07.003
http://paperpile.com/b/DzIopg/TPhDV
http://paperpile.com/b/DzIopg/TPhDV
http://paperpile.com/b/DzIopg/TPhDV
http://paperpile.com/b/DzIopg/TPhDV
http://paperpile.com/b/DzIopg/TPhDV
http://paperpile.com/b/DzIopg/TPhDV
http://paperpile.com/b/DzIopg/TPhDV
http://paperpile.com/b/DzIopg/TPhDV
http://dx.doi.org/10.1038/mi.2015.134
http://paperpile.com/b/DzIopg/tmx8f
http://paperpile.com/b/DzIopg/tmx8f
http://paperpile.com/b/DzIopg/tmx8f
http://paperpile.com/b/DzIopg/tmx8f
http://paperpile.com/b/DzIopg/tmx8f
http://paperpile.com/b/DzIopg/tmx8f
http://dx.doi.org/10.1038/nrrheum.2011.121
http://paperpile.com/b/DzIopg/7pXcv
http://paperpile.com/b/DzIopg/7pXcv
http://paperpile.com/b/DzIopg/7pXcv
http://paperpile.com/b/DzIopg/7pXcv
http://paperpile.com/b/DzIopg/7pXcv
http://paperpile.com/b/DzIopg/7pXcv
http://paperpile.com/b/DzIopg/7pXcv
http://dx.doi.org/10.1038/gene.2008.11
http://paperpile.com/b/DzIopg/AshoV
http://paperpile.com/b/DzIopg/AshoV
http://paperpile.com/b/DzIopg/AshoV
http://paperpile.com/b/DzIopg/AshoV
http://paperpile.com/b/DzIopg/AshoV
http://paperpile.com/b/DzIopg/AshoV
http://paperpile.com/b/DzIopg/AshoV
http://dx.doi.org/10.1093/bioinformatics/btu739
http://paperpile.com/b/DzIopg/GQvAW
http://paperpile.com/b/DzIopg/GQvAW
http://paperpile.com/b/DzIopg/GQvAW
http://paperpile.com/b/DzIopg/GQvAW
http://paperpile.com/b/DzIopg/GQvAW
http://paperpile.com/b/DzIopg/GQvAW
http://dx.doi.org/10.1016/j.jhevol.2005.10.006
http://paperpile.com/b/DzIopg/YzVHO
http://paperpile.com/b/DzIopg/YzVHO
http://paperpile.com/b/DzIopg/YzVHO
http://paperpile.com/b/DzIopg/YzVHO
http://paperpile.com/b/DzIopg/YzVHO
http://paperpile.com/b/DzIopg/YzVHO
http://paperpile.com/b/DzIopg/YzVHO
http://dx.doi.org/10.1038/nmeth.3589
http://paperpile.com/b/DzIopg/jVtDF
https://doi.org/10.1101/2020.08.17.255059
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.255059; this version posted August 17, 2020. The copyright holder for this pr:
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It i

939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977

available under aCC-BY-NC-ND 4.0 International license.

Alberts, S. C., Blekhman, R., & Archie, E. A. (2015). Social networks predict gut
microbiome composition in wild baboons. eLife, 4. https://doi.org/10.7554/eLife.05224

Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M., Knight, R., & Gordon, J. I.
(2007). The human microbiome project. Nature, 449(7164), 804—810.
https://doi.org/10.1038/nature06244

Tutin, C. E. G., & Fernandez, M. (1993). Composition of the diet of chimpanzees and
comparisons with that of sympatric lowland gorillas in the lopé reserve, gabon. American
Journal of Primatology, 30(3), 195-211. https://doi.org/10.1002/ajp.1350300305

Vogel, E. R., Harrison, M. E., Zulfa, A., Bransford, T. D., Alavi, S. E., Husson, S.,
Morrogh-Bernard, H., Santiano, Firtsman, T., Utami-Atmoko, S. S., van Noordwijk, M. A.,
& Farida, W. R. (2015). Nutritional Differences between Two Orangutan Habitats:
Implications for Population Density. PloS One, 10(10), e0138612.
https://doi.org/10.1371/journal.pone.0138612

Wang, W., Yu, X., Wu, C., & Jin, H. (2017). IL-36y inhibits differentiation and induces
inflammation of keratinocyte via Wnt signaling pathway in psoriasis. International Journal
of Medical Sciences, 14(10), 1002—1007. https://doi.org/10.7150/ijms.20809

Watts, D. P, Potts, K. B., Lwanga, J. S., & Mitani, J. C. (2012). Diet of chimpanzees (Pan
troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda, 1. Diet composition
and diversity. American Journal of Primatology, 74(2), 114—129.
https://doi.org/10.1002/ajp.21016

Wexler, H. M. (2007). Bacteroides: the good, the bad, and the nitty-gritty. Clinical Microbiology
Reviews, 20(4), 593—621. https://doi.org/10.1128/CMR.00008-07

Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.-Y., Keilbaugh, S. A., Bewtra, M.,
Knights, D., Walters, W. A., Knight, R., Sinha, R., Gilroy, E., Gupta, K., Baldassano, R.,
Nessel, L., Li, H., Bushman, F. D., & Lewis, J. D. (2011). Linking long-term dietary
patterns with gut microbial enterotypes. Science, 334(6052), 105-108.
https://doi.org/10.1126/science.1208344

Ye, Y., & Doak, T. G. (2009). A parsimony approach to biological pathway
reconstruction/inference for genomes and metagenomes. PLoS Computational Biology,
5(8), €1000465. https://doi.org/10.1371/journal.pcbi.1000465

Yue, X., Wu, L., & Hu, W. (2015). The regulation of leukemia inhibitory factor. Cancer Cell &
Microenvironment, 2(3). https://doi.org/10.14800/ccm.877

Yu, G., Wang, L.-G., Han, Y., & He, Q.-Y. (2012). clusterProfiler: an R Package for Comparing
Biological Themes Among Gene Clusters. Omics: A Journal of Integrative Biology, 16(5),
284-287. https://doi.org/10.1089/0mi.2011.0118

Zhang, S.-L., Wang, S.-N., & Miao, C.-Y. (2017). Influence of Microbiota on Intestinal Immune
System in Ulcerative Colitis and Its Intervention. Frontiers in Immunology, 8, 1674.
https://doi.org/10.3389/fimmu.2017.01674

Zhang, Y., Quick, C., Yu, K., Barbeira, A., The GTEx Consortium, Luca, F., Pique-Regi, R., Im,

int
ade


http://paperpile.com/b/DzIopg/jVtDF
http://paperpile.com/b/DzIopg/jVtDF
http://paperpile.com/b/DzIopg/jVtDF
http://paperpile.com/b/DzIopg/jVtDF
http://paperpile.com/b/DzIopg/jVtDF
http://paperpile.com/b/DzIopg/jVtDF
http://dx.doi.org/10.7554/eLife.05224
http://paperpile.com/b/DzIopg/uzlX0
http://paperpile.com/b/DzIopg/uzlX0
http://paperpile.com/b/DzIopg/uzlX0
http://paperpile.com/b/DzIopg/uzlX0
http://paperpile.com/b/DzIopg/uzlX0
http://paperpile.com/b/DzIopg/uzlX0
http://paperpile.com/b/DzIopg/uzlX0
http://dx.doi.org/10.1038/nature06244
http://paperpile.com/b/DzIopg/AxEkM
http://paperpile.com/b/DzIopg/AxEkM
http://paperpile.com/b/DzIopg/AxEkM
http://paperpile.com/b/DzIopg/AxEkM
http://paperpile.com/b/DzIopg/AxEkM
http://paperpile.com/b/DzIopg/AxEkM
http://paperpile.com/b/DzIopg/AxEkM
http://dx.doi.org/10.1002/ajp.1350300305
http://paperpile.com/b/DzIopg/vBiH2
http://paperpile.com/b/DzIopg/vBiH2
http://paperpile.com/b/DzIopg/vBiH2
http://paperpile.com/b/DzIopg/vBiH2
http://paperpile.com/b/DzIopg/vBiH2
http://paperpile.com/b/DzIopg/vBiH2
http://paperpile.com/b/DzIopg/vBiH2
http://paperpile.com/b/DzIopg/vBiH2
http://paperpile.com/b/DzIopg/vBiH2
http://dx.doi.org/10.1371/journal.pone.0138612
http://paperpile.com/b/DzIopg/CSWlw
http://paperpile.com/b/DzIopg/CSWlw
http://paperpile.com/b/DzIopg/CSWlw
http://paperpile.com/b/DzIopg/CSWlw
http://paperpile.com/b/DzIopg/CSWlw
http://paperpile.com/b/DzIopg/CSWlw
http://paperpile.com/b/DzIopg/CSWlw
http://dx.doi.org/10.7150/ijms.20809
http://paperpile.com/b/DzIopg/Atud5
http://paperpile.com/b/DzIopg/Atud5
http://paperpile.com/b/DzIopg/Atud5
http://paperpile.com/b/DzIopg/Atud5
http://paperpile.com/b/DzIopg/Atud5
http://paperpile.com/b/DzIopg/Atud5
http://paperpile.com/b/DzIopg/Atud5
http://paperpile.com/b/DzIopg/Atud5
http://dx.doi.org/10.1002/ajp.21016
http://paperpile.com/b/DzIopg/Q96Lb
http://paperpile.com/b/DzIopg/Q96Lb
http://paperpile.com/b/DzIopg/Q96Lb
http://paperpile.com/b/DzIopg/Q96Lb
http://paperpile.com/b/DzIopg/Q96Lb
http://paperpile.com/b/DzIopg/Q96Lb
http://dx.doi.org/10.1128/CMR.00008-07
http://paperpile.com/b/DzIopg/j7KFK
http://paperpile.com/b/DzIopg/j7KFK
http://paperpile.com/b/DzIopg/j7KFK
http://paperpile.com/b/DzIopg/j7KFK
http://paperpile.com/b/DzIopg/j7KFK
http://paperpile.com/b/DzIopg/j7KFK
http://paperpile.com/b/DzIopg/j7KFK
http://paperpile.com/b/DzIopg/j7KFK
http://paperpile.com/b/DzIopg/j7KFK
http://dx.doi.org/10.1126/science.1208344
http://paperpile.com/b/DzIopg/wGRr9
http://paperpile.com/b/DzIopg/wGRr9
http://paperpile.com/b/DzIopg/wGRr9
http://paperpile.com/b/DzIopg/wGRr9
http://paperpile.com/b/DzIopg/wGRr9
http://paperpile.com/b/DzIopg/wGRr9
http://dx.doi.org/10.1371/journal.pcbi.1000465
http://paperpile.com/b/DzIopg/ihOC1
http://paperpile.com/b/DzIopg/ihOC1
http://paperpile.com/b/DzIopg/ihOC1
http://paperpile.com/b/DzIopg/ihOC1
http://paperpile.com/b/DzIopg/ihOC1
http://paperpile.com/b/DzIopg/ihOC1
http://dx.doi.org/10.14800/ccm.877
http://paperpile.com/b/DzIopg/Vyx3X
http://paperpile.com/b/DzIopg/Vyx3X
http://paperpile.com/b/DzIopg/Vyx3X
http://paperpile.com/b/DzIopg/Vyx3X
http://paperpile.com/b/DzIopg/Vyx3X
http://paperpile.com/b/DzIopg/Vyx3X
http://paperpile.com/b/DzIopg/Vyx3X
http://dx.doi.org/10.1089/omi.2011.0118
http://paperpile.com/b/DzIopg/KSDKz
http://paperpile.com/b/DzIopg/KSDKz
http://paperpile.com/b/DzIopg/KSDKz
http://paperpile.com/b/DzIopg/KSDKz
http://paperpile.com/b/DzIopg/KSDKz
http://paperpile.com/b/DzIopg/KSDKz
http://paperpile.com/b/DzIopg/KSDKz
http://dx.doi.org/10.3389/fimmu.2017.01674
http://paperpile.com/b/DzIopg/DiiBV
https://doi.org/10.1101/2020.08.17.255059
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.255059; this version posted August 17, 2020. The copyright holder for this pregsint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is Made
available under aCC-BY-NC-ND 4.0 International license.

978 H. K., & Wen, X. (2019). Investigating tissue-relevant causal molecular mechanisms of
979 complex traits using probabilistic TWAS analysis. In bioRxiv (p. 808295).
980 https://doi.org/10.1101/808295


http://paperpile.com/b/DzIopg/DiiBV
http://paperpile.com/b/DzIopg/DiiBV
http://paperpile.com/b/DzIopg/DiiBV
http://paperpile.com/b/DzIopg/DiiBV
http://paperpile.com/b/DzIopg/DiiBV
http://dx.doi.org/10.1101/808295
https://doi.org/10.1101/2020.08.17.255059
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.255059; this version posted August 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A
»
m

Extract
Microbiome

Treat
Colonocytes ek

Metagenomic
Shotgun Sequencing

10

o

7

o

5

o

2

Baseline Relative Abundance
(é)]

Il

Human Chimpanzee

Gorilla

Orangutan

b2 » X

b

i @l\) .
¥

RNA-se
Colonocytes

Phylum
[l Actinobacteria
[ Ascomycota

[iBacteroidetes
. Euryarchaeota
[Firmicutes
Proteobacteria
[l spirochaetes

[Isynergistetes
.Verrucomicrobia

D

0.25

Q

(3]

c

] |

= 0.00

>

X

Te]

e

-

-

O -0.25

o
-0.50

S

Q

2 75]

©

2

S 50

<

o 25

2

®

S 00,

o

S

8 16 1

c

S 12

c

H

2 s

Q

2 4

prer)

)

]

o

o

e
&

Chimpanzee

Gorilla
@
Orangutan
Treatment @
O Colonocytes
[] control
<> Prepared O
/\ Raw S Human
-0.50 0.25 0.00 0.25

PC1: 14.92% variance

Bacteroides ovatus

Faecalibacterium
prausnitzii

e T

b2 Y

. Chimpanzee . Gorilla

Phascolarctobacterium

succinatutens
20 oson
10 .
Ot
R MY
Prevotella copri
20
10
0

g ° B8
.Human .Orangutan


https://doi.org/10.1101/2020.08.17.255059
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.255059; this version posted August 17, 2020. The copyright holder for this prepyint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is rade
available under aCC-BY-NC-ND 4.0 International license.

981 Figure 1. Experimental design and gut microbiome composition

982 (A) Experimental design. Live microbiomes were extracted from fecal samples from

983 chimpanzees (n=4), gorillas (n=7), humans (n=4), and orangutans (n=4). Microbes were

984 incubated with human colonic epithelial cells for 2 hours, after which RNA-seq was performed
985 on the epithelial cells. Metagenomic shotgun sequencing and 16s rRNA sequencing were

986 performed on the microbiome samples to determine microbiome composition.

987 (B) Bray-Curtis dissimilarity of the all microbiome samples from all four primate species at

988 different stages of the experiment: in raw fecal samples (raw), after extraction from fecal samples
989 and before the experiment (prepared), after incubation with colonocytes (colonocytes), and after
990 incubation without colonocytes (control).

991 (C) Stacked barplot showing the relative abundances of microbial phyla for each hominid fecal
992 sample prior to culturing but after extracting the microbiota for treatment.

993 (D) Examples of microbial species (from shotgun metagenomics) that show various patterns of
994 abundance across hominid species. Bacteroides ovatus shows a high abundance in humans

995 relative to the other hominid species. Phascolarctobacterium succinatutens is highly abundant in
996 the non-human hominid but not present in the human fecal samples. Faecalibacterium

997 prausnitzii is highly abundant in all four hominid species. Prevotella copri is highly abundant in
998 the chimpanzee and gorilla samples, has a lower abundance in the orangutan samples, and is not
999 present in the human samples.
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1000 Figure 2. Patterns of host gene expression changes in response to hominid microbiome

1001 treatment

1002 (A) Log, fold change for all differentially expressed genes (rows), grouped by expression

1003 pattern. The colored bar on the right hand side indicates in response to which hominid

1004 microbiome these genes change their expression.

1005 (B) UpSet plot visualizing the intersections among the sets of host genes that respond to hominid
1006 microbiomes.

1007 (C) Examples of the expression pattern of 8 differentially expressed genes. Each panel shows the
1008 change in expression (y-axis) in response to the four hominid microbiomes (x-axis) of a single
1009 host gene, with the gene name listed at the top of each panel. Error bars indicate 1X the standard
1010 error.
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1011 Figure 3. Interaction networks and functional enrichment categories for host genes

1012 responding to hominid gut microbiomes

1013 (A) Interaction network showing host genes that respond only to human microbiomes, generated
1014 using Ingenuity Pathway Analysis.

1015 (B) Similar to (A), but including host genes that respond only to orangutan microbiomes.

1016 (C) Functional categories in the KEGG (top) and Reactome (bottom) databases enriched among
1017 high-divergence genes (red) and low-divergence genes (blue). X-axis indicates the statistical
1018 significance of enrichment, and the circle size corresponds to the number of genes in each

1019 category.

1020 (D) Complex disease enriched among genes that respond to hominid microbiomes. Fold

1021 enrichment (y-axis) is shown for a given P value threshold (x-axis) to define genes that are

1022 associated with each complex disease in the GWAS Catalog. Each colored line represents a
1023 different complex disease with an enrichment of at least three-fold, with a circle indicating the
1024 most significant P-value threshold. Diseases that did not reach significance are shown in grey
1025 lines.


https://doi.org/10.1101/2020.08.17.255059
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.255059; this version posted August 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Pearson’s R
HE BN

-1-05 0 05 1

Lachnospiraceae bacterium 7-1-FAA
Ruminococcus torques
Bacteroides ovatus

&
E!i

Bacteroides uniformis
Oscillibacter (unclassified)
Roseburia intestinalis
Bacteroides xylanisolvens
Collinsella aerofaciens

1 | Faecalibacterium prausnitzii

8 BEE.

Roseburia inulinivorans
Eubacterium rectale

1| Subdoligranulum (unclassified)
Eubacterium ramulus

=

Roseburia hominis
Coprococcus catus

szl & ~Bezsls0
-s= g2 =8.s8ss_|og

Prevotella copri

(%) souepUNqY BAlE[eY S8108dS [eIqoIIN

Ruminococcus flavefaciens
Parabacteroides (unclassified)
m Eubacterium siraeum
m Eubacterium biforme

HIH Coprococcus comes
Eubacterium eligens
Ruminococcus obeum

TTTTTTT
-8 -4 024 -8 -4 024

logz2(Abundance)
NR4A1

. HS3ST1 E.siraeum *
Subdioligranulum (unclassified) *——

e %t

1i§i_i__z__iii!;
1‘&‘-;‘E_!i

&
IS

024 -8 4 024

Host Gene Expression

Microbe Phenotype

LDL
Sllf:@ported high cholesterol
~—— WC combined

IDL-TG
Self-reported hypertension
ER negative breast cancer

SHROOM3

Host Gene Expression

b 2 n Y

Superpathway of aromatic amino acid biosynthesis
orpet Y @ i

Chorismate biosynthesis |

Starch degradation V'

‘Coenzyme A biosynthesis Il
CDP-diacylglycerol biosynthesis |
‘S-adenosyl-L-methionine cycle |
L-lysine biosynthesis Il

uDI
Peptidoglycan biosynthesis |

L-lysine biosynthesis VI
UMP biosynthesis
Methylerythritol phosphate pathway |
L-omithine de novo biosynthesis

P and L-
L-rhamnose degradation |
phosphopantothenate biosynthesis |
cis-vaccenate biosynthesis
preQO biosynthesis
N

sssssspEnsisas
FPTTTITILEIELE

L]
E

y
Folate transformations II
Peptidoglycan biosynthesis III
dTDP-L-rhamnose biosynthesis |
of L-th i i

and
Coenzyme A biosynthesis |
Gluconeogenesis |
Glycogen biosynthesis |
Tetrapyrrole biosynthesis |
L-arginine biosynthesis II
L-ornithine biosynthesis
Pyruv;te.'qrmen(atipn to acetate and lactate Il |

L LT L L
-iiil'll-.iiiiul"'
(5id¥) @ouEpUNaY Aemuped

of
Glycolysis IV
Calvin-Benson-Bassham cycle
L-histidine degradation |
RNA charging
L-proline biosynthesis Il
Superpathway of branched amino acid biosynthesis
Homolactic fermentation
Pyruvate fermentation to isobutanol
L-isoleucine biosynthesis IV A

L _,i:,ii

Glycolysis |

-esl o

de novo bi is I

of purine

jﬁg.iiili_ii.;;.iiiii-!i.!i!.!iii.

cis-vaccenate
biosynthesis

DKK1 .*77 R. inulinivorans Chronic kidney disease
RS2 - prausnitzii 'E. ramulus - Eglzf(-erm aorted jout
Oscillibacter Verail breast ancer
R. torques (unclassified) R inulinivorans  AKAP12 L6 Subdoligranulum Hayfever allergic rhinitis or eczema
(unclassified) Alzheimers Disease
ovoL1 . Eosinophil counts
! Diagnosed asthma .
Sum eosinophil basophil counts
OCLN Self-Reported asthma
Schizophrenia .
. . c _ ’:“um basholphﬂ neutrophil counts
. catus leutrophil counts
®  Rrece ANKRD22 VGLL3 e
ADAMTS15 C. catus Sum neutrophil eosinophil counts
CDKL5 . P White blood cell count
. F. prausnitzii Granulocyte counts
P. succinatutens
2 Myeloid white cell count
- ‘ E. rectale *—— Eeuroticism score
E. siraeum SAMD LIF o Self-reported hypothyroidism or myxoedema
. IVNS1ABP
. P. copri @ \\ Body fat percentage
R. intestinalis B. ovatus *< Lymphocyte counts
L. bacterium CTGF Methanobrevibacter
7 (unclassified) intestinalis Red blood cell count
i R mtes{mal@ o< Platelet count
IS I B. uniformis Crohn’s disease
— KDMGA Oscillibacter (unclassified) Monocyte counts
CYR61 . TGS2 P. succinatutens Birthweight
Ulcerative colitis
Standing height
; - Inflammatory bowel disease
4 PDP1 Methanobrevibacter (unclassified) @—
E.biforme E. biforme *-
¢ l [ ) Heignt
Reticulocyte count
TRIB2 ° TMCC3 ~“WHR com}_,l;ined
ARRDC3 L. bacterium 7-1-58FAA « — ______ auomo ~HIP combined

R. obeum * High light scatter reticulocyte counts

KRTAP2-3

TTTTTTIT TTTTTI1TT TTTTTTTT
0246810 14 0246810 14 0246810 14 0246810 14

logz2(Abundance)

IL1B

NFKBIZ

CYR61 PTGS2 L6 CXCL8 IL36G IL36RN

DUSP5

. . . UDP-N-acetylmuramoyl
pentapeptide

. biosynthesis Il
V e-con(aining)

Phosphopantfiothenate
bio: nt

Chorismate
biosynthest:

AMOTL2

S-adenosyl-L-methionine
cycle | 4

inopimelate

ining) .

L-ornithine
biosynthesis

Gluconeogenesis |

Calvin-Benson-Bassham cycle

UmpP
biosynthesis

- arch
yerythritol degradation V
phosphate

pathway |

NS
‘V =

biosy! sis

Coenzyme A

biosynthesis Il

5-aminoimidazole (mammalian)
ribonucleotide
biosynthesis |

Peptidoglycan
biosynthesis | (meso-
diaminopimelate

dTDP-L-rhamnose
biosynthesis |

containing)


https://doi.org/10.1101/2020.08.17.255059
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.255059; this version posted August 17, 2020. The copyright holder for this prepyint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1026 Figure 4. Relationship between host gene expression and specific microbiome features

1027 (A) Heatmap showing correlations between microbial species (rows) and host genes (columns).
1028 Colors at the top indicate to which hominid microbiome a gene responds to. Boxplots to the right
1029 show the abundance of each microbial species in each hominid microbiome (microbial

1030 abundance transformed by log,).

1031 (B) Similar to (A), but showing microbial pathways instead of species.

1032 (C) Network visualization of microbial species (green) and high-divergence host genes (purple)
1033 that respond to each species connected with an arrow. Node size of microbial species and host
1034 genes corresponds to species abundance and log, fold change of the differential expression,

1035 respectively. Arrow colors indicate whether a microbial species increases (blue) or decreases
1036 (red) the expression of the connected host gene.

1037 (D) Three tier network showing microbial species (left column), the host genes they each

1038 regulate (middle column), and TWAS phenotypes these genes are associated with (right column).
1039 Microbial species and host gene node size indicates microbial abundance and differential

1040 expression, respectively, correlated with high-divergence genes and TWAS phenotypes.

1041 (E) Similar to (C), but showing microbial pathways instead of species.


https://doi.org/10.1101/2020.08.17.255059
http://creativecommons.org/licenses/by-nc-nd/4.0/

