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ABSTRACT 
 

The development of mobile-health technology has the potential to revolutionize personalized medicine. 

Biomedical sensors (e.g. wearables) can assist with determining treatment plans for individuals, provide 

quantitative information to healthcare providers, and give objective measurements of health, leading to the goal 

of precise phenotypic correlates for genotypes. Even though treatments and interventions are becoming more 

specific and datasets more abundant, measuring the causal impact of health interventions requires careful 

considerations of complex covariate structures as well as knowledge of the temporal and spatial properties of 

the data. Thus, biomedical sensor data need to make use of specialized statistical models. Here, we show how 

the Bayesian structural time series framework, widely used in economics, can be applied to these data. We 

further show how this framework corrects for covariates to provide accurate assessments of interventions. 

Furthermore, it allows for a time-dependent confidence interval of impact, which is useful for considering 

individualized assessments of intervention efficacy. We provide a customized biomedical adaptor tool around a 

specific Google implementation of the Bayesian structural time series framework that uniformly processes, 

prepares, and registers diverse biomedical data. We apply the resulting software implementation to a structured 

set of examples in biomedicine to showcase the ability of the framework to evaluate interventions with varying 

levels of data richness and covariate complexity. In particular, we show how the framework is able to evaluate 

an exercise intervention’s effect on stabilizing blood glucose in a diabetes dataset. We also provide a future-

anticipating illustration from a behavioral dataset showcasing how the framework integrates complex spatial 

covariates. Overall, we show the robustness of the Bayesian structural time series framework when applied to 

biomedical sensor data, highlighting its increasing value for current and future datasets. 
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INTRODUCTION 

Background 

The wearable sensor market was valued at $10.8 billion USD in 2019 and is expected to triple in value over the 

next five years (1). Investment is bolstered by the great potential for advancing personalized medicine in the 

near future (2-4). Whereas medicine has previously focused on determining the right interventions, it is now 

more focused on for whom and when (5). Identifying the right time for and timing of treatments remains 

relatively understudied, but this trend is expected to change soon as large streams of sensor data are released 

(6). As sensor technology develops, data-rich features such as physical, chemical, behavioral, and biological 

variables will be measurable. In addition to time series data, spatial information is becoming more popular as 

well (7), all of which can be used for a more detailed understanding of sensors. A survey of distinct types of 

data are presented in Figure 1. 

Though increasing amounts of sensor data is being released, there still is a paucity of analytical methods 

in the biomedical field that can accommodate the complex covariate structures as well as the temporal and local 

trend considerations necessary to analyze these longitudinal data. Existing methods applied to these situations 

are limited. They address longitudinally observed patterns that could inform the timing of an intervention but do 

not evaluate the impact and efficacy of such an intervention. 

While the nature of data from sensors and wearables will vary depending on the context, most of them 

share certain properties. A variety of such data can be seen in Figure 1, all of which come from various 

contexts. It is important to discern these properties and to establish a flexible model for emerging sensor and 

wearable data, as it will have broad implications in fields such as personalized medicine (2). Therefore, in this 

study we aim to contextualize a model and establish a flexible statistical framework to model various sensor and 

mobile health data. The model we adapted here is a combination of the Bayesian structural time series model 

and the Causal Impact model from Google (8). The principles of this modeling framework stem from Bayesian 

inference and the analysis of time series data, which have been well established for decades (9). While the idea 
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of using Bayesian inference models has been extensively used in fields such as finance (10), ad campaigns (11), 

and marketing (12), they have rarely been used in the context of wearable and sensor data analysis to 

specifically evaluate impact intervention over various time periods. A survey of the application of Bayesian 

modeling of biosensor time series data yields few results. Therefore, we hope to apply this widely accepted 

statistical framework to the specialized context of biomedicine. By doing so we showcase the effectiveness 

when applied to a variety of sensor data we collected and accurately assess the impact that various interventions 

have on individuals. 

Modelling Framework  

To establish an intuitive modeling framework for data taken from sensors and other mobile health sources, it is 

important to lay out the structure of how the framework is formed as well as any assumptions that may be 

essential for the model. First, we must recognize that the dataset is a time series data with a known response 

variable that evolves over time. For example, this could be a person’s weight. This response variable could be a 

direct measurement taken from a sensor, or it could be a derived value – some scalar calculated from various 

underlying variables measured by a device – such as calories burned (13) or a Nike Fuel Score (14). The 

response variable’s evolution in time is important, as it should be dynamic and change based on covariates and 

interventions. In the example of weight, the measured weight fluctuates over time based on things such as 

seasonality (15), temperature (16), or diet (17). 

 Because we are interested in the impact that an intervention has on such a variable, an important 

assumption is that we know when the intervention occurs as well as the duration. There exist methods that 

detect intervention times (18,19) though to jointly assess the impact would result in a significant statistical 

disadvantage due to the multiple hypothesis corrections since the predictions from these models only account 

for one time point rather than a set of time points. Therefore, by having prior knowledge on the time of 

occurrence and duration of the intervention, we are able to more accurately assess the impact on an 

individualized level.  
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 Given a specific intervention and its duration, we can split our time series into two segments – the pre- 

and post- intervention periods. These periods are used to describe all variables, known and unknown, as well as 

any parameters associated with them. For the example of weight and diet, the pre-intervention would be the 

period before the diet starts and the post-intervention is the period after the diet starts. This is distinct from 

“post-cessation of intervention” (e.g., return to unhealthy eating following several weeks of dieting) which is 

not addressed by our present model. 

 Our goal is to model the pre-intervention period using covariates to most accurately assess any changes 

in behavior in the response variable before any intervention has occurred. We also assume that any covariates 

used in our model should not be affected by the intervention, to provide a similar control in the post-

intervention period. Though the post-intervention covariates themselves may change in value, the assumption is 

that they are derived from the same distribution as in the pre-intervention. Finally, using the model derived from 

the pre-intervention period and the covariates in the post-intervention, we can calculate a counterfactual in the 

post-intervention. The counterfactual predicts the response variable without intervention. It serves as a baseline 

to compare the actual observation in the post-intervention and ultimately is what we use to calculate the impact 

of an intervention. Compared to linear models, this framework allows for an evolving measure of impact, due to 

the dynamic confidence interval for the difference between counterfactual and observation that is inherent to 

using Bayesian structural time series. This temporal consideration, in addition to the more common advantage 

of using hyper-parameters and priors, is an important consideration for the Bayesian framework, and sets it 

apart from other models. 

 This Bayesian structural time series framework can make use of complex covariate structures, which is 

useful and necessary to get an unbiased measure of impact. Two main types of covariates can be used: those 

that have known effects on the response and those that can account for hidden effects. The first type refers to 

covariates that could be correlated to the response, or cause changes to the response unrelated to the 

intervention. In relation to our example about weight, covariates of this type may include temperature, weather, 

or season. Since it is very unlikely to know all covariates of the first type that may perturb the response variable, 

we also introduce the notion of a second type of covariate, termed a “paired covariate”. The paired covariate is 
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an independent stream of sensor data of the same type as our original data in question. They could be collected 

in different locations, but the ideal case is they receive little to no treatment or intervention. If we imagine a 

scenario where the roommate of our subject is subject to many of the same external factors, but the roommate 

does not participate in the dieting, then this roommate’s weight could be considered the paired covariate. Since 

both the original data and paired covariate share underlying biases, by using the paired covariates we can 

determine the true impact of the intervention.  

As a whole, the Bayesian structural time series framework addresses many of the limitations of other 

methods and serves to advance the field by providing a structured method for analyzing data from sensors and 

mobile health sources. We give more details in the Statistical Formalism section and provide a schematic of the 

framework in Figure 2.  
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STATISTICAL FORMALISMS 

Bayesian Structural Time Series 
 
In order to understand the causal impact of interventions on longitudinal datasets that may be affected by a wide 

range of factors it is important to have a statistical framework that considers carefully the prior and posterior 

measurements as well as covariates that may affect the response variable. We detail aspects of this framework 

below. 

We assume for a given time point, �, there exists an observation ��, linked to a variety of other 

parameters, ��: ���, 	�, 
�, ��~�0, ��
���. As time progresses from � to � � 1, the other parameters also progress 

due to their time dependency.  

There also exists a set of hyper-parameters �: ���, ��~�0, ��
��, … � that define the initial conditions of 

the parameters above. The hyper-parameter �� is a prior that reflects previous knowledge about the system and 

is used for the initial set of parameters in ��. More specifically, we use the following equations to represent our 

time series data. 

�� � �� � �� � ��
� � ��
� 

���� � �� � 	� � ��
	 

	��� � 	� � ��

 

Here we see that the equation involving the observation or response variable, ��, depends on ��, and 

additionally a variable 
� to represent the covariates. Furthermore, we additionally include another layer of 

dependency, 	�, which �� depends on. Because our observation, ��, can be biased, it is important to take into 

account as many covariates in the form of 
�. Each equation has an error term represented by ��. Since each of 

the processes are different, the error term is also different. For example, the error associated with �� is ��
	. 

These �� are drawn from some distribution satisfying �0, ��
��. Similar to other regression-based models, the 

covariates here are scaled by a coefficient vector ��. The model also employs a spike and slab method to 
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penalize and select for important covariates when the covariate matrix is large. Additionally, one important 

feature of each covariate is the posterior inclusion probability (PIP), which can be calculated from the sum of all 

posterior probabilities of all regressions that include that particular covariate (20). The PIP gives a ranking 

measure to show how favorable the inclusion of a particular covariate is. The variable ��, the underlying “state” 

of the response, contributes to our response variable, and its representation is given as a time dependent 

equation. If we ignore the 	� variable, our equation becomes  

���� � �� � ��
	 

and this is a representation for the random walk. That is to say, in this simplified form of ��, our observation is a 

random walk, where at each time point, there is some progression to the next time point in random fashion, 

based on the parameter ��,	. However, one optimization that can be done for this parameter is the inclusion of 

	�, which results in the pair of equations  

���� � �� � 	� � ��
	 

	��� � 	� � ��

 

Here 	� follows a random walk, and the �� equation is dependent on 	�. That is to say, 	� serves as a trajectory 

or slope parameter that helps to guide the behavior of ��. We can still imagine �� as a random walk, but now 

with some additional trend vector. If �� is steadily increasing, it is likely that at ���� there is also an increase, 

due to the inclusion of 	�. In other words, the 	� allows for more stability between each time point and serves a 

purpose similar to a slope parameter. We provide more examples in Supplemental Figures S1-5. 

Evaluating Intervention Impact 

While the above model describes longitudinal sensor data well, it is important to consider how the pre- and 

post- intervention periods differ. To determine if an intervention was effective in bringing about a change in our 

dependent measurement, ��, it is important to have a framework in which comparisons can be quantified. To do 

so, we define the pre-intervention period as time points � � 1, … , �, while the post-intervention period is 

defined as � � � � 1, … , . Furthermore, we define observations as � and predictions of the model as ��. 

Therefore, the set of observations in the pre-intervention period, ��,…,, serve as the training data, based on all 
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covariates. At each time point � � 1, … , �, we update our parameter set of the model to better fit ��,…, using a 

Markov Chain Monte Carlo (MCMC) method of sampling from the posterior distribution. After estimation of 

parameters in the pre-intervention period, we predict the counterfactual in the post-intervention, ����,…,�. This 

is done by using the parameter set defined in the pre-intervention period and the covariates from the post-

intervention period. Because  ����,…,� has an associated prediction interval, we can calculate a significance p-

value associated with the difference between  ����,…,� and  ���,…,�. While we can get a p-value at every time 

point in the post intervention, it is more useful to consider the impact that an intervention had on the whole 

post-intervention period. The p-value associated with the full post-intervention time period (� � � � 1, … , ) is 

known as the cumulative impact. It should be noted that the prediction interval associated with ����,…,� 

generally will increase as time progresses. This is one advantage of the Bayesian model and allows for an 

evolving cumulative impact. This is due to the fact that at every time point after the intervention, the variance 

associated with the distribution that the prediction is drawn from is compounded at every time point. It is useful 

to factor in this temporal aspect since the confidence that an intervention resulted in a causal impact may be 

dependent on time.  

Biomedical Adapter Tool and Software Implementation 

We provide a customized biomedical adaptor tool around a specific Google implementation of the Bayesian 

structural time series framework that uniformly processes, prepares, and registers diverse biomedical data. 

Specifically, time series data from biosensor data that are measured at different time points and intervals are 

unified so that given a time interval set � � �1, … , �, there exists a set of variables (observation and 

covariates), �� and 
� for each time point in �. The adaptor tool that applies Causal Impact and bsts to evaluate a 

user defined intervention and gives a report of results (8,21).  
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RESULTS 

To showcase the wide applicability of the Bayesian structural time series framework for biomedical 

applications, we provide examples of analysis from various types of sensor data. First, we apply the Bayesian 

structural time series framework on a toy example where we collected data from an Android phone sensor in 

order to give intuition for and demonstrate several key features of our model. Second, we apply the model to a 

real-world example – environmental sensor data collected from an air quality device – and show the usefulness 

of our model in identifying the effect of simple interventions in real world data. Third, we provide a core 

biomedical example that showcases a strong application of the framework and the potential it has in 

personalized medicine. In particular, we collected extensive biosensor data from a diabetes and exercise study 

which aims to understand how structured exercise can help to stabilize glucose levels throughout the day. The 

framework was then used to assess the impact of an exercise regimen on clinical health markers of glucose 

level. We find a strong stabilizing effect on glucose after this exercise intervention. While these data are 

informative, they currently lack several attributes that we expect future biomedical data to have. In particular, 

we expect future biomedical datasets to have a large number of context-rich covariates (e.g. activity in different 

locations or environments) that can dramatically increase intervention assessment. Thus, we give a final 

example dataset rich in covariates to showcase how these (paired) covariates can be used creatively to more 

accurately assess the effect of interventions. Specifically, we collected human behavioral sensor data to 

showcase the patterns of crime across different neighborhoods in a city, and how the introduction of a mobile 

application aimed at increasing social cohesion affected these patterns. Below, we give more details regarding 

each of the specific sub-studies and their corresponding findings. 

Toy Example: Google Android sensor 

As a toy example to illustrate how the Bayesian structural time series framework works, we used Google 

Science Journal app on Android and collected various mobile sensor data for a simple experiment involving a 

person spinning in different scenarios. The goal of this analysis was to demonstrate the flexibility of our model 
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in determining significant causal impact of human physical actions before and after an intervention as well as to 

provide intuition for the utility of paired covariates at reducing the effects of noise. A schematic of the results is 

given in Figure 3A, B, and C. First, a single user’s longitudinal data was used to estimate the effect of an 

intervention (Figure 3A). An example of this could be sleep data and the effect of changing one’s pillow, and 

where no other data are available to the user. Here we show an individual spinning with a sensor measuring 

acceleration when held at arm’s length; the intervention is to bring the sensor closer to the body while spinning 

at the same rate, thereby increasing the acceleration. The model successfully detected the state change 

associated with the intervention, as shown by the cumulative change relative to the predicted values.  

Next, we demonstrate how the previous scenario is susceptible to noise, i.e. something that affects the 

signal but is not related to the intervention. In this case the noise is represented by a hop, which occurred after 

the intervention began and was therefore not predicted by the model (Figure 3B). In this case the model does 

not detect an effect of the intervention – the hop affected the signal to such a degree that the confidence in the 

prediction decreased, i.e. the credible intervals widened greatly. To continue the sleep study analogy mentioned 

above, the noise could be loud neighbors moving in next door (adding noise in a literal sense), which leads to 

poor sleep in a way that is unrelated to the pillow intervention. 

Finally, we show how including a paired covariate -- another data stream that affects the state being 

measured but is not related to the intervention – can effectively correct for noise (Figure 3C). In this case two 

sensors are held while spinning, but only one is subject to the intervention (brought close to the chest). Both, 

however, experience the noise (hop), which the model is then able to control and correctly identifies the 

intervention like the case without noise (Figure 3A). In the sleep analogy, an effective paired covariate could be 

another device measuring the sleep of one’s partner sharing the same bed, but who did not change their pillow. 

This is distinct from a non-paired covariate which could be similarly effective, e.g. a device measuring the 

decibel level in the room; it is relevant to the state (sleep quality), is not affected by the intervention (pillow 

change) and identifies the noise that affects the state (loud neighbors). However, a paired covariate has the 

characteristic that it is able to control for unknown confounders, akin to a control arm of a randomized 

controlled trial.  
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Simple Real-world Example: Environmental Sensor Data 

We then transitioned to a simple real-world example where we performed a similar analysis using data collected 

from an AWAIR monitor, with measurements of CO2, dust, humidity, and temperature (Figure 1E). The data 

were collected over a one-month period, with measurements taken every 15 minutes. The data were aggregated 

at each time point across all 30 days to give a smoother signal and limit the analysis to one intervention with a 

clearly delineated a pre- and post- intervention period, namely exposure of the room to people. It should be 

noted that though intervention often implies some treatment put in place, it can be widely adapted in the realm 

of Bayesian structural time series to allow for any disruption or change in status such as the effect that people 

have on environmental CO2 levels. After correcting for covariates such as dust, humidity, and temperature (22), 

there was a significant increase in CO2 in the hours when workers were in in the room with the sensor (p-value 

< 0.001). Figure 3D shows the CO2measurements across the aggregated time points in a 24-hour time frame. 

We can see that as CO2 levels increased drastically after the 9am time point, the cumulative causal impact in the 

post-intervention period increased. This cumulative impact increases until around 5pm in the evening, where the 

cumulative impact tapered off, signaling a state was reached in the post-intervention that was similar to that of 

the pre-intervention period. Although there is one p-value associated with the whole post-intervention period, 

this framework can show confidence intervals for each time point in the post-intervention period as a function 

of both the observation and covariates. This helps us to define period of time where the intervention is most 

effective. 

Core Biomedical Example: Clinical Sensor Data 

We next provide a core biomedical example of how the framework can be applied to clinical sensor 

data. In particular, we collected biosensor data from a person with type 1 diabetes over a 12-week period who 

completed an exercise regimen (intervention). We chose to model this set of biomedical data because it is 

arguably one of the most established applications of personalized medicine today (23,24). People with type 1 

diabetes are advised to intensively manage their blood glucose to maintain it within the target range. Since this 
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process is quite involved and requires continuous adjustments based on numerous biological factors, the result 

is a complex and high-stakes problem in personalized medicine.  

Figure 4A shows the data from a continuous glucose sensor and insulin pump as well as a 

comprehensive set of Apple Watch data from the study. The 12-week evaluation spanned an initial 2-week 

sedentary period followed by a 10-week exercise regimen. The Apple Watch and the insulin pump used by the 

patient provided several potential covariates, which could help us understand the glucose sensor data. We took 

glucose readings from the participant’s glucose sensor and aggregated them into 24-hour values by transforming 

the values into two clinically relevant indicators of glucose stability, percent-in-target and percent-above-target 

(25). In general, values above the target range are predictive of long-term organ damage, while values below the 

target range lead to acute hypoglycemia (26), a state of low blood glucose with symptoms that can range from 

mild fatigue and confusion to life-threatening coma, posing immediate threats to safety as well as long-term 

psychological consequences (e.g., fear of hypoglycemia (27)). 

Maintenance of glucose levels in the target range is achieved by strategically managing a triad of 

factors: insulin administration, diet, and exercise. The timing and dosing of insulin (which decreases blood 

glucose) with carbohydrate ingestion (which increases blood glucose) must be carefully balanced. The role of 

exercise, however, is less clearly defined because it can either decrease or increase blood glucose during and up 

to 24hr after a session. Determinants of the direction and magnitude of the glycemic response to exercise are 

numerous and include 1) exercise characteristics (high vs. moderate or low intensity), 2) individual 

characteristics (endogenous insulin sensitivity, and the effect of physical fitness to increase insulin sensitivity), 

and 3) contextual factors (pre-exercise blood glucose level, insulin- and carbohydrates-on-board, and 

concentration of counter regulatory hormones) (23).  

Using our Bayesian structural time series framework, we find that the exercise regimen was effective in 

increasing the percent-in-target and decreasing the percent-above-target (p = 0.014 and 0.002 respectively). 

These results are shown in Figure 4B and 4C. Thus, our model supports the existence of a positive causal effect 

of this particular exercise regimen on maintaining a healthy glucose level for this individual. Furthermore, of all 

the covariates we used, insulin on board (IOB) was found to have the highest posterior inclusion probability, 
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which is a ranking measure used to see how favorable the inclusion of a variable is in the model. This is 

reasonable since insulin is essential to glucose control.  

 

Example with Data Rich in Covariates: Human Behavioral Data 

In our final example, we demonstrate how data rich in covariates can significantly improve assessments of 

intervention impact. While the example we provide is not clinical in the traditional sense, we provide this 

example as a way to showcase how the Bayesian structural time series framework performs when given 

extensive data and paired covariates – an important consideration for future biomedical data. One aspect of a 

rich covariate set could be location information, an important factor in many clinical or personal health 

applications. For example, many watches collect GPS tracks of a run as well as steps and heart rate (e.g., Apple 

Watch, Garmin Forerunner). The Bayesian structural time series framework can flexibly accommodate location 

data through the inclusion of spatial correlation matrices. In addition, the spatial data can be used to segment the 

data where the intervention does and does not have an effect. By this method one can create “synthetic” paired-

covariates, in that data are from different spatial segments from the same source. However, spatial data are often 

protected for privacy concerns and are therefore less accessible to researchers. We therefore demonstrate the 

utility of the framework on more accessible behavioral data that share many characteristics: the effect of a 

social monitoring application called SeeClickFix on negative behavioral patterns (crime). 

 Crime patterns show similar characteristics to spatial mobile health data. They are affected by covariates 

such as temperature and precipitation (28) and can be linked to many other features such as census data of 

household incomes or education (29) (analogous to covariates of movement such as age, physical fitness, etc. 

(30)). SeeClickFix is a smartphone and web application developed to allow users to report issues in their 

communities including non-violent crimes. Posts can be voted on and supported by other users’ comments and 

local government agencies acknowledge issues and post when they have been addressed. It has been 

hypothesized that SeeClickFix and similar tools may reduce crime through establishing social cohesion, 

promoting collective efficacy (31). 
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Following the intervention (creation of SeeClickFix) there was no detectable decrease in crime across 

the entire area (Figure 5A), nor in particular neighborhoods (Figure 5B). However, one would expect many 

other factors besides the introduction of SeeClickFix to affect crime in this time (e.g. increases in the police 

force, changes to local employment, city-wide initiatives). The Bayesian structural time series framework can 

leverage the spatial information in these behavioral data to search for a paired-covariate, in this case referring to 

locations not affected by the intervention (no SeeClickFix use) in order to control for other, unobserved effects 

on the outcome variable (increases in the city police force). We aggregated crimes and SeeClickFix posts by 

neighborhood (Figure 5C) and then modeled used a neighborhood that was not affected by the intervention as a 

control (i.e. a neighborhood without SeeClickFix posts), but that would experience any city-wide initiatives that 

might affect crime (Figure 5D). Neighborhoods with heavy SeeClickFix use showed an effect of the 

intervention on crime when controlling for unobserved factors with synthetic paired covariates (Figure 5E).  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 18, 2020. ; https://doi.org/10.1101/2020.03.02.973677doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.973677


 16

DISCUSSION 

In this paper, we demonstrated how the Bayesian structural time series framework can be applied to biomedical 

sensor data and personalized medicine as well as created a wrapper software to facilitate the framework’s use. 

We additionally showcase how a rich dataset with complex covariates can benefit from the framework. While 

some studies demonstrating the success that linear models have on understanding such data do exist (18,19,32-

34), there  is a lack of emphasis on considerations for the temporal aspect of interventions and how effective 

interventions are at different time points in the post-intervention period. Linear modeling frameworks lack the 

flexibility to evaluate the intervention’s effect strength at all points in the post-intervention period, while 

existing Bayesian frameworks forecast based upon predictors (e.g., forecast continuous blood glucose based 

upon covariates like the ones we obtained from insulin and smartwatch devices) but do not evaluate deviation 

from this forecast following an intervention of known timing and duration to determine its impact (35-37). In 

this study, we illustrate the benefit of using a Bayesian structural time series model in modeling the behavior of 

various longitudinal data collected via apps and sensors. These data demonstrate properties that are commonly 

found across other wearable sensor data, which are increasingly gaining in popularity (3). In order to effectively 

integrate such data with personalized medicine and health in the future, we must understand how specific 

timings and types of interventions impact individual patients (2-4). 

 It is also important to consider the contexts in which this modeling framework does not yield significant 

advantage over a linear framework. A stable and consistent intervention effect over the entire post-intervention 

period should be evaluated equally well by linear models. Given the computational complexity of the Bayesian 

method due to MCMC sampling for each time point, such considerations could be very important for large 

datasets. Furthermore, due to the nature of this type of model and the slight degree of randomness in parameter 

estimation, it is possible to have varying results in calculating the impact of the intervention. This is in contrast 

to the results found from linear models, which generally demonstrate a singular solution. 

We show that the Bayesian modeling framework can take into account the rich covariates in our 

behavioral sensor dataset – specifically the paired covariate structure between different locations – and give 
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results that are unbiased. Furthermore, the framework also considers the temporal properties, ensuring that 

predictions of intervention impact are conditional on duration of the intervention. This is especially important 

for future data from sensors and mobile health sources as one of the major concerns of personalized medicine is 

ensuring the right time and duration of a treatment or intervention is considered (5). With time varying 

confidence intervals, we can begin to understand not only the effectiveness of an intervention but determine the 

most effective intervention plan necessary to reach a desired result. 

When applying this method to various datasets, an additional consideration is how informative the 

covariates are. For example, in the case of the sensor data derived from the diabetes study, even though we were 

able to isolate the effect of the 10-week exercise regimen upon both metrics of glucose stability, more 

covariates could be used in the future to improve the prediction. Similar biological studies in the future could 

benefit from obtaining other clinically relevant covariates such as plasma cortisol, epinephrine, growth 

hormone, glucagon, and directly sensed (not estimated) insulin levels or more to use high precision sensors with 

reduced noise. Furthermore, paired covariates (e.g. control group) should be taken into consideration when 

designing studies, as they can greatly increase model accuracy. While it is true that even an improved set of 

covariates could lead to more accurate results, we showcase here that the framework we have now is able to 

demonstrate results that converge with current literature showing favorable impact of exercise upon blood 

glucose control metrics (38). We also note that one assumption of our model is that the intervention does not 

affect any of the covariates in the post-intervention period. For example, though the exercise regimen is aimed 

at stabilizing glucose levels, we note that exercise and physical activity can have a general effect on various 

biological factors within the human body, including some of the covariates used. We minimize the effect of this 

through our transformation of variables and aggregation on a 24-hour block.  

The Bayesian structural time series framework is a flexible modeling approach that, with relatively 

minor specialization we provide through our tool, can be applied to diverse biosensor data. It has features that 

few methods in biomedicine share, such as dynamic forecasts to observe the effect of an intervention and its 

evolution over time. These features are critical to advancing personalized medicine and realizing the challenge 

of relating genotype and phenotype data in the context of human research. 
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METHODS AND MATERIALS 

Data Collection 
There exist many datasets similar to those of mobile sensors and we should not confine ourselves to just the 

traditional accelerometer and gyroscope data that one would traditionally think of when envisioning sensor data. 

In studying the causal impact of an intervention, we show that most data sharing longitudinal qualities allow for 

development of algorithms and exploring how such algorithms can be useful in analyzing various sensor data. 

The data we analyze in this paper consists of environmental sensor data, physical activity sensor data and 

human behavioral sensor data.  

Due to the longitudinal nature of sensor and wearable data, these data not only demonstrate interesting 

patterns in a response variable, but also are closely tied to the temporal property of a phenomena. By 

introducing the aspect of time, it becomes important to find models that leverage temporal considerations and 

use them to make accurate assessments about the data. Also, some of the data showcase complex covariates 

(paired) and can be used to better correct for unknown and hidden biases. More details about the data collection 

and data types are given below. 

Google science journal data collection 

Data were collected using the linear accelerometer measurement function in the Google Science Journal 

application on a Samsung Galaxy S8 smartphone. Each experiment lasted 20 seconds. One or two instruments 

were held at arm’s length while spinning at a constant rate for 10 seconds. Next, one instrument was brought in 

close to the body for 10 seconds while maintaining the spinning rate. In the case of the noise simulation, the 

experimenter hopped once after 15 seconds (halfway through the intervention period). Data were exported from 

Science Journal and analyzed using the CausalImpact package in R. 

AWAIR Collection 
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Data were collected from a one-month period from the AWAIR device. The device was placed in an office lab 

setting where individuals frequented on a daily basis. CO2 levels were measured in units of ppm. AWAIR also 

measures dust, temperature and humidity, which were used as covariates.  

SeeClickFix Data collection 

The application SeeClickFix is a smartphone and web application developed in New Haven, Connecticut, where 

users report issues in their communities including non-violent crimes. SeeClickFix posts can be supported and 

commented on by other users, and local government agencies acknowledge and address issues. The SeeClickFix 

data are publicly available, providing a rich longitudinal and spatial dataset for monitoring behavior and 

interactions with other users and city representatives. Posts were aggregated by month for the New Haven 

metropolitan area and by neighborhood (n = 19) from 2007-2015.  

Aggregated crime data were shared through a memorandum of understanding with the New Haven 

Police Department for 2000-2013. Rates were calculated using the 2014 ACS 5-year population estimates 

(crimes / 10K population per unit area). 

Diabetes Data collection 

We used data from one participant in a single-group clinical trial that was evaluating an exercise intervention 

for previously sedentary adults with type 1 diabetes. Participants completed a 2-week baseline period then a 10-

week exercise intervention, while wearing sensors that continuously monitored blood glucose, heart rate, heart 

rate variability and physical activity. They continued their normal prescribed insulin therapy, and shared device-

recorded dosing logs with the research team. Besides these continuous measures, we assessed chronic diabetes 

control at the beginning of the baseline period and the end of the 10-week intervention using blood glycosylated 

hemoglobin concentrations. The 10-week intervention included motivational enhancement of exercise (i.e., 

patient-centered exercise coaching including instructional videos) and health feedback from biosensors (full 

details available on clinicaltrials.gov, NCT04204733). Both were delivered through a customized mobile digital 

application and supported by a coach internally certified in exercise for diabetes (GlucoseZoneTM, FitscriptLLC, 

New Haven, CT). The study was approved and overseen by the Yale University Institutional Review Board, and 

all participants provided written informed consent.  
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Biodata Collection. 1) 24hr blood glucose was measured every 5 minutes by the Dexcom G6 continuous 

glucose monitor (San Diego, CA), a subcutaneous wire sensor sampling interstitial fluid glucose content which 

is converted to estimated blood glucose (validated against venous blood glucose with mean absolute relative 

difference 9%) (39). 2). Insulin was delivered according to each participant’s usual prescribed therapy. The 

participant in this manuscript received lispro insulin via the Tandem t-slim Control IQ pump (San Diego, CA). 

The pump subcutaneously infuses insulin every 5 minutes according to the patient’s individualized settings and 

current blood glucose levels using proprietary algorithms (40). The patient can also manually dose insulin or 

adjust some standard settings for meals or other disturbances (e.g., planned exercise). Infusion doses are 

recorded, uploaded to a central server for exporting and analysis, and converted to estimated insulin on board by 

the manufacturer’s proprietary pharmacokinetics algorithm. 3) Heart rate (beats per minute, validated against 

electrocardiography with mean absolute percentage error 1.1%-6.7%) (41) and heart rate variability (standard 

deviation of interbeat intervals, validated against electrocardiography with intraclass correlation coefficient 

0.98) (42) were measured by the Apple Watch 3 (Cupertino, CA) using photoplethysmography. 4) Physical 

activity was measured by the Apple Watch 3 using accelerometry and converted to kcals per day (validated 

against calorimetry with mean absolute percentage error ~40%) (43). 5) Diabetes control was measured by 

glycosylated hemoglobin (DCA Vantage Analyzer (Bayer, Tarrytown, NY) at baseline and PTS Diagnostics 

A1cNow+ (Indianapolis, IN) at 10 weeks). 

Clinical Outcomes. The participant was a 63-year-old white non-Hispanic female with type 1 diabetes 

for 50 years, receiving 81 units/day of insulin (0.9 units/kg body weight/day) and performing no regular 

exercise at baseline. During the 10-week intervention she received 93 units/day of insulin (1.1 units/kg body 

weight/day) and exercised on average 2.5 days per week, 26 minutes per session, at easy to moderate intensity 

(Borg rating of perceived exertion 2.5 / 10). The exercise routines were dynamic, interval-based, and equally 

emphasized all major muscle groups.  Her chronic diabetes control indicated by glycosylated hemoglobin 

improved from 8.6% at baseline to 6.9% at 10 weeks, achieving the recommended target of less than 7.0% (44).  

Processing and analysis of all data was done in R and Python and our packaged tool can be found at 

https://github.com/gersteinlab/scf.  
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