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Abstract 
 
Normothermic ex-vivo kidney perfusion (NEVKP) results in significantly improved graft 

function in porcine auto-transplant models of DCD injury compared to static cold storage 

(SCS); however, the molecular mechanisms underlying these beneficial effects remain 

unclear. We performed an unbiased proteomics analysis of 28 kidney biopsies obtained at 3 

time points from pig kidneys subjected to 30-minutes of warm ischemia, followed by 8 hours 

of NEVKP or SCS, and auto-transplantation. 70/6593 proteins quantified were differentially 

expressed between NEVKP and SCS groups (FDR<0.05). Proteins increased in NEVKP 

mediated key metabolic processes including fatty acid ß-oxidation, the TCA-cycle and 

oxidative phosphorylation. Comparison of our findings with external datasets of ischemia-

reperfusion, and other models of kidney injury confirmed that 47 of our proteins represent a 

common signature of kidney injury reversed or attenuated by NEVKP. We validated key 

metabolic proteins (ETFB, CPT2) by immunoblotting. Transcription factor databases 

identified PPARGC1A, PPARA/G/D and RXRA/B as the upstream regulators of our dataset, 

and we confirmed their increased expression in NEVKP with RT-PCR. 

The proteome-level changes observed in NEVKP mediate critical metabolic pathways that 

may explain the improved graft function observed. These effects may be coordinated by 

PPAR-family transcription factors, and may represent novel therapeutic targets in ischemia-

reperfusion injury.  

 

Keywords:  

Ischemia-reperfusion injury, kidney transplant, normothermic ex-vivo perfusion, 

metabolism, proteomics, systems biology. 
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Introduction 

 
Kidney transplantation is considered the optimal treatment for patients with end-stage 

kidney disease (ESKD).1-4 The increased prevalence of ESKD in recent years has led to a 

growing demand for renal transplantation5,6 which exceeds the organ supply.7,8 Increased 

utilization of marginal grafts, i.e. from donation after circulatory death (DCD) and extended 

criteria donors is incentivized in the face of organ shortage.7,9,10 While these organs confer a 

survival benefit in comparison to remaining on dialysis,10 studies have demonstrated inferior 

allograft outcomes compared to standard criteria donor grafts; including increased rates of 

primary non-function, delayed graft function (DGF), and less favorable graft outcomes at 

one year.11-17 Prolonged cold ischemic time, and warm ischemic time - characteristic of DCD, 

are significant risk factors for these adverse outcomes. DCD kidneys, particularly, are poorly 

tolerant of cold ischemia, and more susceptible to ischemia-reperfusion injury (IRI).15-19 

The increased utilization of DCD kidneys renewed focus on optimizing organ preservation; 

particularly on machine perfusion alternatives to the cold anoxic storage methods (static 

cold storage (SCS) and hypothermic machine perfusion) currently in widespread use.20 

Normothermic ex-vivo kidney perfusion (NEVKP) shows particular promise. While cold 

anoxic storage is associated with suspended cell metabolism, NEVKP provides a continuous 

flow of warmed, oxygenated perfusate containing nutritional substrates, thereby 

maintaining the metabolic activity of the tissue in a near-physiologic state.21,22 Consequently, 

NEVKP permits graft assessment, conditioning, and repair throughout perfusion.23 

NEVKP results in superior short-term outcomes when compared with SCS in a porcine DCD 

auto-transplantation model.21,24-28 Assessment of perfusion characteristics and biomarkers 

during NEVKP allowed prediction of post-transplant graft function,29 highlighting the 

potential of NEVKP to inform decision-making regarding organ suitability for transplantation.  
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Normothermic perfusion is successfully applied in other solid-organ transplant settings.30-32 

In kidney transplantation, the first clinical trial of short (1hour) NEVKP after hypothermic 

preservation showed positive results,33 with further studies ongoing.  

Despite the observed benefits, the molecular mechanisms responsible for improved graft 

function with NEVKP remain undefined. We hypothesized that NEVKP would induce key 

alterations in the renal proteome compared to SCS in a DCD model, and that identifying 

these changes would provide insights into the molecular mechanisms central to superior 

graft function in this setting.  

 

Methods 

Study Design 

We conducted an unbiased proteomics analysis in a porcine DCD auto-transplantation 

model comprising two groups (8 hours NEVKP and 8 hours SCS), n=5 animals/group. Kidney 

biopsy tissue was collected at three timepoints: baseline (contralateral kidney, prior to warm 

ischemia), 30minutes post-reperfusion, and at sacrifice (post-operative day 3 (POD3)) 

(Figure 1a). All samples were snap-frozen in liquid nitrogen, and stored at -80qC. 

 

Experimental model and NEVKP 

Following induction of general anesthesia, the right renal artery and vein were clamped for 

30 minutes, mimicking a DCD-type injury, as described previously.24,27  The right kidney was 

then removed, flushed, and subjected to 8 hours of either SCS or NEVKP prior to re-

implantation24,27. Animals were followed-up for 3 days before euthanization.  

 

Proteomics sample preparation 

Frozen porcine kidney biopsy samples were lysed, homogenized and sonicated. The 

supernatant was collected following centrifugation at 15,000g at 4qC for 20 minutes. Total 
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protein concentration was measured using Coomassie assay and each sample was 

normalized to 250Pg of total protein. Two samples had <100Pg of total protein and were 

eliminated. The remaining samples underwent denaturation, reduction and alkylation 

before trypsinization overnight at 37qC. SCX chromatography and peptide fractionation were 

performed on an HPLC system (Agilent1100) using a 60-minute two-step gradient. Eluting 

peptides were pooled into 7 fractions. 

 

Tandem mass spectrometry 

Peptides were identified by LC-MS/MS as described previously34. Briefly, peptides from each 

fraction were eluted and subjected to liquid chromatography coupled online to a Q-Exactive 

Plus mass spectrometer. The top 12 peaks were selected for MS/MS. For protein 

identification and data analysis, XCalibur software (ThermoFisher) was utilized to generate 

RAW files of each MS run. 

 

Proteomic Data analysis 

The raw mass spectra from each fraction were analysed using Andromeda search engine 

(MaxQuant(v.1.5.3.28)) against a Sus scrofa database generated from the non-redundant 

union of porcine sequences from UniProtKB, NCBI-RefSeq, and cRAP database of common 

contaminants35. Reverse decoy mode was used. Tryptic peptides were selected with up to 

two mis-cleavages. Methionine oxidation and N-terminal protein acetylation were selected 

as variable modifications. Carbamidomethylation was selected as fixed modification. 

Protein/site FDR were set at 0.01. Label-free quantification was performed and normalized 

protein LFQ intensities were calculated.  

The data were analysed using Perseus (v.1.5.2.6). Reverse hits and contaminants were 

removed. Normalized LFQ intensities were log2-transformed. The data were filtered to only 

retain proteins identified in at least 5 samples at any timepoint. The MS data have been 
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deposited to the ProteomeXchange Consortium via the PRIDE partner repository36 with the 

dataset identifier PXD015277.  

The protein expression data were prepossessed by imputing the missing values using the 

QRILC method from the R package imputeLCMD(v2.0) under default parametrization37. 300 

independent replicates of the imputed data were created. For each, we performed 2-way 

ANOVA folloǁed bǇ TƵkeǇ͛Ɛ HSD ƚeƐƚ͘ The p-values were adjusted for multiple testing by the 

FDR method. Robust estimates of statistical significance were calculated using geometric 

mean of the adjusted p-values across the imputation replicates. 

For dataset clustering and visualization, we used Binary Tree-Structured Vector Quantization 

(BTSVQ) algorithm38. Gene Ontology and pathway enrichment were calculated using 

g:Profiler39 and pathDIP40 respectively. Upstream regulator analysis was performed using 

ARCHS441 and Catrin (http://142.150.188.233:9080/Catrin/index.jsp). 

 

Urine Metabolomics 

IndoǆǇl ƐƵlfaƚe͕ pͲcƌeƐǇl ƐƵlfaƚe͕ p-cresyl glucuronide, hippuric acid, betaine and choline 

were quantified using Ultra Performance Liquid Chromatography coupled to Quadrupole 

Time-of-Flight mass spectrometry. Data were acquired in sensitivity mode with a 

0.05 second scan-time in a 50ʹ1200 m/z range and the m/z of each analyte was specifically 

targeted. Analytes were quantified using TargetLynx V4.1 software (Waters) by comparing 

sample peaks to a twelve-point standard curve generated for each metabolite.  Quality 

control samples containing known concentrations of each analyte were prepared using the 

same protocol and injected every nine samples. The coefficient of variation of the assay was 

< 10% for all analytes. 

 

Statistical Analysis 
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Significance between groups was assessed by Mann-Whitney test. P-values <0.05 were 

considered significant. Urinary metabolite concentrations were adjusted for urinary 

creatinine concentration. POD3 values were expressed as fold change over baseline. R 

(v3.5.2) and GraphPad Prism software (v8) were used for analysis and graph preparation. 

*p<0.05, **p<0.01, ***p<0.001. 

 

The supplement includes a detailed description of all methods. 

 

 

Results 

Proteomic analysis of NEVKP and SCS biopsies 

There were 5 animals per experimental group, each biopsied at 3 timepoints (n=30 biopsies) 

(Figure 1A). Two biopsies with insufficient protein yield (<100Pg) to generate comparable 

results to the remaining biopsies were excluded. As previously reported by our group,42 

NEVKP-preserved grafts demonstrated superior kidney function after heterotopic auto-

transplantation compared to SCS-preserved grafts, with significantly lower serum creatinine 

(SCr) post-operatively in the NEVKP group compared to the SCS (Figure 1B)(F-test, 

p<2.23x10-15). Light microscopy demonstrated normal histology at baseline, with mild 

tubular injury in both groups at 30minutes post-reperfusion, slightly more prominent in SCS 

(Figure 1C), as previously reported in this model.42 Tubular injury and dilatation was evident 

at POD3, and was more severe in SCS-treated kidneys (Figure 1C).   

28 samples comprising 9 baseline samples (4 NEVKP, 5 SCS), 9 samples from 30minutes post-

reperfusion (4 NEVKP, 5 SCS), and 10 samples from POD3 (5 NEVKP, 5 SCS) were analyzed by 

LC-MS/MS, as summarized in Figure 1D.  

6593 proteins were identified and quantified in ≥1 sample (FDR<0.01) (Figure 1E). After 

removal of contaminants, reverse hits and proteins lacking annotation, 6339 proteins 
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remained. Of these, 5460 proteins were quantified in ≥5 samples at any timepoint, and 

remained in the final dataset for analysis. Missing values were then imputed and, as 

expected, represented the low abundance proteins (Supplemental Figure 1). 70 proteins 

were identified as differentially expressed between experimental groups and timepoints (2-

way ANOVA with Tukey͛Ɛ HSD post-hoc test, adjusted p-value<0.05) (Table 1).  

 

Marked differences in the kidney proteome at POD3 

To determine the changes in the kidney proteome over time following IRI associated with 

kidney transplantation, we performed an unsupervised clustering analysis using the binary 

treeʹstructured vector quantization (BTSVQ) algorithm. BTSVQ generates a binary tree 

dendrogram, iteratively partitioning the dataset into two subsets and utilizes self-organizing 

maps (SOMs) for data visualization.38 The first level of the dendrogram segregated POD3 

samples from all others (Figure 2A). The SOMs of POD3 samples are markedly distinct from 

those at earlier timepoints, indicating that the expression profiles differ substantially 

between these groups of samples. Subsequent divisions of the dendrogram resulted in sub-

clusters enriched for NEVKP- or SCS-samples respectively, but a further clear separation 

between the groups and/or timepoints was not evident. Supporting this observation, the 

majority (66/70) of DE proteins showed significant differences in expression between the 

experimental groups at POD3, while 4/70 DE proteins had significantly altered expression 

between groups at 30minutes post-reperfusion (Figure 2B, Table 1). The imputed (Figure 

2B) and non-imputed (Supplemental Figure 2) heatmaps clustered the proteins similarly.  

 

GO and Pathway analysis 

53/70 differentially expressed proteins were increased in NEVKP and 17 were increased in 

SCS (Table 1). We identified the significantly over-represented Gene Ontology terms among 

NEVKP-dominant and SCS-dominant proteins using g:Profiler.39 The most significant 
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biological processes enriched in NEVKP-dominant proteins related to metabolism, 

specifically organic acid, amino acid and fatty acid/ lipid metabolism, and mitochondrial 

function (Figure 3A, Supplemental Table 1). Similarly, pathways significantly enriched 

among NEVKP-dominant proteins centred on metabolism, specifically, the TCA cycle and 

electron transport chain (Figure 3A), as determined by pathDIP.40 In contrast, SCS-increased 

proteins were annotated with biological processes relating to RNA catabolism and 

translation (Figure 3B, Supplemental Table 2). 

Consistent with the GO analysis, pathways related to DNA replication and RNA metabolism 

were significantly enriched among SCS-dominant proteins (Figure 3B, Supplemental Table 

3).Furthermore, inflammation (TNF-D and NF-kB),43 integrin signalling (possibly mediating 

cell motility, and extracellular matrix organization44), and cell cycle arrest (reported 

following IRI,45 and linked with inflammation and fibrogenesis46) were significant among SCS-

dominant proteins.  

 

Validation of findings using external datasets 

We examined our findings in relation to other relevant datasets (Figure 4A, Table 2). We 

selected high-throughput studies relating to renal IRI47-49. Importantly, Damman et al.49 

incorporates a cold ischemia component, analogous to SCS. As the kidneys and heart are 

metabolically similar50 we included a cardiac IRI51 study. We also included studies profiling 

other forms of kidney injury, specifically, septic-AKI,52 and CKD.53 We identified significant 

overlaps of our differentially expressed proteins with differentially expressed genes/proteins 

in the Port,51 Tran,52 Kang,53 Damman,49 and Huang48 datasets respectively (Figure 4A). 

Predominantly, expression in NEVKP opposed the perturbation observed in disease or injury. 

Supplemental Table 4 contains full lists of overlapping targets from each study. A subgroup 

of 47 differentially expressed proteins accounted for the overlap across studies (overlapping 

with шϭ eǆƚeƌnal ƐƚƵdǇ͕ ƚhe eǆpƌeƐƐion change in NEVKP opposing that observed in injury).  
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The study by Tran et al52 permitted examination of our proteins in septic-AKI model that 

featured groups of mice with and without recovery of kidney function. 49/70 proteins had 

corresponding genes in the mouse microarray. We examined the expression of these 49 

genes in the mouse dataset with unsupervised hierarchical clustering of genes and samples 

(Figure 4B). Significantly, these 49 proteins clearly separated those mice who recovered 

kidney function from those who did not. Mainly, the expression patterns of the proteins in 

NEVKP mirrored that observed in the mice at baseline and upon recovery of kidney function.  

 

Upstream Regulators  

Our analysis suggested that preservation of key mitochondrial metabolic processes such as 

fatty acid oxidation (FAO) and TCA cycle /ATP-synthesis underpinned the proteome changes 

observed with NEVKP. The peroxisome proliferator-activated receptors (PPARs) and their 

transcriptional coactivator PPAR-J coactivator-1D (PPARGC1A) are viewed as the key 

transcription factors regulating the expression of genes involved in fatty acid metabolism 

and mitochondrial biogenesis. Multiple sources of evidence implicate PPARs and PPARGC1a 

as potential upstream regulators in our dataset. A significant overlap exists (Figure 4A) 

between our differentially expressed proteins and the differentially expressed genes of 

datasets where PPARs and PPARGC1A were identified as key regulators (Supplemental 

Tables 4-5).52-54 Furthermore, using ARCHS441 which integrates ChIP-seq data with large-

scale RNA-seq data to predict transcription factor regulators of target genes, we verified that 

PPARG, PPARA, PPARD and/or the retinoid receptor X (RXR)ʹ the common homodimer 

partner for ligand-bound PPAR signalling,55,56 were among the top-ranking transcription 

factors predicted to regulate 27/70 of our differentially expressed proteins (Supplemental 

Tables 6-7). Finally, using CATRIN, an extended transcription factor database which 

integrates the findings of multiple stand-alone transcription factor databases, we 
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demonstrated that PPAR and RXR family members were predicted to regulate 65/70 

differentially expressed proteins (Figure 5, Supplemental Table 8). 

 

Experimental validation of key findings 

Given the prominence of metabolic proteins in our dataset, we selected ETFB, CPT2 and 

COX4I1 for further validation. Consistent with the proteomics findings, ETFB and CPT2 were 

significantly increased in POD3 NEVKP-treated kidneys in comparison to SCS-treated kidneys 

(Figure 6A-B, Supplemental Figure 3). Immunohistochemical analysis of COX4I1 revealed 

more intense staining in the tubules of NEVKP-treated kidneys, compared to SCS (Figure 6C). 

Relative quantification of the stain confirmed this trend. We next validated our differentially 

expressed proteins at mRNA level. Among the proteins showing significant differences at 

30minutes post-reperfusion, CYP1A1 had significantly increased gene expression in NEVKP 

mirroring the proteomics data (Figure 6D). Consistent with the proteomics data, COX4I1, 

MPC2, and ETFB showed significantly increased gene expression in NEVKP at POD3, while 

CPT2 expression demonstrated a similar trend (Figure 6E). There were no significant 

differences in expression of PPAR-family transcription factors at baseline between groups 

(Supplemental Figure 4), however, PPARA and PPARGC1A showed increased expression in 

NEVKP at 30minutes post-reperfusion (Figure 6F). PPARGC1A may mediate some of its reno-

protective effects by augmenting expression of the lysosomal biogenesis regulator TFEB,57 

which was significantly increased in NEVKP at 30minutes post-reperfusion (Figure 6F). 

Furthermore, PPARGC1A, PPARA, PPARD, RXRA and RXRB showed significantly increased 

expression in NEVKP compared to SCS at POD3 (Figure 6G).  

 

Urine metabolites 

IRI engenders both early and sustained alterations in the metabolic profiles of kidney tissue, 

plasma, and urine48,58,59.  We rationalized that NEVKP and SCS-induced changes in the 
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proteome may be reflected in the urine metabolome. We conducted a targeted 

metabolomics analysis on urines collected from NEVKP and SCS at each timepoint. Firstly, 

we examined if the increased expression of CYP1A1 in NEVKP-treated kidneys or 

alternatively, the inflammatory pathways noted in the SCS-treated kidneys reflected 

activation of the aryl hydrocarbon receptor (AHR),60 as may occur secondary to 

accumulation of gut-derived uremic toxins (including indoxyl sulfate (IS), p-cresyl sulfate 

(pCS), p-cresyl glucuronide (pCG) and hippuric acid (HA)) in AKI58,61 and CKD.62,63 Secondly, 

given our hypothesis that PPARs and PPARGC1A represented likely upstream regulators of 

our NEVKP-related findings, we evaluated metabolites previously linked to the 

renoprotective effect of PPARGC1A (betaine, choline, carnitine and niacinamide) in IRI.54 

Neither carnitine nor niacinamide were detected in our samples. For the analytes 

successfully measured, there were no significant differences in urinary excretion at baseline 

between groups (Supplemental Table 9). Urinary excretion of pCG and HA were significantly 

increased in SCS compared to NEVKP at POD3 (Supplemental Figure 5a). A similar (non-

significant) trend was evident for IS (Supplemental Figure 5a). Urinary excretion of choline 

and betaine was increased in NEVKP compared to SCS at POD3, albeit not significantly 

(Supplemental Figure 5b). 

Lactate and glucose are among the metabolites increased in the urine,59 and altered in 

tissue58 following IRI. At POD3, we observed increased urinary lactate and glucose in the 

SCS-treated group compared to NEVKP (Supplemental Figure 5c-d), as observed in 

prolonged DGF in a cohort of DCD-transplant recipients.64 

 

Discussion 

This study was designed to uncover the molecular mechanisms underlying the beneficial 

effect of NEVKP.  Our unique proteomics dataset profiles the molecular response to NEVKP 
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and SCS following a DCD-type injury. There are three major findings: 1) proteins involved in 

mitochondrial energy production were significantly increased in NEVKP compared to SCS; 2) 

these proteins are significantly repressed in kidney disease of diverse etiologies as assessed 

in 6 external datasets; 3) PPAR and RXR transcription factors were computationally 

predicted upstream regulators of our metabolic proteins, and our gene expression findings 

support their increased activity in NEVKP. 

We were struck by the observation that the differences between NEVKP- and SCS-

proteomes at 30minutes post-reperfusion were minor, as shown by two independent 

analyses.  This could be explained by insufficient time to cause changes in protein 

translation, most changes occurring in the low abundance proteome (typically 

undersampled), or that differences in response to the intervention are not driven by 

proteome changes at these early time points. 

Our differentially expressed proteins featured critical enzymes governing mitochondrial 

energy metabolism. Proximal tubular epithelial cells (PTECs) utilize FAO as their preferred 

energy source, with inhibition of FAO associated with ATP depletion, intracellular lipid 

deposition, and cell death.53 PTEC lipid accumulation occurs in both AKI54,65,66 and CKD53,67 

and results in reduced oxidative phosphorylation, generation of reactive oxygen species, and 

kidney fibrogenesis.68 Fatty acids must conjugate with carnitine to enter the mitochondria 

and consequently the carnitine phosphoryltransferase enzymes (CPT1 and CPT2) represent 

rate-limiting enzymes of FAO.69 Of the two, CPT2 is particularly vulnerable in IRI.70 ETFB is 

the E�subunit of the electron transfer flavoprotein which transfers electrons to the 

mitochondrial respiratory chain as FAO proceeds.71,72 Transcriptional repression of ETFB in 

ischemic cardiomyopathy is described.73 Suppression of mitochondrial transcripts in 

proportion to the degree of kidney dysfunction is also described in other AKI models.52  

While FAO likely represents the primary means of ATP synthesis in PTECs, utilization of 

alternative substrates is described,74,75 with some evidence for a glycolytic shift following 
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IRI.76 Moreover, other metabolically active segments of the kidney have alternative 

substrate preferences for ATP synthesis.74,75 Pyruvate, a hub metabolite for many metabolic 

pathways, enters the mitochondria via the mitochondrial pyruvate carrier (MPC), comprising 

two proteins (MPC1 and MPC2). Like PTECs,  cardiomyocytes predominantly use FAO to 

generate ATP.77 Enhanced expression of MPC is seen in surviving myocardium post-ischemia, 

and may mediate tissue viability in this setting.78  

The kidneys are highly metabolically active,50 requiring ATP for active solute transport 

against electrochemical gradients. Thus, normal kidney function is inextricably linked with 

mitochondrial energy production.75,79,80 These high energy demands may render the kidney 

especially vulnerable to ischemia.54,81 We propose that preserved expression of 

mitochondrial metabolic enzymes in NEVKP may underpin the improved kidney outcomes 

observed. 

 

CYP1A1 was increased in NEVKP at 30minutes post-reperfusion- as reported after a similar 

ex-vivo perfusion period in lungs.82 The AHR is a prominent transcriptional regulator of 

CYP1A1,60 and is potently activated by gut-derived protein-bound uremic toxins which 

accumulate in plasma and tissues in AKI and CKD.62,63,83,84 This activation is linked with the 

vascular dysfunction and systemic inflammation of CKD.62,85-87 In our study, these toxins 

were increased in urine of SCS pigs, potentially linking to the inflammatory pathways of SCS. 

AHR-independent pathways also regulate CYP1A1 expression60,88-90 including PPARA.91 

CYP1A1 has well-described roles in drug metabolism and lipid oxidation.89 CYP1-enzymes 

participate in the oxidative biosynthesis of polyunsaturated fatty acids,92 and the specialized 

pro-resolving lipid mediators (SPMs) derived from these precursors.93 SPMs actively 

coordinate the resolution of acute inflammation thereby limiting the inflammatory 

response.94,95 Analysis of peritonitis-associated lipid-mediator metabolomes in CYP1-family 

knockout mice revealed increased neutrophil recruitment, elevated leukotrieneB4, and 
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reduced intermediary compounds of SPM biosynthesis.96 The induction of CYP1A1 in NEVKP 

may reflect these non-classical, pro-resolving pathways of activation.  

 

PPAR-family members and their transcriptional co-activator PPARGC1A emerged as likely 

upstream regulators in our dataset, with PPARA showing increased expression at 30minutes 

post-reperfusion in NEVKP, and PPARA/D, RXRA/B and PPARGC1A showing significantly 

increased expression in NEVKP at POD3.   The renoprotective effects of PPARGC1A, 

particularly, have been described in models of septic,52,97 toxic,57,98 and ischemic54,99,100 AKI. 

Downregulation of PPARGC1A and related transcripts is observed in CKD of diverse 

etiologies,53,101 and implicated in the development of inflammation102 and age-related 

fibrosis in the kidney.103 Kidney transplants with increased PPARGC1A expression 

demonstrated a faster and more complete recovery from DGF.104 PPARGC1A is considered 

the ͚master regulator͛ of mitochondrial biogenesis, binding to a host of transcription factors 

(most notably PPAR-family members) to increase expression of genes that augment 

mitochondrial abundance, oxidative phosphorylation, and FAO.105-108  Observations that 

tubular PPARGC1A can reduce the severity of AKI and accelerate functional 

resolution54,57,99,109 are consistent with the high metabolic activity of PTECs.110 Less 

metabolically active kidney cell types including endothelial cells54 and podocytes111,112 may 

not experience the same benefit, suggesting a cell-type specific role for PPARGC1A in the 

kidney.  

Previous observations about the metabolic footprint of PPARGC1A renoprotection54 

prompted us to examine related markers in the urine. A modest increase in urinary choline 

was evident in the NEVKP-treated group. Choline and betaine are renal osmolytes113. 

Increased urinary osmolytes are reported following cold ischemia, and hypothesized to 

reflect medullary cell damage.114 Increased urinary betaine and choline are reported in 

CKD,115  and incipient diabetes.116 Conversely, other evidence suggests our observed 
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increases in urinary choline could reflect increased PPAR activity.54 Increased concentrations 

of choline are noted in kidneys of wild-type mice in comparison to PPARA-/- mice.117 

Treatment of healthy individuals with fibrates (PPARA-agonists) results in increased urinary 

choline and betaine,118 with similar findings in animal models.119 Our urinary observations 

support our proteomic and gene level findings which together suggest that the alterations 

observed in NEVKP-treated kidneys may reflect increased PPARA and PPARGC1A activity.  

 

Our study has many strengths. Given the anatomical and physiological similarities of pigs 

and humans, our large animal model is readily clinically translatable, and well-suited to the 

study of IRI and transplantation. In contrast to previous studies,82,120 we assess the impact of 

NEVKP post-transplant, and examine the functional significance of ex-vivo observations. Our 

systems biology approach incorporates transcriptomic and targeted metabolomic analyses, 

as well as an analysis of upstream regulators. Finally, this is a novel dataset; to our 

knowledge, this is the first proteomics study related to NEVKP. Notwithstanding the 

strengths of our study, some limitations exist. Our porcine DCD-model lacks some elements 

typically observed clinically, most notably, severe antecedent illness in the donor, 

alloantigen exposure, and post-operative immunosuppression. The structural and functional 

annotation of the pig genome remains incomplete,121 rendering biological interpretation 

challenging. Lastly, while our proteins were predicted to be regulated by PPAR/RXR 

transcription factors, which was supported by their alteration at mRNA level, it is plausible 

that post-translational modifications contributed to differences in protein abundance.  

 

In summary, we present a detailed analysis of the changes in the kidney proteome induced 

by NEVKP in comparison to SCS. We conclude that preservation of key mitochondrial 

enzymes mediating crucial metabolic pathways may be responsible for the superior kidney 

outcomes seen with NEVKP and that these effects are coordinated by the PPAR-family of 
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transcription factors and their co-activator PPARGC1A (Figure 7).  Our findings suggest 

potential therapeutic targets to ameliorate IRI in kidney transplantation. 
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Tables 
Table 1: Details of the 70 proteins significantly differentially expressed between groups 

and across timepoints.  

Protein Identifier Pig gene Human gene 

Timepoint  

of significance 

Increased  

expression in 

Analysis of 

Variance 

(Treatment*Time) 

XP_005657428.1 AP1B1 AP1B1 30 mins  SCS 0.006228671 

XP_005656554.1 BOD1L1 BOD1L1 30 mins NEVKP 0.000195143 

NP_999577.1 CYP1A1 CYP1A1 30 mins  NEVKP 0.041408521 

F1SPF6 RUVBL1 RUVBL1 30 mins  SCS 0.04744904 

XP_005674249.1 ABHD10 ABHD10 POD3 NEVKP 0.04502203 

F1SRC5 ACO2 ACO2 POD3 NEVKP 0.028569884 

XP_005660584.1 AIF1L AIF1L POD3 NEVKP 0.024400643 

XP_003121238.3 ALDH8A1 ALDH8A1 POD3 NEVKP 0.036141682 

F1SAM7 AMN AMN POD3 NEVKP 0.000421914 

XP_005660857.1 ASRGL1 ASRGL1 POD3 NEVKP 0.022052418 

F1SAX3 ATP1A1 ATP1A1 POD3 NEVKP 0.000824428 

Q95339 ATP5MF ATP5MF POD3 NEVKP 0.014481044 

F1SLE5 ATP6V1B1 ATP6V1B1 POD3 NEVKP 0.001670187 

XP_003123717.3 CDHR2 CDHR2 POD3 NEVKP 0.018134312 

XP_005659624.1 CGNL1 CGNL1 POD3 NEVKP 0.040245498 

F1SPI0 CHCHD4 CHCHD4 POD3 NEVKP 0.026300633 

I3LA22 CLPTM1L CLPTM1L POD3 SCS 0.020237625 

I3LER5 COX4I1 COX4I1 POD3 NEVKP 0.012604806 

NP_001233172.1 CPT2 CPT2 POD3 NEVKP 0.012494487 

XP_005654692.1 CTTN CTTN POD3 NEVKP 0.020549915 

I3LF61 CYP4F8 CYP4F8 POD3 NEVKP 0.014133684 

XP_003125985.3 DDAH1 DDAH1 POD3 NEVKP 0.003389761 

F1RXF3 DECR1 DECR1 POD3 NEVKP 0.048295598 

F1SM86 EPB41L3 EPB41L3 POD3 NEVKP 0.017804864 

XP_005665495.1 EPS15 EPS15 POD3 NEVKP 0.005103183 

Q6UAQ8 ETFB ETFB POD3 NEVKP 0.004187732 

P16549 FMO1  FMO1 POD3 NEVKP 0.016340051 

F1S006 FN3K FN3K POD3 NEVKP 0.018266499 

I3L677 G6PD G6PD POD3 SCS 5.18292E-05 

F1STB6 GBA2 GBA2 POD3 NEVKP 0.036355338 

F1S5J5 HABP2 HABP2 POD3 NEVKP 0.014013642 

I3LTZ3 HGD HGD POD3 NEVKP 0.030812863 

NP_001177098.1 HOGA1 HOGA1 POD3 NEVKP 0.022664251 
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Q06AT0 HPCAL1 HPCAL1 POD3 SCS 0.001994047 

I3L8C5 HSPA12A HSPA12A POD3 NEVKP 0.003810733 

NP_001230836.1 HSPA8 HSPA8 POD3 SCS 0.017815849 

I3LAT6 IARS IARS POD3 NEVKP 0.000583668 

F1SSR4 IVD IVD POD3 NEVKP 0.024332153 

F1RU12 LACTB2 LACTB2 POD3 NEVKP 0.012593529 

NP_001116606.1 LIPA LIPA POD3 SCS 0.003820522 

I3LCC2 MARS MARS POD3 SCS 0.002446129 

K7GM47 MECP2 MECP2 POD3 NEVKP 0.012373323 

Q2EN77 MGST3 MGST3 POD3 NEVKP 0.031301414 

F1SD56 MISP3 MISP3 POD3 NEVKP 0.03029979 

K7GMJ2 MME MME POD3 NEVKP 0.002598281 

F1SR71 MOGAT1 MOGAT1 POD3 NEVKP 0.009582449 

XP_003355117.1 MPC2 MPC2 POD3 NEVKP 0.024029416 

I3LMQ8 NDUFAF7 NDUFAF7 POD3 SCS 0.00415399 

XP_005665310.1 PABPC4 PABPC4 POD3 SCS 0.004696561 

XP_003123959.1 PDLIM4 PDLIM4 POD3 NEVKP 0.021981244 

XP_005674442.1 PIP4K2C PIP4K2C POD3 NEVKP 0.042699072 

XP_005668225.1 PLXDC2 PLXDC2 POD3 NEVKP 0.042880002 

F2Z5L7 PSMA1 PSMA1 POD3 SCS 0.001007071 

F1S4R1 RMDN2 RMDN2 POD3 NEVKP 0.02241622 

F1RK77 ROGDI ROGDI POD3 NEVKP 0.024939309 

F1RTJ9 RPL21 RPL21 POD3 SCS 0.031890423 

F2Z5C7 RPS3A RPS3A POD3 SCS 0.025650357 

F1RHN7 SEPT5 SEPT5 POD3 NEVKP 0.038733081 

I3L854 SLC22A10L SLC22A10 POD3 NEVKP 0.00197433 

F1S5K2 SLC3A1 SLC3A1 POD3 NEVKP 0.007752504 

B8XH67 SLC9A3R1 SLC9A3R1 POD3 NEVKP 0.005064438 

F1SS29 SRP14 SRP14 POD3 SCS 5.56947E-05 

XP_005662658.1 SRSF7 SRSF7 POD3 SCS 0.028156373 

C5HGF3 TMCO1 TMCO1 POD3 SCS 0.005807246 

XP_005672544.1 TRAPPC13 TRAPPC13 POD3 NEVKP 0.015800783 

F1RK61 UFD1 UFD1 POD3 NEVKP 7.988E-05 

XP_005664372.1 USP10L USP10 POD3 NEVKP 0.003800781 

XP_005672359.1 USP40 USP40 POD3 NEVKP 0.005711515 

F1SK83 WASHC1 WASHC1 POD3 NEVKP 0.017684621 

F1SRE0 XRCC6 XRCC6 POD3 SCS 6.28153E-05 
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Table 2: External studies used for validation  

 

First 

Author Year  

Ref. 

No. Organ Organism 

Specific 

context Additional Details Analysis of 

Liu 2017 47 Kidney Mouse 

AKI, and AKI-

CKD 

transition 

Serial profiling over 12 month period 

following severe bilateral IRI 

Gene 

expression 

(RNA-seq) 

Huang 2018 48 Kidney Rat AKI-IRI 

Analysis of affected and contralateral 

kidneys at 4 and 24 hours Proteome 

Damman 2015 49 Kidney Human 

Pre- and 

Post-

Transplant 

Peri-donation, post-cold ischemia, 

and post-reperfusion biopsies in LD, 

DCD and DBD donor kidneys 

Gene 

expression 

(microarray) 

Port 2011 51 Heart Mouse 

Myocardial 

Infarction  

Biopsies from adjacent, non-

infarcted left ventricle (or sham)  at 2 

days, 2 weeks and 2 months 

Gene 

expression 

(microarray) 

Tran 2011 52 Kidney Mouse AKI-Septic 

LPS-induced AKI. Included profiles of 

groups with recovery and non-

recovery of renal function 

Gene 

expression 

(microarray) 

Kang 2015 53 Kidney Human CKD 

Microdissected tubulointerstitial 

samples, control v CKD (HTN or DM) 

Gene 

expression 

(RNA-seq) 
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Figure Legends 
 
Figure 1: Overview of experimental model and proteomics workflow. 

(A) Details of porcine DCD auto-transplantation model comprising of two groups (8 hours 

NEVKP and 8 hours SCS), n=5 animals/group; biopsied at three timepoints: baseline (from 

the contralateral kidney, prior to warm ischemia), 30 minutes post-reperfusion, and at 

sacrifice (POD3). (B) Interaction plot showing serum creatinine (mean ± SEM in mg/dL) of the 

transplanted animals during 3-day post-operative follow-up in NEVKP- and SCS- treated 

groups respectively (Data amended from reference 34). A polynomial regression of 

creatinine levels in dependence on treatment, time and time2 was performed (F-test, p-

value < 2.23x 10-15). (C) Light microscopy of PAS-stained images from representative NEVKP-

treated (top panel) and SCS-treated (bottom panel) kidneys. Images from baseline (10X), 

30minutes post-reperfusion (10X) and post-operative day 3 (POD3) (2.5X) are shown. (D) 

Simplified proteomics workflow including sample processing, strong cation exchange liquid 

chromatography and fractionation, followed by LC-MS/MS on a Thermo Q Exactive Plus 

mass spectrometer, and subsequent identification and quantification of peptides is shown. 

(E) Overview of proteomics data analysis including the numbers of identified and quantified 

proteins, and the number of proteins differentially expressed between groups and across 

timepoints (2-ǁaǇ ANOVA ǁiƚh TƵkeǇ͛Ɛ HSD coƌƌecƚionͿ͘ PƌoƚeinƐ ǁiƚh q-value <0.05 for the 

effect of treatment and time were considered differentially expressed. LC-MS/MS, liquid 

chromatography followed by tandem mass spectrometry; NEVKP, Normothermic ex vivo 

kidney perfusion; PAS, periodic acid Schiff; POD3, post-operative day 3; SCS, static cold 

storage. 

 

Figure 2: Expression profiles of the whole dataset, and of differentially expressed proteins 

show greatest differences between groups at POD3. 
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(A) The first level of the binary-tree generated by BTSVQ clustering of the non-imputed 

protein expression profiles from each study sample, with SOM component planes at the 

nodes. Clear differences in the profiles of the POD3 samples versus the samples from the 

earlier timepoints are evident, accounting for the first binary division. NEVKP is represented 

by green squares, and SCS by purple circles. A black outer band denotes samples from 30 

minutes post-ƌepeƌfƵƐion ;͞ϯϬ minƐ poƐƚ-rpf͟Ϳ͕ and a gold oƵƚeƌ band denoƚeƐ PODϯ 

samples.  (B) Expression of the DE proteins across all samples depicted by heatmap with 

unsupervised hierarchical clustering of the proteins and samples. Columns represent each 

sample, and rows represent the differentially expressed proteins. The colour scale indicates 

the LFQ abundance of the protein across all samples ranging from blue (lower abundance) to 

red (higher abundance). Annotation of the columns details the experimental group and 

timepoint. BTSVQ, Binary tree-structured vector quantization; LFQ, normalized label-free 

quantification; POD3, post-operative day 3. 

 

Figure 3: Gene ontology and pathway analysis of dysregulated proteins. 

The gene ontology terms significantly (BH-adjusted FDR <0.05) enriched among NEVKP-

increased proteins (A, left) and SCS-increased proteins (B, right) respectively. The biological 

pathways (literature and experimentally proved protein-protein interactions) significantly 

enriched (BH adjusted FDR <0.05) among NEVKP-increased (A,bottom left) and SCS-

increased (B, bottom right) proteins respectively. Node colour depicts the BH-adjusted FDR 

as shown by the colour bar; node size denotes the number of our DE proteins participating 

in ƚhe pƌoceƐƐͬpaƚhǁaǇ in ƋƵeƐƚion͕ aƐ Ɛhoǁn bǇ ͚η hiƚƐ͛ ͖ ƚhe ǆ aǆiƐ depicƚƐ ͚gene ƌaƚio͛ 

which reflects a ratio of the number of DE proteins associated with that term: the number of 

DE proteins queried. BH-adjusted FDR, Benjamini-Hochberg adjusted false discovery rate; 

DE, differentially expressed; NEVKP, normothermic ex vivo kidney perfusion; SCS, static cold 

storage.  
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Figure 4: Validation of proteomics findings in external datasets. 

(A) We compared our list of DE proteins to the genes and proteins DE in a number of related 

studies derived from human (Damman et al., Kang et al.), mouse (Port et al., Tran et al., Liu 

et al.), and rat (Huang et al.) samples, as depicted. The overlap with specific DE proteins in 

our study for each external study is indicated. The significance of overlap was assessed using 

the hypergeometric test, with resultant p-values shown. (B) 49/70 of our DE proteins were 

represented in a mouse dataset of septic-AKI (Tran et al). The heatmap depicts the 

expression of these 49 proteins at the gene-level in the mouse dataset, using unsupervised 

hierarchical clustering. Columns represent the samples, and rows represent the genes, with 

relative expression of each gene across all samples demonstrated by pseudocolour scale 

ranging from -2 (red = lower expression) to +2 (green= higher expression). The columns are 

annotated to denote the experimental group of the mice in the Tran study. Annotation of 

the rows denotes increased expression in NEVKP or SCS respectively in the proteomic 

dataset. AKI, acute kidney injury; DE, differentially expressed; NEVKP, normothermic ex vivo 

kidney perfusion; SCS, static cold storage. 

 

Figure 5: Regulatory interactions of PPAR family members and their coactivator 

(PPARGC1A) and signaling partners (RXR-family members) with our DE proteins. 

The ƌegƵlaƚoƌǇ inƚeƌacƚionƐ ;͚gƌeǇ lineƐ͛Ϳ of PPAR familǇ ƚƌanƐcƌipƚion facƚoƌƐ͕ PPARGCϭA ;co-

activator) and RXRs with the DE proteins in our dataset were explored using an integrated 

transcription factor database, CATRIN. The network image was created using the 

NAVIGATOR software. The size of each transcription factor node corresponds to the number 

of our DE pƌoƚeinƐ ƌegƵlaƚed͘ Among ƚhe ϳϬ DE pƌoƚeinƐ͗ ͚ƌed͛ and ͚blƵe͛ oƵƚeƌ ciƌcleƐ denoƚe 

increased and decreased expression in NEVKP at 30 minutes post-reperfusion respectively; 

͚gƌeǇ aƌƌoǁheadƐ͛ ƌeflecƚ incƌeaƐed oƌ decƌeaƐed eǆpƌeƐƐion in NEVKP aƚ ƚhe PODϯ 
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timepoint respectively. Nodes are then colored to indicate relevant pathway enrichments 

aƐƐociaƚed ǁiƚh ƚhe ƌeƐpecƚiǀe pƌoƚeinƐ͘ FinallǇ͕ ͚cǇan labelling͛ indicaƚeƐ ƚhoƐe pƌoƚeinƐ 

which were validated in independent datasets. DE, differentially expressed; NEVKP, 

normothermic ex vivo kidney perfusion. 

 

Figure 6: Validation studies of differentially expressed proteins and key findings. 

 (A-B) Immunoblots representing ETFB, CPT2, and GAPDH protein expression in kidney 

biopsy tissue from the same animals used in the proteomics analysis. Intensities for ETFB 

and CPT2 were measured and normalized to GAPDH using Image J software. Mann Whitney 

test, n=4-5 per group. (C) Expression of COX4I1 protein in NEVKP- and SCS-treated kidneys 

was verified by immunohistochemistry in new sections from POD3 formalin-fixed paraffin-

embedded study samples. Magnification 20X. Scale bar 100Pm. Mann Whitney test, n=5 per 

group. (D) Relative mRNA expression of AP1B1 and CYP1A1, in pig kidneys at 30minutes 

post-reperfusion (E) Relative mRNA expression of genes at POD3, related to the TCA cycle 

and DE in our dataset:  COX4I1, MPC2, CPT2, and ETFB. (F) Relative mRNA expression of 

PPARA, PPARGC1A and TFEB in NEVKP and SCS groups at 30minutes post-reperfusion. (G) 

Relative mRNA expression of PPARGC1A, PPARA, PPARD, PPARG, RXRA and RXRB at POD3 in 

NEVKP and SCS groups. (D-G) Mann Whitney test, n=3-5 per group.  *p<0.05, and **p<0.01 

compared to SCS. DE, differentially expressed; POD3, post-operative day 3; NEVKP, 

normothermic ex vivo kidney perfusion; SCS, static cold storage; TCA, tricarboxylic acid. 

 

 

Figure 7: Proposed role of NEVKP in attenuating ischemia-reperfusion injury in a DCD-

model of auto-transplantation.   

NEVKP is associated with preserved expression of proteins mediating critical metabolic 

processes in the mitochondria in comparison to SCS. We demonstrate increased expression 
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of proteins mediating the entry of key energy-producing substrates into the mitochondria 

(MPC2, CPT2), proteins involved in the TCA cycle (ACO2), electron transfer (ETFB), oxidative 

phosphorylation (COX4I1), and ATP synthesis (ATP5MF) resulting in enrichment of fatty acid 

E-oxidation, the TCA cycle and oxidative phosphorylation. All NEVKP-increased processes are 

shown in green. The blue arrows represent our findings on gene expression that these 

effects are centrally regulated by members of the PPAR-family of transcription factors 

(PPARA, PPARD, PPARG), RXRA, RXRB and their transcriptional co-activator PPARGC1a. DE, 

differentially expressed; NEVKP, normothermic ex vivo kidney perfusion; SCS, static cold 

storage; TCA, tricarboxylic acid. 
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