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BIGGER PICTURE 

 
An effective response to the COVID-19 pandemic relies on integration of many different types of 

data available about SARS-CoV-2 and related viruses. KG-COVID-19 is a framework for 

producing knowledge graphs that can be customized for downstream applications including 

machine learning tasks, hypothesis-based querying, and browsable user interface to enable 

researchers to explore COVID-19 data and discover relationships.  

SUMMARY 

Integrated, up-to-date data about SARS-CoV-2 and coronavirus disease 2019 (COVID-19) is 

crucial for the ongoing response to the COVID-19 pandemic by the biomedical research 

community. While rich biological knowledge exists for SARS-CoV-2 and related viruses (SARS-

CoV, MERS-CoV), integrating this knowledge is difficult and time consuming, since much of it is 

in siloed databases or in textual format. Furthermore, the data required by the research 

community varies drastically for different tasks - the optimal data for a machine learning task, for 

example, is much different from the data used to populate a browsable user interface for clinicians. 

To address these challenges, we created KG-COVID-19, a flexible framework that ingests and 

integrates biomedical data to produce knowledge graphs (KGs) for COVID-19 response. This KG 

framework can also be applied to other problems in which siloed biomedical data must be quickly 

integrated for different research applications, including future pandemics. 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 18, 2020. ; https://doi.org/10.1101/2020.08.17.254839doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.17.254839


1 

 

 

Keywords: 

COVID-19, SARS-CoV-2, SARS-CoV, MERS-CoV, coronavirus, knowledge graph, machine 

learning, ontology, data integration 

 

 

 

  

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 18, 2020. ; https://doi.org/10.1101/2020.08.17.254839doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.17.254839


2 

INTRODUCTION 

Although most coronaviruses typically cause common-cold symptoms in humans, three 

betacoronaviruses have emerged in the last few decades that can cause a range of serious 

manifestations including pneumonia and death: the severe acute respiratory syndrome (SARS) 

coronavirus (SARS-CoV-1), the Middle East respiratory syndrome coronavirus (MERS-CoV), and 

the novel betacoronavirus that emerged in late 2019, subsequently named SARS-CoV-2, the 

agent of the disease COVID-19.1 The rapid spread of SARS-CoV-2 has led to a global pandemic. 

COVID-19 is a complex disease involving many biological processes and pathways, each of 

which involves many genes. Initial symptoms of COVID-19 typically include fever, cough, fatigue, 

anorexia, anosmia, myalgia, and diarrhea. In some patients, severe illness ensues roughly one 

week after the initial onset of symptoms, and can present with rapidly progressive respiratory 

failure.2 In addition to the symptoms highlighted, COVID-19 infections can lead to secondary 

health problems such as blood clots3, tissue necrosis, organ damage, and, in some cases, cardiac 

failure. Given that the research community is still learning about COVID-19, its symptoms and 

their underlying pathological mechanisms are still being uncovered. 

Many possible treatments for different aspects and stages of COVID-19 are being actively 

pursued. Evidence suggests that remdesivir (DrugBank:DB14761) can shorten the time to 

recovery in adults hospitalized with COVID-19 infection and pneumonia (though the effect is not 

statistically significant),4 and more recent evidence suggests that dexamethasone 

(DrugBank:DB01234) may reduce mortality in patients with severe COVID-19.5 However, 

currently no treatment is available to prevent progression of COVID-19 to severe disease, and 

our knowledge of the causes and optimal medical management of the many clinical complications 

of COVID-19 is limited.  
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A large amount of biomedical and molecular data is available to aid the massive research effort 

to address the COVID-19 pandemic. Before the pandemic began, there existed a large amount 

of biomedical data for coronaviruses other than SARS-CoV-2 (SARS-CoV and MERS-CoV6 as 

well as many other pathogenic and non-pathogenic coronaviruses), such as viral genome and 

transcriptome sequences, viral/host gene interactions, gene function, epidemiological data, and 

clinical case data. Much of this information is now also available for SARS-CoV-2. In addition, 

there is also a large amount of data about drugs that may offer a treatment for COVID-19, as well 

as the protein targets for each drug. 

However, researchers are confronted with a number of technical challenges when trying to use 

existing data to discover actionable knowledge about COVID-19. The data needed to address a 

given question are typically siloed in different databases and employ different identifiers, data 

formats, and licenses. These data sources are often in different formats, requiring transformation 

in order to serve the task at hand. For example, to examine the function of proteins targeted by 

FDA-approved antiviral drugs, one must download and integrate drug, drug target, and FDA 

approval status data (from Drug Central, for example, in a bespoke TSV format7) and functional 

annotations (from, for example, Gene Ontology in GPAD format8). Furthermore, many data sets 

are updated periodically, which requires researchers to re-download and re-harmonize data in 

order to perform their analysis on the most current data. 

To tackle the daunting challenge of bringing together these disparate sources of information and 

extracting useful knowledge from them, we employed knowledge graphs (KGs). Knowledge 

graphs are a way to represent and integrate heterogeneous data and their interrelationships. In a 

KG, discrete entities or pieces of information form distinct  nodes interconnected by edges, where 

both nodes and edges are typed using a hierarchical system such as an ontology9.  
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For example, nodes of type ‘protein’ representing individual entities (such as human ACE2 or 

SARS-CoV-2 Spike) can be interconnected via edges of type ‘orthologous to’ or ‘interacts with’, 

and these nodes can be connected with other kinds of nodes representing diseases, drugs, and 

so on. This kind of representation is amenable to complex queries (e.g. “which drugs target a host 

protein that interacts with a viral protein?”), and also to graph-based machine learning (ML) 

techniques.    

RESULTS 

The KG-COVID-19 Framework 

We created KG-COVID-19 to address the challenge of integrating data for COVID-19 response. 

KG-COVID-19 is a framework that enables the creation of customized KGs containing COVID-19 

knowledge for different applications. For example, a drug repurposing application would make 

use of protein data linked with approved drugs, while a biomarker application could utilize data on 

gene expression linked with pathways. The methodology is not limited to COVID-19, but could 

support data integration for any biomedical research effort.  

Constructing the knowledge graph 

Our process for generating the KG was designed to support interoperability, preserve 

provenance, and provide the ability to flexibly mix and match data from different sources. The 

workflow is divided into three steps: data download (fetch the input data), transform (convert the 

input data to KGX interchange format), and merge (combine all transformed sources) (Figure 1).  

Download 

The download step retrieves data from multiple sources using a YAML file that specifies the 

source URLs (Figure 1A). Our experience has shown that this step is a frequent point of failure in 

many extract, transform, and load (ETL) pipelines and separating out this step helps mitigate this 

issue.  
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The data sources we ingest are focused on our use case: drug repurposing (e.g., drug and drug 

target data, protein interaction data, ontologies important in disease such as HPO and Mondo). 

However, we also ingest data sources that our user community requests by opening tickets on 

our project GitHub page.10 

Transform 

The transform step (Figure 1B) involves parsing the input files and translating them to a graph-

based representation. We have devised a simple yet expressive format called KGX interchange 

format11 - a serialization for representing a graph that combines features of resource description 

framework (RDF) and property graphs. KGX interchange format consists of two tabular files, one 

for representing graph nodes and their properties, the other for representing edges and their 

properties (Figure 2). Using standards from the semantic web, nodes in the graph are identified 

by Compact Uniform Resource Identifiers (CURIEs).12 These can be expanded to an Information 

Resource Identifier (IRI), which is the global identifier for this node. All nodes are assigned a type 

using the 'category' node property, and all edges are typed using the 'edge_label' property. Where 

possible, one can use classes from the Biolink Model,13 a high-level data model for representing 

biological and biomedical knowledge. Granular typing of nodes is possible by adding additional 

classes to the 'category' property. Granular typing of edges is possible by adding a more specific 

relation to the ‘relation’ property. For example, one can use a class from the Relation Ontology 

(RO)14 to further classify the semantics of an edge. 

Merge 

The merge step (Figure 1C) combines the component data sets into a KG. This step is informed 

by a YAML file that specifies what data sets should be included, to allow for flexible remixing of 

subgraphs. In addition to selecting different component data sets to be merged, the user can also 

filter nodes and edges from each source by the node ‘category’ and ‘edge_label’, allowing fine 

grained control of the resulting graph. By default, all nodes and edges from all component data 
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sets are merged. Optionally, the merged graph can be loaded into any triple/RDF store or Neo4j 

database.  

Design principles 

While our framework offers flexibility in deciding how best to transform each data source, KG-

COVID-19 follows some general design principles to maintain the quality of the resulting KG.  

Ensure interoperability through standardized node and edge representations 

We use a core set of standardized ontologies and the Biolink Model,13 a biological data model for 

categorizing nodes and edges, to facilitate interoperability and data summarization. To ensure 

Biolink Model compliance, a Biolink category and a Biolink predicate are required for the 

categorization of nodes and edges, respectively. Since Biolink predicates are typically very broad 

in scope, the edge can be further categorized by adding a more specific description in the ‘relation’ 

property using a term from the Relation Ontology.15 Categorization using ontologies and the 

Biolink Model provides a convenient way to assess what types of data have been ingested from 

each source, record provenance information, and also facilitates interoperability with other 

transformed data sets.  

Ingest only relevant data 

Only the subset of features in each data set that are likely to be useful downstream are preserved, 

and only statements for which the source is authoritative are ingested (for example, assertions 

about protein interactions are not ingested from a drug database).  

Normalize identifiers at the time of ingest 

Identifier (ID) normalization is crucial for ensuring connectedness and the utility of the graph. 

We refer to the Biolink Model to provide the preferential order of identifier prefixes to be used for 

a particular Biolink class. For example, in the case of Gene class (https://biolink.github.io/biolink-
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model/docs/Gene) the model prescribes HGNC, NCBIGene, ENSEMBL, where the order of 

prefixes matters: identifiers from HGNC namespace are given a higher priority than NCBIGene 

and ENSEMBL. In the case of Protein class, the model prescribes UniProtKB identifiers. For drugs 

and other chemical compounds, the model recommends the following: CHEBI, CHEMBL, 

DrugBank, PubChem. Identifiers can also be normalized by adding cross-references to other 

identifiers in the 'xrefs' property of nodes, which is the 'xrefs' column in the KGX interchange 

format TSV describing the nodes. 

Preserve provenance 

Each ingest adds a ‘provided_by’ column in the edge TSV file, which ensures that graphs into 

which the data are merged (Figure 1C) contain a record of which ingest produced each edge. The 

preservation of all files used to generate the graph in the download step (Figure 1A) makes it 

possible to trace each node and edge to the entries in the input file that generated them. PubMed 

IDs are added to the ‘publication’ column, where available, to provide additional provenance.  

Downstream tooling for querying and machine learning 

The KG-COVID-19 framework contains tooling for common graph operations. The framework can 

create training and test data sets in graph form for machine learning applications such as training 

classifiers or regressors for link prediction (see Experimental Procedures). It also includes a query 

function that can execute prewritten or custom SPARQL queries on a given SPARQL endpoint 

(by default, our endpoint: http://kg-hub-rdf.berkeleybop.io/blazegraph/#query).  

Current contents of KG-COVID-19 

A schematic diagram of all data sources currently ingested is shown in Figure 3. The data we 

ingest are focused on sources relevant to drug repurposing for our downstream querying and 

machine learning applications, prioritizing drug databases, protein interaction databases, protein 

function annotations, COVID-19 literature, and related ontologies. The KG contains drug and 
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chemical compound data from several databases (currently DrugCentral,16 the 

Pharmacogenomics Knowledgebase (PharmGKB),17 Therapeutic Target Database (TTD),18  and 

ChEMBL19), functional annotations and synonyms for coronavirus genes and proteins from the 

Gene Ontology (GO), and protein interaction data from STRING20 and the IntAct Molecular 

Interaction Database21. We ingest data about the occurrence in COVID-19 scientific publications 

of concepts such as Gene Ontology (GO) terms, UniProt Knowledgebase (UniProtKB) proteins, 

National Center for Biotechnology Information (NCBI) and HUGO Gene Nomenclature Committee 

(HGNC) genes, and ChEMBL IDs via SciBite annotations22 of the COVID-19 Open Research 

Dataset (CORD-19).23 To capture ontology-based annotations, the relational graphs for the GO,8 

Human Phenotype Ontology (HPO),24 and Mondo Disease Ontology25 are ingested, and 

annotations are added to the graph as provided by each ingest.26 In addition, we ingest GO-CAM 

models that capture biological systems such as protein pathways, including those important in 

SARS-CoV-2 infection.27 

Use cases 

While we designed KG-COVID-19 to allow flexible reuse and remixing of data to produce custom 

KGs, our immediate use case is to provide a COVID-19 KG that can be used for machine learning 

to produce actionable knowledge about COVID-19 (Figure 4). This use case demonstrates 

several features of KG-COVID-19, namely: normalization and merging of disparate data sources 

with different namespaces and formats, flexible remixing of component subgraphs, and a regular 

update cycle to keep up with new knowledge. We follow the workflow described in Figure 1 to 

produce the KG-COVID-19 knowledge graph. From the final merged graph, KG-COVID-19 

produces training and test data sets suitable for machine learning applications (see Experimental 

Procedures). Embiggen28 (paper in preparation), our implementation of node2vec and related 

machine learning algorithms, is applied to this KG to generate embeddings, vectors in a low 

dimensional space which capture the relationships in the KG. Embiggen is trained iteratively to 
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identify optimal node2vec hyperparameters (walk length, number of walks, p, q etc.) and to then 

train classifiers (e.g., logistic regression, random forest, support vector machines) that can be 

used for link prediction. The trained classifiers can then be applied to produce actionable 

knowledge: drug to disease links, drug to gene links, and drug to protein links. The latter would 

indicate a drug that might be useful for COVID-19 treatment. 

To demonstrate the usefulness of KG-COVID-19 for machine learning applications, we created 

embeddings for nodes and edges from the KG-COVID-19 knowledge graph and visualized the 

embeddings in two dimensions using a t-SNE plot (Figure 6). While only the graph structure and 

no biological typing of nodes was used to generate the embeddings, the nodes exhibited a 

tendency to cluster according to biological types. This indicates that the embeddings encode 

biological information that can be used for machine learning. Similarly, a t-SNE plot of edges in 

KG-COVID-19 displays grouping according to the type of the edge (Supplementary Figure 2).  

While the initial development of KG-COVID-19 has focused on our machine learning applications, 

other use cases have emerged. As part of the National Virtual Biotechnology Laboratory (NVBL), 

we have found it useful to perform hypothesis-based querying of the KG to identify viral and 

human proteins that make attractive drug targets29. For example, we have queried the KG to 

identify host proteins that are known to interact with viral proteins, and these are further filtered 

according to whether these host proteins are targets of approved drugs, (Figure 5). These data 

are further analyzed with downstream analyses to assess their suitability for drug repurposing. 

Our KG is also part of a federated query used by the NVBL to collate and share up to date 

information related to COVID-19 and SARS-CoV-2. In addition, the National COVID Cohort 

Collaborative (N3C) has incorporated our KG as an ontologically-informed way to combine their 

clinical data sets (by virtue of our integration with GO, HPO and Mondo). The N3C also uses our 

KG to incorporate all of our transformed and harmonized data, saving them the onerous task of 

collecting and integrating all of those data sources individually. 
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EXPERIMENTAL PROCEDURES 

KG generation pipeline 

The framework to produce our KG is essentially an extract, transform, and load (ETL) system with 

additional tooling to facilitate downstream uses (e.g. to produce subgraphs for ML training, run 

SPARQL queries, etc.). To ensure that the code remains functional and to detect breaking 

changes in data from upstream sources, we run our pipeline regularly using a continuous 

integration system30. This pipeline emits a KG that integrates all available data sources, in both 

TSV and RDF format, and also loads this KG into a Blazegraph database. A YAML file containing 

an inventory of the Biolink categories and Biolink associations of all data in the KG is also 

produced during the merge step (Figure 1).  

Generation of training and test edges for ML applications 

To generate positive edges, a set of positive test edges equal in number to [(1 - train_fraction) * 

number of edges in input graph] is randomly selected from the edges in the input graph, where 

train_fraction is a number between 0 and 1 indicating the fraction of the graph to use for training. 

Positive test edges are selected such that removing them from the graph would not break it into 

disjoint components. These positive edges are removed from the edges of the input graph and 

are then emitted as the training edges. A set of negative edges is constructed by randomly 

selecting pairs of nodes that are not connected by an edge in the input graph. The number of 

negative edges emitted is equal to the number of positive edges emitted above. If the user 

requests a validation set, the positive test edges are divided equally to yield positive test and 

validation sets, and negative test edges are divided equally to yield negative test and validation 

sets. 
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Embeddings and t-SNE plot for knowledge graph visualization 

We generated embeddings from our KG using Embiggen31, our Python library for graph 

embedding and machine learning, using node2vec with a skip-gram model, 128 embedding 

dimensions, and parameters p and q of 1 (which are typically used default parameters for 

node2vec)32. These embeddings were used to generate a t-SNE plot that represents the 

embeddings for each node in two-dimensional space, using MulticoreTSNE33 (Figure 6). 

DISCUSSION 

A ‘KG-hub’ pattern for data sharing 

The pattern used in the KG-COVID-19 framework as described in Figure 1 may be generally 

useful for data sharing among scientific communities. In the KG-COVID-19 framework, each data 

source is transformed and output as a separate graph, which is later combined with graphs for 

other data sources according to the needs of the user. Although the subgraphs from the various 

data sources (e.g., STRING, Drug Central) are produced locally by KG-COVID-19, our framework 

could easily consume and incorporate graphs generated by other members of the community. 

The exchange of data via a ‘KG-Hub’ would eliminate the duplication of effort that occurs when 

researchers separately transform and prepare data, and might also facilitate the formation of a 

data sharing portal for easier exchange of data. 

Comparison with similar projects 

There have been a few parallel efforts to construct KGs to integrate COVID-19 data, each 

integrating different data sources and constructed for different purposes. Several efforts have 

constructed KGs by ingesting and transforming scientific literature,34,35 some with a few additional 

types of data also included, such as confirmed case and mortality data;36 clinical information, drug 

trial, and sequencing data;37  drug, drug trial and genome sequence data;38 diseases, chemicals, 

and genes39. Other KG efforts ingest a wider array of data, including diseases, genes, proteins 
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and their structural data, drugs, and drug side effects;40 pathways, proteins, genes, drugs, 

diseases, anatomical terms, phenotypes, microbiome;41 genes, proteins, diseases, phenotypes, 

genome sequences;42,43 geographic, viral genes, genes and proteins.44 Several projects have 

focused specifically on integrating a wide variety of COVID-19 data to create KGs to investigate 

drug repurposing.45–47 The effort described here is unique in that it allows users to more flexibly 

remix specific data types from specific data sources (by virtue of its use of the KGX tool), it 

integrates more tightly with ontologies (HPO, Mondo, and GO) and with downstream machine 

learning tools (i.e. Embiggen), it offers a more detailed summary of the contents of its KG in a 

machine readable format, it covers a wider range of input data sources, and it automatically 

incorporates new and updated data. 

ID normalization challenges for SARS-CoV-2 entities 

Since the usefulness of a KG depends on its connectedness, ID normalization is crucial. 

Normalization of IDs for SARS-CoV-2 entities in particular is challenging, for several reasons. 

First, SARS-CoV-2 produces identical cleavage products from different polyproteins, and UniProt 

assigns a different  ID to each of these identical cleavage products. For example, UniProt uses 

PRO_0000338259 to identify the cleavage product nsp5, the 3C-like protease, if it is cleaved from 

replicase polyprotein 1a, and PRO_0000449623 if it is cleaved from replicase polyprotein 1ab. 

Protein Ontology, in contrast, uses PR_000050274, irrespective of the polyprotein from which it 

was cleaved. Note that the UniProtThe “PRO_” prefix is unrelated to the Protein Ontology 

namespace. For our KG, it is crucial that identical proteins be represented with a single node such 

that other information can be efficiently linked to them. We arbitrarily chose PRO_0000449623 as 

the ID to represent this cleavage product, and all other IDs for this cleavage product are stored 

as  cross references for this node in our KG. Second, each cleavage product can have a large 

number of synonyms. For example, nsp5 has at least 40 synonyms that are used in the literature 

(e.g., 3CL-PRO, 3CLp, Mpro, 3C-like proteinase). Furthermore, some synonyms (e.g. ‘S’ for spike 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 18, 2020. ; https://doi.org/10.1101/2020.08.17.254839doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.17.254839


13 

protein) are difficult to recognize when applying NLP to SARS-CoV-2 literature, which represents 

a further challenge for computationally identifying the occurrences of such entities in text. We 

have compiled our canonical IDs, synonyms, and cross references for each SARS-CoV-2 protein 

and cleavage product in our KG in a publicly available file in GPI format: 

https://github.com/Knowledge-Graph-Hub/kg-covid-19/blob/master/curated/ORFs/uniprot_sars-

cov-2.gpi 

Conclusion 

Knowledge graphs provide a way of integrating heterogeneous data from different sources and 

combining different data modalities. KG-COVID-19 generates a KG for COVID-19 focused around 

molecular and chemical information, and enables complex queries over relevant biological entities 

as well as machine learning to generate graph embeddings for making predictions. The 

lightweight framework we have developed provides a rapid route for bringing together new 

sources of data and knowledge, including KGs from several different sources, to form a "hub" to 

support COVID response efforts..   

DATA AND CODE AVAILABILITY  

The Python code for KG-COVID-19 and the knowledge graph containing all data sources (in RDF 

and TSV format) are freely available at the KG-COVID-19 project wiki: 

https://github.com/Knowledge-Graph-Hub/kg-covid-19/wiki 

The Python code is distributed under a BSD3 license. 

A SPARQL endpoint is here: 

http://kg-hub-rdf.berkeleybop.io/blazegraph/#query 
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FIGURE TITLES AND LEGENDS 

 

 

Figure 1. The KG-COVID-19 framework for producing KGs. The framework is divided into three modular 

steps: download, transform, and merge. A) The download step retrieves all data sets needed for ingestion 

using a set of URLs specified in a YAML file. B) The transform step applies Python code that is specific to 

each source to transform the most useful elements of each source and emit a graph in TSV format. C) The 

merge step uses a YAML file to read the user-specified data sets (among those produced in the transform 

step) and merge them into a single KG. Different YAML files can be constructed to mix and match different 

input data from B, but each merge operation yields a single merged graph. Both the transform and merge 

steps rely heavily on KGX, a powerful tool for manipulating knowledge graphs (https://github.com/NCATS-

Tangerine/kgx).  

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 18, 2020. ; https://doi.org/10.1101/2020.08.17.254839doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.17.254839


19 

 

Figure 2. A typical transformation of records  from an input file into entries in a nodes.tsv and edges.tsv file 

representing the nodes and edge in a graph. These nodes and the edge can be further transformed into 

RDF triples. 
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Figure 3. Schematic representation of the data currently ingested into the KG-COVID-19 knowledge graph.  
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(Top) Polygons shown correspond to the various data sources currently ingested into the KG, and the small 

colored circles indicate the data types ingested from this source.  

(Bottom) Sankey plot showing the Biolink categories for edges in the KG-COVID-19 graph. Left and middle 

columns show Biolink categories for edges, right column indicates the source of the data from which the 

edges were derived. Line widths are proportional to the number of edges. 

 

 

Figure 4. Workflow for machine learning application of KG-COVID-19 knowledge graph.  

A. In order to train classifiers for use in link prediction, training and test graphs are first produced from the 

original KG-COVID-19 graph (see Experimental Procedures). These graphs are used by Embiggen to 

generate random walks, embeddings, and finally a classifier. The test graphs are used to assess the 

performance of the classifier. This step is performed iteratively in order to identify optimal hyperparameters.  

B. The classifiers are applied to the KG-COVID-19 to perform link prediction in order to identify links that 

correspond to actionable knowledge: for example, links between drugs and the COVID-19 disease, links 

between drugs and SARS-CoV-2 protein targets, and links between drugs and host proteins that are 

involved in COVID-19 disease processes. 
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Figure 5. Hypothesis-based querying of KG-COVID-19 knowledge graph for using SPARQL queries. 

(Top) A SPARQL query retrieves approved drugs that target human proteins that physically interact with 

SARS-CoV-2 protein. (Bottom) A SPARQL query retrieves approved drugs that target human proteins 

that physically interact indirectly with SARS-CoV-2 through another human protein. The suitability of 

these drugs for repositioning are evaluated by NVBL collaborators, for example by analyzing available 

structural data to support repositioning. 

 

 

 
 
 
 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 18, 2020. ; https://doi.org/10.1101/2020.08.17.254839doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.17.254839


23 

 
Figure 6. Visualization of KG-COVID-19 knowledge graph node embeddings using t-SNE. Embeddings 

were created for each node in the KG-COVID-19 knowledge graph and t-SNE was performed as described 

in Experimental Procedures. Nodes categorized with one of the ten most numerous Biolink categories were 

then selected. Colors indicate the Biolink category for each node. 
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