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Abstract 
 
Accurate annotation of putative loss-of-function (pLoF) variants is an important problem           

in human genomics and disease, which recently drew substantial attention. Since such variants in              
disease-related genes are under strong negative selection, their frequency across major ancestral            
groups is expected to be highly similar. In this study, we tested this assumption by systematically                
assessing the presence of highly population-specific protein-truncating variants (PTVs) in human           
genes using latest population-scale data. We discovered an unexpectedly high incidence of            
population-specific PTVs in all major ancestral groups. This does not conform to a recently              
proposed model, indicating either systemic differences in disease penetrance in different human            
populations, or a failure of current annotation criteria to accurately predict the loss-of-function             
potential of PTVs. We show that low-confidence pLoF variants are enriched in genes with              
non-uniform PTV count distribution, and developed a computational tool called LoFfeR that can             
efficiently predict tolerated pLoF variants. To evaluate the performance of LoFfeR, we use a set               
of known pathogenic and benign PTVs from the ClinVar database, and show that LoFfeR allows               
for a more accurate annotation of low-confidence pLoF variants compared to existing methods.             
Notably, only 4.4% of protein-truncating gnomAD SNPs in canonical transcripts can be filtered             
out using a recommended threshold value of the recently proposed pext score, while up to 10.9%                
of such variants are filtered using LoFfeR with the same false positive rate. Hence, we believe                
that LoFfeR can be used for additional filtering of low-confidence pLoF variants in population              
genomics and medical genetics studies.  
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Introduction 

International human genome resequencing projects have greatly enhanced our         

understanding of human genome variation. Rapid advances in sequencing technologies and data            

analysis led to the emergence of large-scale variant compendia, such as the Genome Aggregation              

Database (gnomAD) (Lek et al., 2016; Karczewski et al., 2019), that aggregate variation from              

many tens of thousands of individuals. These global variant datasets are successfully used by              

geneticists to gain novel insights into the evolutionary constraint of human genome. Diverse             

statistical models have been proposed to estimate the selective pressure for both whole genes              

(Lek et al., 2016; Cassa et al., 2017) and smaller genomic regions (Havrilla et al., 2018). Some of                  

these methods use a specific class of genetic variants, namely the protein-truncating variants             

(PTVs), to evaluate evolutionary conservation of individual genes (Cassa et al., 2017). PTVs are              

highly deleterious genetic variants that frequently lead to the loss of gene product function              

(loss-of-function mutations, LoF). Thus, a large proportion of PTVs cause hereditary genetic            

conditions and are of ultimate relevance for variant interpretation in clinical diagnostics            

(Richards et al., 2015; Nykamp et al., 2017). 

One other important type of information used in variant interpretation is the populational             

alternative allele frequency (AF). Despite that gnomAD-derived global AF estimates are           

frequently used for this purpose, it is widely anticipated that maximum AF among human              

subpopulations (popmax AF) should be taken into account as well (Lek et al., 2016). It is                

important to note, however, that while genetic drift can greatly affect allele frequencies in              

different ancestral groups for neutral or nearly neutral genetic variants, LoF variant counts             

should be distributed more uniformly due to an active selective pressure. Hence, the presence of               
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highly population-specific LoF variants could indicate either (i) unequal evolutionary constraint           

in different populations, or (ii) variant misclassification, i.e. erroneous annotation of a variant as              

a genuine LoF. Both of these issues could directly translate into costly mistakes in clinical               

practice during variant interpretation. To this end, we set off to evaluate the presence of               

population-specific PTVs in gnomAD data, and suggest a method to avoid mistakes during             

clinical interpretation of such variants.  

 

Materials and methods 

Data acquisition and filtering criteria 

We used the Genome Aggregation Database (gnomAD) release 2.1 exome data (accessed            

2019-01-08) for the analysis. We have reimplemented the previously proposed framework for            

the selection of PTVs (Cassa et al., 2017). To this end, we selected single nucleotide               

substitutions annotated as nonsense (stop_gained) or splice site (splice_donor or splice_acceptor)           

mutations. Variants that were either flagged by LOFTEE ( https://github.com/konradjk/loftee ) or          

not annotated as PTVs in the canonical transcript were filtered. PTV counts in major gnomAD               

populations were aggregated for each gene after filtering. We then excluded all genes that have               

mean depth < 30x across gnomAD exomes, as well as genes with total PTV allele count (AC) >                  

0.001 allele number (AN). We then matched the resulting dataset with the ExAC-based data               

obtained by Cassa et al., omitting all genes not analyzed in either dataset. 

 

Statistical assessment of allele count distribution 
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Statistical analyses and modeling were done using R v. 3.6.1 and Python v. 3.6. Plots were                

generated using the ggplot2 package for R (Wickham, 2016).  

We used previously proposed deterministic framework for the model-based analysis of           

PTV count distribution (Cassa et al., 2017). To estimate the selection coefficient against             

heterozygous protein-truncating variants (s het), we applied a Bayesian framework described by           

Cassa et al. Briefly, we first fitted an Inverse Gaussian (IG) distribution to the observed global                

PTV count data by maximizing the following likelihood: 

(1)(α, β | {n}) (n  | α, , ) L  =  ∏
G

i = 1
P i β ν i  

 (2)(n | α, β, ν) ois(n; λ /s)IG(s; , β) dsP   =  ∫
 

 
P  = ν α   

 (3)ν  = N × U  

, where n is the count of PTV alleles, N is the allele number (AN), U is the PTV-specific                   

mutation rate (Samocha et al., 2014), and s is the selection coefficient against heterozygous PTV               

variants, {n} represents a set of PTV allele count across G genes in the dataset, and α and β are                    

mean and shape parameters of the inverse Gaussian distribution, respectively. 

Parameter fitting was done in each tercile of mutation rate distribution, as suggested in the               

original analysis. We then used the obtained IG parameters to infer the s het value by maximizing                

the probability: 

 (4)(s | n , )  P  ν = P (n  | ν , s) × P (s | α , β )  t t

[P (n  | ν, s) × P (s | α , β )] ds∫
 

 
  t t

 

where α t and  β t. are the inferred IG parameters for a given mutation rate tercile. 
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To evaluate whether the observed PTV count distribution across major gnomAD           

populations fits the deterministic PTV count model, we calculated the likelihood of PTV count              

distribution (cross-population likelihood or CPL) by integrating the product probability of each            

s het value given PTV allele counts in five major ancestral groups: 

 (5)P L  ( (s | n , ) ds )C =  − log10 ∫
 

 
∏
m

i = 1
P i ν i  

where m is the number of populations considered, P(s | n i, v i,) denotes the posterior               

probability of an shet value given the observed and expected PTV count given by eq. (4). 

Final observation likelihood score (OLS) was calculated as a Z-score of CPL value             

estimated from empirical CPL distribution parameters. These parameters were obtained by           

calculating CPL value for 100 random samples of PTV allele counts for each population i from                

Poisson distribution with mean νi /s .  

 

Functional features of pLoF variants 

To investigate functional properties of selected PTVs, we used the map of evolutionary             

constrained coding regions (CCR) (Havrilla et al ., 2018), and the complete Genotype Tissue             

Expression (GTEx, v7) (Deluca et al., 2015) consortium expression dataset.  

CCR percentile values were aggregated across all GENCODE v19 CDS regions to obtain             

estimates of evolutionary constraint for each exon separately. We then calculated the normalized             

per-exon constraint value by dividing mean exon CCR percentile by the maximum per-exon             

CCR percentile for each gene. Variants were then assigned to exons, and the most constrained               

exon was selected in case when two or more CDS regions overlapped a PTV. 
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For each transcript in the GTEx expression dataset, we first calculated mean and             

maximum expression levels in TPM for each isoform across all samples. We then selected (i)               

the isoform with the highest mean expression for a given gene; and (ii) the isoform with the                 

highest maximum level of expression. pLoF variants were then annotated using binary variables             

indicating whether they affect these isoforms. 

Base-level proportion expression across transcripts ( pext ) scores and transcript-level         

constraint measures were obtained from the gnomAD website:        

http://gnomad.broadinstitute.org/downloads/ (accessed 2020-02-12). For each PTV considered,       

we selected sets of isoforms that were either affected or unaffected by a pLoF variant. We then                 

calculated the minimum LOEUF value and maximum pLI value across affected and unaffected             

isoforms for each variant. 

 

Model training and evaluation 

Random forest was used as a default classification algorithm throughout the analysis. Prior             

to model fitting, a training set with balanced classes was constructed from the initial data using a                 

downsampling procedure. Model performance was evaluated using ROC/AUC analysis with          

3-fold to 10-fold cross validation. Receiver-operator (ROC) curves and area under curve (AUC )              

values were calculated using the pROC R package (Robin et al., 2011). 

To create a validation dataset based on ClinVar variants, we selected protein-truncating            

variants from ClinVar (release 2020-06-15) using the same criteria as for the selection of PTVs               

from the gnomAD dataset. Prior to variant selection, a VCF file with ClinVar variants was               

annotated using Ensembl VEP v. 98.3 with the following plugins: LOFTEE, MPC, CADD,             
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ExACpLI. Variants that were reported as pathogenic by multiple submitters, as well as known              

benign variants were included into the dataset for model training and evaluation. Only variants              

without conflicting interpretations were used. 

When assessing the false-positive rate for different filtering approaches, we calculated the            

number of filtered pathogenic variants in the ClinVar dataset, and divided this number by the               

total number of pathogenic variants in the dataset (3,483). All variants for which the prediction               

could not be made were considered as high-confidence pLoF. 

 

Data and code availability 

All code pertinent to the data analysis presented can be found at            

http://github.com/mrbarbitoff/ptv_project_bi/. 

 

Results 

 

To evaluate the presence of population-specific PTVs (psPTVs) in gnomAD, we first            

selected all protein-truncating variant sites according to the criteria proposed by Cassa et al. (see               

Materials and Methods). Our initial selection resulted in 198,203 PTV sites belonging to 19,476              

genes; after all filtering steps (see Materials and Methods), 140,287 PTVs and 15,844 genes were               

retained in the final dataset. We observed high similarity in the form of per-gene PTV allele                

count distributions in gnomAD subpopulations (Figure 1a) (except Finnish (FIN) and Ashkenazi            

Jewish (ASJ)), with the median of the distribution being roughly proportional to the sample size               

(allele number, AN).  
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We then evaluated the uniformity of PTV count distribution across populations. To this             

end, we applied a chi-squared test to compare AC and AN values. Chi-squared test identified               

2,710 genes showing significant (p < 1 * 10-5) non-uniformity of PTV allele counts (Figure 1b).                

Of these, 518 genes had known monogenic disease associations according to OMIM. Given             

these results, we questioned whether this non-uniformity is driven by the relatively inbred FIN              

and ASJ subgroups. Removal of these populations from the analysis decreased the number of              

genes with non-uniform PTV counts by a quarter; however, 1,972 genes still showed substantial              

deviations from uniformity (333 genes with known disease associations). We then asked if any              

population other than FIN and ASJ could account for this observation. Removing each of the five                

major ancestral groups (African (AFR), Ad Mixed American (AMR), East Asian (EAS), South             

Asian (SAS), and non-Finnish European (NFE)) decreased the number of genes with psPTVs             

(Figure 1b), but did not eliminate such genes. We thus concluded that psPTV sites are present in                 

all major ancestral groups.  

We then set off to evaluate whether genes with psPTV sites conform to the recently               

proposed model (Cassa et al., 2017). To this end, we first estimated the strength of selection                

against heterozygous protein truncating variants (s het) in each gene (see Materials and Methods).             

We observed modest differences in the inferred s het distribution parameters (Figure S1) and the              

estimated s het values (Figure S2 and Figure S3) between gnomAD and ExAC dataset, with the               

gnomAD-derived s het distribution having higher median s het and lower variance of estimated            

values. We then used estimated s het values for each gene to calculate the likelihood of observed                

PTV count distribution across five major populations (see Materials and Methods for more             

details of the method). We further compared the estimated likelihoods with 100 random             

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 18, 2020. ; https://doi.org/10.1101/2020.08.17.254904doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.17.254904


 

simulation replicates (see Methods). Our simulations showed that for most genes the            

correspondence between observed and expected likelihood values was high (Figure S4). We            

observed a high degree of correlation between chi-squared p-values and the Z-score of observed              

likelihood (observation likelihood score, OLS; r 2 = 0.94) (Figure 1c), indicating that genes with              

high load of psPTVs do not conform to the established evolutionary model.  

Deviation from the PTV evolutionary model can be explained by several major factors.             

One such factor is the decreased strength of natural selection which increases the effects of               

genetic drift on observed PTV counts (Charlesworth and Hill, 2018). To evaluate the influence of               

this factor on the observed non-uniformity of PTV counts, we analyzed the relationship between              

OLS and s het values. Our analysis showed that, while many of the genes with high OLS either                 

have low s het or have no known disease association (Figure 1d), a substantial fraction of AD- and                 

AR-disease associated genes under strong selection (s het > 0.02) have high burden of psPTVs. As               

thus, violation of the PTV evolutionary model is unlikely to be explained solely by genetic drift.  
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Figure 1. Identification and characterization of population-specific protein-truncating variant         
(psPTV) sites. (a) Distribution of per-gene PTV allele counts (AC) and mean allele numbers              
(AN) in major gnomAD populations. (b) Number of genes with significantly non-uniform            
distribution of PTV counts across gnomAD populations in the respective comparisons. Italic font             
indicates that testing was done in the dataset without FIN and ASJ populations. (c) Hexagonal               
scatterplot showing the correspondence between -log10(chi-squared p-value (test without FIN and           
ASJ) and the observation likelihood scores (OLS) for each gene. Fill is proportional to the log10                
of gene count. (d) Hexagonal scatterplot showing the relationship between OLS and s het values              
for genes associated with autosomal dominant (AD) or autosomal recessive (AR) disorders, as             
well as not associated with any disorder (according to OMIM). Dashed line corresponds to a               
threshold of s het = 0.02, representing a sufficiently high value that allows to completely neglect               
the effects of genetic drift (Weghorn et al., 2019).  
 

The other possible explanation of the evolutionary model violation is the misannotation            

of PTV as a loss-of-function mutation. We first assessed whether any existing method could              

confirm misannotation of variants as genuine LoF ones. To this end, we applied the Annotation               

of Loss-of-function Transcripts (ALoFT) (Balasubramanian et al. , 2017), one of the most recent             

computational toolkits for annotation of LoF variants. Surprisingly, we found that ALoFT not             

only did not show a higher fraction of tolerated pLoF variants in “violator” genes (OLS > 5) but,                  
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in contrast, showed a higher probability of dominant LoF effect for variants in such genes               

(Figure S5). 

Given this unusual observation, we sought functional evidence that would indicate a            

higher proportion of low-confidence LoF variants in genes that show significant deviation from             

the model. We hypothesized that alternative splicing might play an important role in the              

observed effects. To check this hypothesis, we first compared the number of transcriptional             

isoforms and exons for violator and non-violator genes. As expected, we discovered that violator              

genes had more transcriptional isoforms and higher per-gene exon count compared to            

non-violator genes (Figure S6).  

As psPTVs tend to localize in genes with higher number of isoforms, we also suggested               

that many of these variants might fall into transcriptional isoforms with low evolutionary             

constraint and/or expression levels. To test this hypothesis, we first compared the distribution of              

normalized per-exon constraint (CCR percentile) for variants located in genes with or without             

psPTV load. Indeed, we observed that PTVs in model-violating genes tend to reside in coding               

regions with lower evolutionary constraint (Figure 2a, leftmost panel), and the proportion of             

PTVs falling inside the most constrained exon in these genes is lower (Figure S7). We then                

compared the fraction of selected PTVs that fall into canonical isoforms with the highest average               

or maximum expression across GTEx samples (see Methods). We found that the fraction of              

variants that are found in such most expressed isoform is lower for genes harboring psPTVs               

(Figure 2a, second panel; Figure S7c).  

We next hypothesized that, given our observations, differences in functional properties of            

pLoF variants observed when comparing violator and non-violator genes with s het > 0.02 should              
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be less pronounced in genes with lower evolutionary constraint. Indeed, we found very little or               

no difference in the exon-level constraint and the proportion of variants affecting most expressed              

transcripts when comparing violator and non-violator genes with mild or no s het filtering (Figure              

S7a-b). These results indicate that misannotation of LoF variants drives the deviation from the              

evolutionary model of PTV inheritance in highly conserved genes, while genetic drift seems to              

be more important in genes with lower conservation level. We also checked whether the              

observed differences between variants in violator and non-violator genes can be explained by             

one common psPTV. To do so, we analyzed whether removal of the most common PTV in each                 

gene would eliminate the differences in exon-level CCR and expression of affected isoforms             

between variants in violator and non-violator genes. We found that the removal of the most               

common PTV did not have any effect on these functional properties (Figure S8), suggesting that               

the difference is not explained by one common population-specific variant site. 

We then went on to compare major per-transcript constraint measures provided by            

gnomAD (pLI and LOEUF) for affected isoforms of violator and non-violator genes. We             

assumed that psPTVs not affecting the most expressed isoform might also affect less conserved              

transcriptional isoforms. To evaluate this hypothesis, we analyzed the maximum constraint           

values (i.e., minimum LOEUF and maximum pLI value) of transcripts affected by each PTV;              

and compared these values for violator and non-violator genes. Surprisingly, we found that PTVs              

in violator genes tend to affect isoforms with higher levels of evolutionary constraint (Figure              

S9). We then hypothesized that such unexpected result might be explained by the fact that the                

presence of common psPTVs in a gene might bias the estimates of s het, but not pLI and LOEUF,                  

as s het is based on total allele count of pLoF variants rather than on the number of pLoF. We                   
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therefore compared the relationship between s het and pLi or LOEUF for violator and non-violator              

genes. Interestingly, we observed that violator genes tend to have lower s het values than              

non-violator ones with similar pLI and/or LOEUF values (Figure S10), confirming our            

hypothesis.  

We then questioned whether a highly conserved isoform unaffected by selected PTVs can             

be found for variants in violator and non-violator genes. To answer this question, we calculated               

the percentage of variants for which an unaffected isoform with LOEUF < 0.75 can be found;                

and compared this percentage for violator and non-violator genes. Indeed, we found that such              

conserved unaffected isoform can be found for a larger fraction of variants in violator genes as                

compared to non-violator ones (Figure 2a, third panel).  

We also asked whether a recently proposed pext score that also represents the expression              

levels of isoforms affected by a PTV can explain the difference between variants in violator and                

non-violator genes. We observed a sharp difference in tissue-average pext scores between these             

gene groups, further supporting the assumption that LoF misannotation plays an important role in              

driving violations of PTV inheritance model in gnomAD (Figure 2a, rightmost panel). 

Taken together, these results indicate that a substantial fraction of psPTVs are likely to be               

incorrectly annotated as LoF variants. One example of a psPTV that shows evidence for              

misannotation is the rs139297920 variant in the PAX3 gene (Figure 2b). This variant is annotated               

as a donor splice site variant in the canonical transcript; however, this same variant falls into the                 

3`-UTR of the most expressed and most conserved isoform of PAX3 (ENST00000350526), and             

corresponds to the exon with the lowest CCR percentile with no reported ClinVar variants.  
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Figure 2. Construction of a machine learning model to predict low-confidence LoF variants             
based on PTV model violation. (a) Functional evidence of LoF misannotation for psPTVs. From              
left to right: violin plots representing normalized per-exon constraint (CCR percentile) value;            
fraction of PTVs falling to the most constrained exon; fraction of PTVs corresponding to a               
highly expressed transcript; fraction of PTVs corresponding to the transcript with the highest             
expression. Error bars represent 95% confidence interval for the binomial proportion. ***, p <              
0.001. (b). Schematic representation of a prevalent psPTV in the PAX3 gene. (c)             
Receiver/operator curves (ROC) representing the performance of different approaches to classify           
variants in violator and non-violator genes. GN-C, a random forest model built using a training               
set of variants in constrained genes (s het > 0.02); GN-A - same as GN-C, but trained using                 
variants from all genes; pext - pext score cutoffs. Left part shows ROC curves obtained when                
evaluating performance using all gnomAD variants; right part shows ROC curves obtained using             
variants in highly constrained (s het > 0.02) genes. (d) Area under curve (AUC) values from the                
ROC analysis of the classifiers’ performance on the validation dataset of the ClinVar variants.              
The CLV model is trained using a training set of variants derived from ClinVar itself. (e)                
Proportion of variants from ClinVar or gnomAD marked as low-confidence by different models.             
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Error bars correspond to the 95% confidence intervals for binomial proportion. (f) Numbers of              
genes showing significant non-uniformity of PTV count distribution (chi-squared p-value < 1 *             
10-5) before or after filtering of variants using indicated models. Filtering cutoffs were adjusted              
to exclude similar numbers of variants (40,000) in each case. 
 

As population-specificity of the PTVs can indicate their low LoF potential, we decided to              

build a predictive model to identify low-confidence LoF variants based on our data. We selected               

five major features to be used for predictive model construction: (i) normalized exon constraint              

level (Figure 2a, leftmost panel); (b) a binary variable indicating whether a PTV affects the               

isoform with the highest average expression; (Figure 2a, second panel); (c) a binary variable              

indicating whether a PTV affects the isoform with the highest maximum expression; (d) a binary               

variable indicating whether there is at least one unaffected isoform that has the same or higher                

LOEUF compared to affected ones; and (e) tissue-average pext score (Figure 2a, rightmost             

panel). We then constructed two random forest classifiers using either genes with s het > 0.02               

(gnomAD-based constrained model, denoted GN-C) or all genes in the dataset (all-gnomAD            

model, denoted GN-A). Next, we evaluated how well these classifiers discriminate between            

variants in violator and non-violator genes when considering a test set of gnomAD variants in all                

genes (Figure 2c, left) or in highly constrained (s het > 0.02) genes (Figure 2c, right). We found                 

that the GN-C model has the highest ROC/AUC value in constrained gene set (AUC = 0.90),                

while the performance of this classifier was very poor when using a test set derived from all                 

genes. Similarly to the GN-C model, pext-only based classification also showed reasonable            

predictive power when classifying variants in constrained genes (AUC = 0.72) but performed             

much worse on the complete dataset (AUC = 0.51). In contrast to the GN-C and pext-only                

model, the GN-A classifier was able to discriminate between variants in violator and             
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non-violator genes in both the complete dataset and for genes with high s het (Figure 2c, AUC =                 

0.65 in both cases). Overall, we concluded that both GN-C and GN-A classifiers had some               

advantage over the pext-only model, with the GN-C model performing better on constrained             

genes, and the GN-A model - on all genes. 

We next sought to prove that our classifiers indeed allowed for more efficient             

identification of low-confidence pLoF variants. To this end, we constructed a validation set of              

known pathogenic and benign ClinVar PTVs (see Methods). We then applied the constructed             

classifiers to this dataset to see whether our models would efficiently mark benign ClinVar PTVs               

as low-confidence LoF alleles. Both pext-only and the GN-C models were inefficient in             

separating benign and pathogenic pLoF variants (Figure 2d, Figure S11). At the same time, the               

GN-A model showed significantly better performance (AUC = 0.67), indicating that this model             

captures important information about low-confidence pLoF variants when trained to discriminate           

gnomAD variants in all violator and non-violator genes. We then asked if a more efficient               

random forest classifier with the exact same predictor variables can be constructed using a subset               

of the ClinVar data during model training. Indeed, we found that such a classifier (denoted as                

CLV) performed notably better compared to the GN-A model (AUC = 0.75). Since the CLV               

model was less efficient at classifying gnomAD variants (AUC = 0.52), we concluded that both               

GN-A and CLV models can be useful for more efficient annotation of low-confidence pLoF              

variants. 

We then went on to assess the proportion of gnomAD and ClinVar PTVs marked as               

low-confidence pLoF by our models with varying prediction cutoffs for genes with different             

constraint levels. As expected, the majority of benign ClinVar variants in all three gene groups               
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were marked as low-confidence LoF variants by the CLV and the GN-A models at the most                

permissive cutoff (prediction probability > 0.25), but not when filtering with pext < 0.5 which               

could only discriminate between pathogenic and benign variants in genes with moderate s het             

values (0.006 to 0.02) (Figure 2e). At the same time both the CLV model and pext-based                

filtering could efficiently differentiate variants in violator and non-violator genes only for genes             

with the highest constraint values (s het > 0.02), in contrast to the GN-A model which was                

efficiently separating such variants in all gene groups. 

Cummings et al. have proposed a tissue-average pext value of 0.1 as a cutoff to be used                  

for routine variant filtering. To evaluate the potential of our models for a similar purpose, we                

sought to identify threshold values of prediction probability for both GN-A and CLV models that               

would have similar false-positive rate as filtering by pext < 0.1. Around 4.9% of known               

pathogenic ClinVar variants were filtered out when using a pext threshold of 0.1. Such a false                

positive rate corresponds to the prediction probability cutoff of 0.575 for the GN-A and 0.59 for                

the CLV model. Applying these threshold values to filter out variants from the gnomAD dataset               

we found that 10.9% (15,309) of all gnomAD variants were filtered out using the GN-A model,                

and around 9.8% (13,695) with the CLV model. These values are 2.2 - 2.5 times higher than ones                  

obtained when filtering with pext < 0.1 (6,168 variants; 4.4% of all gnomAD variants). 

Finally, we asked whether our filtering strategy could substantially decrease the number            

of genes harboring psPTVs. To answer this question, we applied four different filtering             

approaches to the gnomAD dataset: (i) filtering by pext < 0.1; (ii) filtering with a matched cutoff                 

value of the GN-A prediction probability; (iii) filtering with a matched cutoff value of the CLV                

prediction probability; and (iv) random exclusion of 6,168 variants from the data. Indeed, all              
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filtering strategies could decrease the total PTV allele count for a large number of genes; notably,                

random exclusion tended to change the total allele count proportionally, while filtering with the              

other approaches resulted in more profound non-proportional changes (Figure S12). All           

approaches decreased the number of genes with non-uniform PTV count distribution as judged             

by chi-squared p-value (Figure 2f). Importantly, pext-based filtering performed only slightly           

better than random exclusion of variants (Figure 2f), while GN-A and CLV-based filtering             

allowed for more efficient elimination of the imbalance in PTV counts across populations.             

Moreover, we observed a small but significant correlation between the prediction probabilities            

for the GN-A and CLV models and the variant allele count (r 2 = 0.053 for the GN-A model and                   

0.026 for the CLV model) (Figure S13), indicating that our models tend to mark PTVs with                

higher allele frequency as low-confidence LoF alleles without any prior knowledge of allele             

frequency. 

To predict low-confidence pLoF variants in any custom VCF file, we implemented a             

simple bioinformatic tool called LoFfeR that applies both the GN-A and the CLV models to the                

data and classifies the variants according to the aforementioned classification cutoffs. The tool is              

freely available at https://github.com/mrbarbitoff/ptv_project_bi/. 

 

Discussion 

 

The importance of population-level genetic data for the interpretation of variants in both             

research and clinical practice has been noted multiple times (e.g. in Lek et al. , 2016).               

Population-specific allele frequency data might be important when classifying missense or other            
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types of variants with disease-causing potential. At the same time, loss-of-function (LoF)            

variants in functionally important genes should be uniformly distributed across major           

populations (Weghorn et al ., 2019). Nevertheless, we discovered prevalent psPTVs for 1,972            

genes in the gnomAD dataset. 

Highly population-specific LoF variants in a certain gene might arise due to several             

major factors, namely (i) genetic drift; (ii) difference in selection coefficients across populations;             

and (iii) misannotation of PTVs as LoF mutations. Genetic drift is a major factor contributing to                

derived allele frequency, and the possible effects of drift on the variance of observed PTV counts                

has already been discussed (Charlesworth and Hill, 2018). However, recent analysis indicates            

that including the effects of genetic drift into the model does not substantially affect s het inference                

and PTV count variance for genes under strong selection (Cassa et al., 2018; Weghorn et al.,                

2019). As such, deviation from the deterministic model of PTV inheritance for genes with high               

s het values indicates either decreased selection against LoF variants in a certain population or              

misannotation of LoF effect for a variant or a group of variants. 

Importantly, the overall variance in selection coefficients and PTV allele counts           

decreases from ExAC to gnomAD (Figures S1 - S3), suggesting that increasing the sample size               

allows for more accurate inference of selective pressure acting on protein-coding genes. This             

observation implies that additional data aggregation efforts (like gnomAD v.3 and upcoming            

versions) should dramatically increase our ability to classify and interpret genetic variation.  

Several lines of functional evidence indicate that, at least in part, psPTVs comprise             

variants that do not lead to a complete loss of gene function. Firstly, genes with high burden of                  

psPTVs tend to have more transcriptional isoforms and exons (Figure S6). Secondly, PTVs in              
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such genes tend to localize in exons with lower evolutionary constraint and not to disrupt at least                 

one conserved isoform (Figure 2a). Thirdly, these variants tend not to affect the most expressed               

isoform and have lower pext scores (Figure 2a). Overall, we can conclude that an unusually high                

frequency of a PTV in a particular population (especially in genes with high overall constraint               

(i.e., high pLI and/or low LOEUF)) suggests that this variant is probably not a LoF allele. 

Several methods have recently been proposed to identify and filter such low-confidence            

LoF alleles. These methods include the ALoFT software (Balasubramanian et al., 2017) and pext              

score (Cummings et al., 2020). These methods are of great interest to both medical and               

population genetics studies; however, neither ALoFT nor pext are sufficient for filtering of             

low-confidence LoF variants, as shown in our analysis (Figure 2c, Figure 2f, Figure S5).              

Moreover, the pext score has very low power to discriminate between known pathogenic and              

benign PTVs from ClinVar (Figure 2d). In this work we presented LoFfeR, a tool that utilizes                

two complementary random forest classifiers to enhance the prediction of genuine LoF variants.             

We showed that both models implemented in LoFfeR are capable of efficiently prioritizing             

low-confidence and benign pLoF variants (Figure 2c-d) and, hence, can be applied for routine              

variant filtration in clinical and research practice. Moreover, LoFfeR is substantially more            

efficient in eliminating the population-specific protein-truncating variants compared to pext          

(Figure 2f). 

Notable examples of low-confidence pLoF variants filtered by LoFfeR (but not by pext              

alone) include the rs769874876 variant in the PAX6 gene. This variant is present as a singleton                

PTV in gnomAD; however, similarly to the previously described rs139297920 in PAX3,            

rs769874876 does not affect the most expressed transcript and falls within the exon with no               
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reported ClinVar pathogenic variants (while 165 pathogenic and likely pathogenic variants           

reported in the rest of the gene). Another interesting example is the SAS-specific rs570512700              

splice site variant in the TERF1 gene encoding a telomerase repeat binding factor 1. The variant                

occurs 74 times across gnomAD exomes, despite the fact that only 2 other pLoF sites are present                 

in this gene (LOEUF = 0.37). The rs570512700 variant affects a highly expressed canonical              

isoform of TERF1, but does not affect the isoform with the highest mean expression (average               

pext = 0.41). Notably, exclusion of this very common variant results in a sharp increase in the                 

estimated s het value (0.0412 compared to 0.0029 before exclusion). This observation highlights            

the fact that the presence of population-specific and low-confidence LoF variants hinders            

accurate estimation of evolutionary constraint for human genes.  

A substantial fraction of psPTVs can be filtered out with LoFfeR; however, for a large               

percentage of psPTVs, no clear explanation of their high frequency can be found. This              

observation, in turn, might be explained by the fact that the relationship between PTVs and loss                

of protein function is not explicitly understood. It is obvious that not all PTVs completely               

abrogate protein functionality (notable examples can be found in deep mutational scans of TP53              

(Kotler et al., 2018) and TPMT (Chiasson et al., 2019)). Various methods (such as MutPred-LoF               

(Pagel et al., 2017)) are being developed to predict the functional effect of a nonsense or                

frameshift variant on the functionality on the protein level. However, lack of large functional              

variant effect datasets complicates the task of predicting LoF effects of PTVs. The development              

of sophisticated experimental systems, such as the Variant Effect Mapping (VEM) in yeast             

(Welle et al., 2017), and construction of databases of such experimental functional evidence             

(Esposito et al., 2019), should greatly enhance our understanding of loss-of-function genetic            
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effects. Integration of protein-based and transcript-/sequence-based methods for annotation of          

loss-of-function alleles might further improve the accuracy of variant interpretation in human            

medical and population genetics research. 
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