
Liu et al. 

 - Page 1 of 40 - 

Quantifying the Influence of Mutation Detection on 1 

Tumour Subclonal Reconstruction 2 

Lydia Y. Liu1,2,3,4,5,6,†, Vinayak Bhandari1,†, Adriana Salcedo1,4,5,6,7, Shadrielle M. G. Espiritu7, 3 

Quaid D. Morris3,8,9,10, Thomas Kislinger1,2, Paul C. Boutros1,3,4,5,6,11,12,* 4 

 5 

1 Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada 6 
2 Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada 7 
3 Vector Institute for Artificial Intelligence, Toronto, ON M5G 1M1, Canada 8 
4 Department of Human Genetics, University of California, Los Angeles, 90095 9 
5 Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, 90095 10 
6 Institute for Precision Health, University of California, Los Angeles, 90095 11 
7 Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada 12 
8 Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada 13 
9 Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada 14 
10 Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada 15 
11 Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada 16 
12 Department of Urology, University of California, Los Angeles, 90095 17 
* Corresponding author 18 
† These authors contributed equally to this work 19 

 20 

Address for correspondence: 21 
Dr. Paul C. Boutros 22 
12-109 CHS 23 
10833 Le Conte Avenue 24 
Los Angeles, California 25 
90095 26 
Email: pboutros@mednet.ucla.edu 27 
Phone: 310-794-7160  28 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2020. ; https://doi.org/10.1101/418780doi: bioRxiv preprint 

https://doi.org/10.1101/418780
http://creativecommons.org/licenses/by-nc/4.0/


Liu et al. 

 - Page 2 of 40 - 

Abstract 29 

Whole-genome sequencing can be used to estimate subclonal populations in tumours and this intra-30 

tumoural heterogeneity is linked to clinical outcomes. Many algorithms have been developed for 31 

subclonal reconstruction, but their variability and consistency are largely unknown. We evaluated 32 

sixteen pipelines for reconstructing the evolutionary histories of 293 localized prostate cancers 33 

from single samples, and eighteen pipelines for the reconstruction of 10 tumours with multi-region 34 

sampling. Predictions of subclonal architecture and timing of somatic mutations vary extensively 35 

across pipelines. Pipelines show consistent types of bias, with those incorporating SomaticSniper 36 

and Battenberg preferentially predicting homogenous cancer cell populations and those using 37 

MuTect tending to predict multiple populations of cancer cells. Subclonal reconstructions using 38 

multi-region sampling confirm that single-sample reconstructions systematically underestimate 39 

intra-tumoural heterogeneity, predicting on average fewer than half of the cancer cell populations 40 

identified by multi-region sequencing. Overall, these biases suggest caution in interpreting specific 41 

architectures and subclonal variants. 42 

  43 
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Introduction 44 

Understanding tumour heterogeneity and subclonal architecture is important for the elucidation of 45 

the mutational and evolutionary processes underlying tumorigenesis and treatment resistance1–4. 46 

Many studies of tumour heterogeneity have focused on small patient cohorts with multi-region 47 

sequencing5–11. This study design allows the reconstruction of sample trees that illustrate the 48 

relationships between multiple primary and metastatic lesions using shared and private 49 

mutations6,11. Despite their small sample sizes, these studies have provided remarkable insight, 50 

demonstrating multiple subclones within a single tumour, clonal relationships between primary 51 

and metastatic tumours and evidence for multiple primary tumours within a single patient. Many 52 

studies have further delved into intra-tumoural heterogeneity and constructed clone trees that 53 

demonstrate the phylogenetic relationship between cancer cell populations that are shared or 54 

unique between lesions5,7,9,12. The latter analyses not only provide insight to the convergent and 55 

branching evolution of cancer, but also characterize cancer cell migration and highlight the 56 

subclonal complexity within individual lesions. 57 

Some studies have applied these techniques to large cohorts of single region tumour whole 58 

genomes. For example, we reconstructed the subclonal architectures of 293 localized prostate 59 

cancers using whole-genome sequencing (WGS) of a single region of the index lesion13. The larger 60 

sample sizes of single-region studies allow the identification of mutational events that are biased 61 

to occur at specific times during tumour development. Single-region subclonal reconstruction 62 

studies have also suggested that patients with less subclonal diversity (e.g. with only a single 63 

detectable population of cancer cells; termed monoclonal) tend to have superior clinical outcomes 64 

compared to those with more subclonal diversity (e.g. those with highly polyclonal tumours)13. 65 

A variety of algorithms have been developed to reconstruct the subclonal architecture of cancers 66 

from single-region or multi-region bulk DNA sequencing data14–21. These algorithms broadly 67 

attempt to infer cancer cell populations based on cancer cell fractions (the fraction of cancer cells 68 

in which each variant is present) of somatic single nucleotide variants (SNVs) and/or somatic copy 69 

number aberrations (CNAs). Several employ Bayesian models to cluster mutations, and estimate 70 

the number and prevalence of cancer cell populations15–17,20,22. Some algorithms are further able 71 

to infer phylogenetic clone trees, thus resolving the evolutionary relationship between mutation 72 

clusters15,21. However, there has not been a systematic comparison of the features and consistencies 73 
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of their reconstructions on a large dataset. It is thus unclear to what extent these pipelines agree on 74 

large cohorts of real data, whether specific pipelines are biased towards certain types of 75 

reconstructions, and to what degree reconstruction results are influenced by the somatic mutation 76 

inputs. It is further unclear to what extent single-sample reconstructions differ from multi-region 77 

reconstructions, raising questions on the magnitude of underestimation present in large-cohort 78 

studies. 79 

To address these gaps in the field, we evaluated pipelines consisting of twenty-two different 80 

combinations of well-established and independent SNV detection tools, subclonal CNA detection 81 

tools and subclonal reconstruction algorithms. Sixteen pipelines were applied to a set of 293 high-82 

depth tumour-normal pairs13,23 and eighteen were applied to 10 tumours with multi-region 83 

sequencing8,24. We quantify differences in the predictions of subclonal architecture, variant 84 

detection and downstream analyses, generating useful guidance for the community and a resource 85 

for improving existing methods and benchmarking new ones.  86 
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Results 87 

Overview and Summary of Pipeline Runs 88 

We reconstructed the subclonal architectures of 293 primary localized prostate tumours using 89 

sixteen pipelines (Figure 1, Supplementary Table 1). Each patient had WGS of a single region 90 

taken from the index lesion (Methods) that was macro-dissected to > 70% tumour cellularity 91 

(mean coverage ± standard deviation [SD]: 63.9 ± 16.7) and of matched blood reference tissue 92 

(mean coverage ± SD: 41.2 ± 9.0), as reported previously13. To investigate the influence of variant 93 

detection on subclonal reconstruction, we detected CNAs using Battenberg and TITAN7,25 and 94 

SNVs using SomaticSniper and MuTect26,27. We then used the CNAs and SNVs detected by these 95 

tools in factorial combinations as inputs for four widely-used subclonal reconstruction algorithms: 96 

PhyloWGS15, DPClust16, PyClone17 and SciClone20. Each subclonal reconstruction pipeline was 97 

thus composed of three algorithms: a SNV detection tool, a subclonal CNA detection tool and a 98 

subclonal reconstruction algorithm. Thus “PhyloWGS-comprising pipelines” refers to all pipelines 99 

that use PhyloWGS as the subclonal reconstruction algorithm, in combination with any SNV and 100 

CNA detection tool. All subclonal reconstruction solutions were subjected to the same post-101 

processing heuristics to minimize bias (Methods). We further quantified the variability that arises 102 

in subclonal reconstruction from spatially sampling the same tumour, focusing on ten tumours 103 

with multi-region WGS (2-4 regions per tumour, total of 30 regions)8,24. Multi-region WGS 104 

samples were further assessed using FACETS28 for subclonal CNA detection, and subclonal 105 

reconstruction was performed both with all regions together and with each region individually 106 

using PhyloWGS, PyClone and SciClone. 107 

Across all samples and pipelines, we attempted to execute 5408 subclonal reconstructions. Of these, 108 

4447 (82.2%) successfully completed their execution (Supplementary Table 2). Among pipelines 109 

for the single-region subclonal reconstruction of 293 tumours, those using DPClust achieved the 110 

lowest failure rates (mean ± SD: 1.4% ± 1.5%), followed by those using PhyloWGS (2.2% ± 1.3%), 111 

PyClone (16.3 % ± 9.8%) and SciClone (41.2% ± 22.4%; Supplementary Figure 1A). The 112 

primary reasons of failure for pipelines using DPClust and PhyloWGS were excessive memory 113 

requirements (> 250 GB RAM) or run-time (> 3 months). Lack of input SNVs was the largest 114 

failure reason for pipelines using PyClone and SciClone, as PyClone exclusively leverage SNVs 115 

from clonal CNA regions and SciClone utilizes SNVs in copy number neutral regions. Since we 116 
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used CNA detection tools that identified subclonal variation, in some cases insufficient clonal 117 

CNA regions were available. Post-processing heuristics also contributed to reconstruction failures 118 

across pipelines (Methods). 119 

Multi-region reconstructions with pipelines using PhyloWGS had the lowest failure rates on the 120 

10 tumours evaluated (mean failure rate ± SD: 5.0% ± 5.5%), followed by PyClone (45.0% ± 121 

26.6%) and SciClone (93.3% ± 10.7%; Supplementary Figure 1B). Reasons of failure for 122 

pipelines using PhyloWGS include lack of shared CNAs between samples from the same tumour 123 

and prediction of poly-tumour architectures (i.e., multiple independent primary tumours; 124 

Methods). PyClone leverages SNVs in clonal CNA regions that are shared between all samples 125 

from the same tumour for multi-region reconstructions and had higher failure rates. Due to similar 126 

requirements for SciClone that all SNVs be in copy number neutral regions and shared between 127 

all samples from the tumour, multi-region reconstructions using SciClone only succeeded in four 128 

cases overall and were excluded from further multi-region reconstruction analyses. 129 

Consistency of Subclonal Reconstruction from Single Samples 130 

To evaluate subclonal reconstruction solutions for 293 single region tumours across the four 131 

subclonal reconstruction algorithms, we first compared tumour cellularity (sometimes called 132 

“tumour purity”) estimates across pipelines. Cellularity estimates from CNA detection tools are 133 

inputs to PhyloWGS, PyClone and DPClust, and as expected predicted cellularity from pipelines 134 

using these algorithms correlated well with those from the CNA detection tool used (TITAN: 135 

0.212–0.623, Battenberg: 0.588–0.876, Spearman’s ρ; Figure 2A-B). By contrast, SciClone 136 

predicts sample cellularity using orthogonal evidence (VAF of SNVs in copy number neutral 137 

regions). SciClone-estimated cellularity in pipelines using SomaticSniper correlated better with 138 

estimates from CNA detection tools (SomaticSniper-TITAN-SciClone vs. TITAN: 0.363, 139 

SomaticSniper-Battenberg-SciClone vs. Battenberg: 0.670, Spearman’s ρ) than did pipelines using 140 

MuTect (MuTect-TITAN-SciClone vs. TITAN: 0.035, MuTect-Battenberg-SciClone vs. 141 

Battenberg: 0.358, Spearman’s ρ). This suggests that the VAFs of SNVs detected by MuTect have 142 

biased subclone cellular prevalence estimates. Pipeline-estimated cellularity also dropped 143 

dramatically in correlation with CNA detection tool estimated cellularity once the latter reached 144 

0.75 (TITAN: -0.478–(-)0.163, Battenberg: -0.396–(-)0.021, Spearman’s ρ). This appears to lead 145 

to the anecdotal observation that high cellularity results from both Battenberg and TITAN could 146 
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reflect unsuccessful CNA detection, and should be interpreted with caution and perhaps supported 147 

by orthogonal evidence. Finally, Battenberg- and TITAN-estimated cellularity showed poor 148 

correlation (0.271, Spearman’s ρ). As a result, in 12/12 pipelines using either PhyloWGS, PyClone 149 

or DPClust, changing the CNA detection tool influenced cellularity estimates more than changing 150 

the SNV detection tool. 151 

We next assessed if subclonal reconstruction algorithms differed in the number of subclones they 152 

predict. For each of the 293 tumours evaluated, up to 16 subclonal reconstruction pipelines were 153 

successfully executed, with a median of 14 successful executions. Across samples, a median of 154 

7/16 pipelines agreed on the number of subclones predicted. The median tumour was predicted to 155 

harbor one to three subclones across pipelines, and two randomly selected pipelines would differ 156 

by 0.9 ± 0.8 (mean ± SD) in their predicted number of subclones. These variabilities reflect 157 

significant differences between subclonal reconstruction pipelines. No pair of subclonal 158 

reconstruction algorithms consistently produced more similar results across mutation detection 159 

tool combinations. Pipelines using SomaticSniper for SNV detection achieved higher levels of 160 

agreement across subclonal reconstruction algorithms. All four algorithms estimated the same 161 

number of subclones in 59.8% of samples in pipelines using SomaticSniper and Battenberg, and 162 

in 29.3% of samples in those using SomaticSniper and TITAN, though the agreements were largely 163 

driven by concordant monoclonal reconstructions (Figure 3A-B). Pipelines using MuTect had 164 

much lower levels of agreement across subclonal reconstruction algorithms (MuTect-Battenberg: 165 

21.5%, MuTect-TITAN: 12.4%; Figure 3C-D), although these results suggest pipelines using 166 

SomaticSniper may systematically underestimate subclonal complexity.  167 

To better understand the contribution of mutation detection tools to the discordance in predicted 168 

subclonal architectures across pipelines, we compared clonality solutions between pipelines using 169 

the same subclonal reconstruction algorithm across mutation detection tool combinations. There 170 

are strong interactions between mutation detection tools; for example, predictions by the 171 

SomaticSniper-Battenberg-PhyloWGS pipeline agreed poorly with predictions made by other 172 

pipelines using PhyloWGS (Supplementary Figure 2A). Agreement was highest between the two 173 

pipelines using MuTect due to the high number of polyclonal solutions. This overall trend was 174 

replicated in pipelines using PyClone, where the SomaticSniper-Battenberg-PyClone pipeline had 175 

high agreement with the SomaticSniper-TITAN-PyClone pipeline but differed from pipelines 176 

using MuTect (Supplementary Figure 2B). DPClust-comprising pipelines using MuTect also 177 
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predicted high numbers of polyclonal architectures and showed low agreement with other pipelines 178 

(Supplementary Figure 2C). Finally, results were similar for pipelines using SciClone, with 179 

pipelines using the same SNV detection tools achieving the highest agreement (Supplementary 180 

Figure 2D). 181 

As PhyloWGS is the only one of the four subclonal reconstruction algorithms evaluated that 182 

predicts the evolutionary relationship between subclones, we compared phylogenetic clone trees 183 

for each sample as predicted by PhyloWGS-comprising pipelines (Supplementary Figure 3A). 184 

The most frequently predicted polyclonal architecture was the bi-clonal tree, accounting for 69.8 185 

± 25.4% (mean ± SD) of polyclonal solutions across pipelines. As multiple phylogenetic clone 186 

trees can be inferred from the same data2,29, we evaluated prediction stability across the 2,500 187 

Markov chain Monte Carlo (MCMC) iterations of PhyloWGS after burn-in (Supplementary 188 

Figure 3B-E). Most samples alternated between 1.9 ± 1.2 (mean ± SD) solutions. In 100% of the 189 

cases with an alternative phylogeny, the solution alternated at least once between phylogenetic 190 

clone trees with different numbers of subclones. Further, when PhyloWGS wavered between 191 

solutions that only differed in tree structures (not number of subclones), two alternatives 192 

dominated (2.1 ± 0.3, mean ± SD). These data suggest that the uncertainty in phylogenetic clone 193 

tree reconstruction comes from the combination of uncertainty from estimating subclone number 194 

and resolving their evolutionary relationships. 195 

Taking the consensus across mutation detection tools is a common approach for increasing 196 

confidence in mutation detection30. We evaluated how subclonal architectures predicted by 197 

PhyloWGS-comprising pipelines change when using the union and intersection of detected 198 

mutations (Methods). Prior to filtering, MuTect detected substantially more unique SNVs than 199 

SomaticSniper (medianUnique SNVs, MuTect = 5,330, medianUnique SNVs, SomaticSniper = 627, p < 2.2 x 10-16, 200 

Mann-Whitney U-test; Supplementary Figure 4A). Pre-filtering CNAs detected by TITAN and 201 

Battenberg were also substantially imbalanced, with a median of 50.2% and 1.2% of the covered 202 

genome having unique CNAs across samples, respectively (p < 2.2 x 10-16, Mann-Whitney U-test; 203 

Supplementary Figure 4B). The pipeline using the union of SNVs and the intersect of CNAs 204 

predicted clonality with similar skew to the pipeline using the union of both SNVs and CNAs, and 205 

the pipeline using the intersection of SNVs and union of CNAs predicted clonality with similar 206 

balance to the pipeline using the intersect of both SNVs and CNAs (Supplementary Figure 4C-207 

F). This is consistent with our observation that pipeline predictions of complex polyclonal 208 
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phylogenies using PhyloWGS are primarily driven by large numbers of SNVs detected by MuTect, 209 

and complexity in CNAs has a smaller influence on the delineation of cancer cell populations. 210 

Considering the strong influence of SNV detection tools on the number of subclones predicted, we 211 

investigated the VAF and trinucleotide profile of SNVs detected by MuTect and SomaticSniper. 212 

Across all 293 WGS tumour-normal pairs, MuTect-unique SNVs had significantly lower VAFs 213 

than those detected only by SomaticSniper or by both tools (medianVAF, MuTect-Unique = 9.8%, 214 

medianVAF, SomaticSniper-Unique = 24.0%, medianVAF, Intersect = 28.3%; both p < 2.2 x 10-16, Mann-215 

Whitney U-test; Figure 4A). This supports the finding that predictions of higher numbers of cancer 216 

cell populations is associated with higher numbers of input SNVs with ranging VAFs15. SNVs 217 

detected by both tools exhibited a trinucleotide profile characterized by G[C>T]N mutations, while 218 

a higher proportion of SomaticSniper-unique SNVs were [T>C] and MuTect-unique SNVs were 219 

characterized by a high proportion of C>A mutations, especially G[C>A]C and C[C>A]T (Figure 220 

4B-D). This is suggestive of error profiles related to sequencing or alignment artefacts31. As all 221 

raw SNVs detected by SomaticSniper and MuTect were subjected to allow- and deny-list 222 

filtering13,23 prior to subclonal reconstruction (Methods), we also evaluated the effect of filtering 223 

on VAFs and trinucleotide profiles. In general, filtering removed low-VAF SNVs, but minimally 224 

influenced trinucleotide mutational profiles (Supplementary Figure 5A-E). 225 

Consistency of SNV Clonality 226 

One goal of subclonal reconstruction is to time when individual mutations occurred during tumour 227 

evolution. We therefore compared clonal and subclonal SNV identification for the same set of 293 228 

WGS samples across sixteen pipelines for subclonal reconstruction. As expected from the different 229 

types of SNVs leveraged for subclonal reconstruction, algorithms were highly discordant in the 230 

numbers of SNVs identified as clonal or subclonal. On average, DPClust used and timed the most 231 

SNVs (2,941 ± 3,929, mean ± SD; Figure 5A), following by PhyloWGS (2,473 ± 1,662, Figure 232 

5B), PyClone (1,738 ± 1,580, Figure 5C) and SciClone (178 ± 480, Figure 5D). As expected from 233 

the influence of MuTect on the prediction of subclonal clusters, its use was associated with the 234 

identification of an order of magnitude more subclonal SNVs, but similar numbers of clonal SNVs 235 

as with use of SomaticSniper. 236 

To further evaluate how mutation detection tools affect the timing of SNVs, we calculated the 237 

Jaccard index of clonal SNVs identified between all pipeline pairs using the same subclonal 238 
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reconstruction algorithm, and the same for subclonal SNVs (Figure 5E). In PhyloWGS-239 

comprising pipelines, clonal SNV identifications were in high agreement (mean Jaccard index ± 240 

SD: 44.6 ± 30.2%) but subclonal SNV identifications were in significantly less agreement in all 241 

samples and pipeline pairs combined (10.0 ± 22.4%; p < 2.2 x 10-16, Wilcoxon signed-rank test), 242 

particularly between pipelines using different SNV detection tools. The results were similar for 243 

other algorithms: DPClust (clonal Jaccard index: 46.3 ± 33.2%, mean ± SD; subclonal: 15.4 ± 244 

27.5%), PyClone (clonal: 38.0 ± 32.2%; subclonal: 9.6 ± 21.6%) and SciClone (clonal: 33.3 ± 245 

31.5%; subclonal: 14.8 ± 29.3%). Overall, we observe diversity in SNV profiles and clonality 246 

predictions across pipelines, with extensive diversity in subclonal SNV profiles associated with 247 

mutation detection tools. 248 

To better understand how subclonal reconstruction algorithms differ in their prediction of SNV 249 

clonality, we next focused on SNVs identified as clonal across all pipelines using the same 250 

mutation detection tools. For each sample, we assessed the overlap in clonal SNVs identified by 251 

each pipeline and found only a small percentage of SNVs to be unanimously identified as clonal 252 

per sample: SomaticSniper-TITAN: 2.0 ± 5.8%, SomaticSniper-Battenberg: 3.8 ± 8.0%, MuTect-253 

TITAN: 0.5 ± 2.0%, MuTect-Battenberg: 1.0 ± 3.1% (mean ± SD; Supplementary Figure 6A-254 

D). Nevertheless, most SNVs were identified as clonal by more than one algorithm 255 

(SomaticSniper-TITAN: 77.4 ± 25.2%, SomaticSniper-Battenberg: 91.9 ± 17.8%, MuTect-256 

TITAN: 48.3 ± 30.9%, MuTect-Battenberg: 71.9 ± 28.5%). Pipelines using Battenberg were 257 

characterized by large overlaps in clonal SNV identifications between PhyloWGS, DPClust and 258 

PyClone (SomaticSniper-Battenberg: 63.2 ± 34.3%, MuTect-Battenberg: 46.2 ± 33.5%). Pipelines 259 

using TITAN were characterized by modest overlaps between these three, but stronger overlap 260 

between PhyloWGS and DPClust (SomaticSniper-TITAN: 42.9 ± 35.4%, MuTect-TITAN: 27.1 ± 261 

26.1%). Given the lack of correlation between subclonal reconstruction algorithms in estimating 262 

subclone number, this could suggest that disagreements between subclonal reconstruction 263 

algorithms mostly fall in defining the subclonal populations. 264 

Consistency of CNA Clonality 265 

We also evaluated the influence of mutation detection tools on clonal and subclonal CNA 266 

identification. We focused on PhyloWGS, as it was the only algorithm considered here that co-267 

clusters SNVs and CNAs. Previous work on this cohort using the SomaticSniper-TITAN-268 
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PhyloWGS pipeline identified four clonal CNA subtypes and three subclonal CNA subtypes13, so 269 

we first evaluated their robustness across pipelines. In general, clonal subtypes were robust to 270 

pipeline changes, while subclonal subtypes were less so (Supplementary Figure 7A-B, 271 

Supplementary Table 3). Pipelines employing the same CNA detection tool also had more similar 272 

profiles then those using different ones. 273 

We next assessed the agreement of these pipelines in their identification of clonal and subclonal 274 

CNAs. We calculated the Jaccard index of 1.0 Mbp genomic bins with CNAs between pipeline 275 

pairs, where the direction of aberration (i.e., gain vs. loss) was considered. We found significantly 276 

greater agreement for clonal CNAs compared to subclonal CNAs in comparisons between every 277 

pipeline pair (mean clonal Jaccard index ± SD: 50.5 ± 21.1%, subclonal Jaccard: 15.6 ± 21.8%; 278 

all p < 2.2 x 10-16, Wilcoxon signed-rank test; Supplementary Figure 7C). Pipelines using the 279 

same CNA detection tool tended to agree, although divergence was expected because the 280 

reconstructed clonality of CNA segments can be influenced by the VAFs of SNVs in the segment. 281 

By contrast, pipelines with different CNA detection tools had less clonal and little subclonal 282 

agreement. Thus, for both SNVs and CNAs, clonal mutational landscapes were relatively invariant 283 

to pipeline but subclonal ones were not. 284 

Impact of Reconstruction Variability on Downstream Analyses 285 

Given these differences in SNV and CNA clonality prediction across pipelines, we sought to 286 

understand how they might influence the timing of mutations in cancer driver genes. These genes 287 

are of particular relevance as they can be actionable as predictive or prognostic biomarkers. We 288 

examined the clonality of mutations in five genes driven by recurrent somatic SNVs (ATM, 289 

FOXA1, MED12, SPOP and TP53) and eight driven by recurrent somatic CNAs (CDH1, 290 

CDKN1B, CHD1, MYC, NKX3-1, PTEN, RB1 and TP53) in localized prostate cancer13,23. Focusing 291 

on PhyloWGS-comprising pipelines, these driver events were overwhelmingly predicted to occur 292 

early (i.e. clonally) during tumour evolution, with 87.2 ± 16.8% (mean ± SD) of SNV and 91.5 ± 293 

6.4% of CNA driver mutations identified as clonal across pipelines (Supplementary Figure 8A-294 

B). There was also broad consensus in these predictions: when a clonal SNV was identified by any 295 

single pipeline in a specific driver gene and sample, all four pipelines identified a clonal SNV in 296 

that driver gene in the same sample in 39.5 ± 22.5% of cases (mean ± SD). CNAs showed even 297 

higher consensus (50.4 ± 14.8%; Supplementary Figure 8C). One outlier was MED12, where 298 
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there was disagreement across pipelines with the same SNV detection tools: since MED12 is 299 

located on the X chromosome and Battenberg does not generate copy number status for regions of 300 

uncertainty and the sex chromosomes, its mutations were disregarded during subclonal 301 

reconstruction because PhyloWGS only considers SNVs with overlapping copy number status. 302 

We then evaluated how CNA clonality predictions affect the identification of genes that are 303 

significantly differentially mutated clonally vs. subclonally. Within each pipeline we determined 304 

whether each 1.0 Mbp genomic bin had different proportions of gains and losses clonally and 305 

subclonally (FDR < 0.05, Pearson’s χ2 Test, clonal: loss, neutral, gain vs. subclonal: loss, neutral, 306 

gain; Methods). The number of genes in regions with CNAs occurring statistically more 307 

frequently early or late differed dramatically across PhyloWGS-comprising pipelines (MuTect-308 

TITAN: 5,344; SomaticSniper-TITAN: 5,198; MuTect-Battenberg: 1,498; SomaticSniper-309 

Battenberg: 339). A consensus set of 339 genes showed a bias in timing in all pipelines as 310 

preferentially mutated clonally (Supplementary Figure 9A, Supplementary Table 4). These 311 

genes were enriched for TP53-based regulation of death receptors, TRAIL signaling and natural 312 

killer cell mediated cytotoxicity (FDR < 0.05; Supplementary Figure 9B). 313 

To evaluate whether pipeline differences could influence the accuracy of biomarkers, we focused 314 

on biochemical relapse after definitive local therapy. Previous work has identified clonality to be 315 

prognostic in this setting, both independently and when combined with an established multi-modal 316 

(CNA, SNV, SV and methylation) gene-specific biomarker13,23. Discretization by clonality 317 

(monoclonal vs. polyclonal) only stratified patients by outcome in the SomaticSniper-TITAN-318 

PhyloWGS pipeline (p = 0.004, log-rank test; Supplementary Figure 10A), but not any other (all 319 

p > 0.05, log-rank test; Supplementary Figure 10B-P). The unified biomarker integrating 320 

clonality and a multi-modal biomarker achieved prognostic value in more pipelines (p < 0.05 in 321 

14/16 models, log-rank test; Supplementary Figure 11A-P), with concordant trends across all 322 

pipelines. Thus, the prognostic effect size of clonality in prostate cancer is smaller than the 323 

technological effect size in this cohort, with a clinical signal smaller than technical variance. As a 324 

result, the translational potential of clonality in localized prostate cancer is improved when it is 325 

integrated with complementary gene-specific biomarker information. 326 
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Comparing Reconstructions using Single and Multiple Regions 327 

Our analyses of a large cohort of single-sample reconstructions highlight large inter-pipeline 328 

differences in the determination of subclonal architecture and prediction of mutation clonality. To 329 

better relate these results to the ground-truth, we focused on a set of ten localized prostate cancers 330 

where samples from multiple regions of the tumour were available (30 genomes in total, ranging 331 

from 2-4 per patient). These data allowed us to directly compare single-region to multi-region 332 

reconstructions using PhyloWGS and PyClone, providing an estimate of the extent to which the 333 

former underestimates true clonal complexity. 334 

We first quantified the differences in the number of subclones predicted from single-region and 335 

multi-region reconstructions of the ten tumours (Supplementary Table 5). Multi-region 336 

reconstructions predicted more subclones than single-region reconstructions in pipelines using 337 

PhyloWGS: 4.6 ± 2.4 (mean ± SD) subclones were predicted with multi-region reconstructions 338 

while 2.0 ± 0.9 subclones were predicted with single-region reconstructions (Figure 6A). This 339 

difference was not seen in pipelines using PyClone (multi-region reconstructions: 2.2 ± 1.7, single-340 

region reconstructions: 2.3 ± 2.0), likely due to the constraint that only mutations present in all 341 

samples are used for multi-region reconstruction (Figure 7A). These data suggest that the typical 342 

single-sample reconstruction identifies fewer than half of the subclones present in the tumour, and 343 

this could very well be a lower-bound estimate because of the limited sequence depth and spatial 344 

sampling of this cohort. On the other hand, multi-sample reconstructions also predicted 345 

significantly more subclones within the index lesion sample compared to single-sample 346 

reconstruction of the index lesion in pipelines using PhyloWGS (p = 2.4 x 10-4, Wilcoxon signed-347 

rank test; Supplementary Figure 12A), but not those using PyClone (p ≈ 1, Wilcoxon signed-348 

rank test; Supplementary Figure 12B). Together this suggests that single-region reconstructions 349 

are limited by spatial sampling from fully resolving the intra-tumoural heterogeneity of both the 350 

overall tumour and the sampled region, for example due to cases where subclones appear with the 351 

same CCF and are thus indistinguishable from single-region reconstructions alone32. 352 

We next sought to determine the extent of variability in SNV clonality predictions between single-353 

region and multi-region reconstructions. We identified SNVs that were predicted be the same 354 

clonality (clonal or subclonal) in both single- and multi-region reconstructions (‘Match in Multi 355 

and Single’). For SNVs with mismatched clonality, we further categorized them as clonal in multi-356 
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region reconstruction and subclonal in single-region reconstruction (‘Clonal in Multi-region’) or 357 

vice versa (‘Subclonal in Multi-Region’), or SNVs that were uniquely considered in single-region 358 

reconstructions (‘Unique in Single-region’) or multi-region reconstructions (‘Unique in Multi-359 

region’). The last category of SNVs is unique to PhyloWGS as it is able to consider SNVs unique 360 

to individual samples for multi-region analysis. SNV clonality predictions matched less than half 361 

the time for pipelines using PhyloWGS (31.9 ± 24.6%, mean ± SD; Figure 6B). Pipelines using 362 

PyClone achieved modestly higher clonality agreement, perhaps due to the smaller number of 363 

subclones predicted in multi-region reconstructions and the lack of multi-region unique SNVs 364 

(38.6 ± 28.4%; Figure 7B). Mismatched SNVs tended to be clonal in single-region reconstructions 365 

and subclonal in multi-region reconstructions, as expected. Consistent with simulations33 and 366 

previous observations, multi-region reconstructions are able to better define subclonal populations 367 

of cells by identifying and disambiguating those missed or merged by single-region sampling. 368 

We also examined the agreement between single-region and multi-region reconstruction CNA 369 

clonality predictions in pipelines using PhyloWGS (Figure 6C). Agreements were similarly 370 

variable, with less than half of CNAs matching in clonality between the single- and multi-region 371 

reconstructions and extensive variance across samples (33.6 ± 31.7%, mean ± SD). As with SNVs, 372 

mismatches mostly involved clonal CNAs in single-region reconstructions identified as subclonal 373 

in multi-region reconstructions. 374 

To better understand this sampling bias, we analyzed how well the clonal population of the index 375 

lesion from single-region reconstruction represents the clonal population of the entire tumour. In 376 

PhyloWGS-comprising pipelines, multi-region reconstruction often showed that SNVs identified 377 

as clonal in the index lesion were actually subclonal (Supplementary Figure 13A). Nevertheless, 378 

the majority of single-region clonal SNVs were truly clonal in multi-region reconstruction (66.6 ± 379 

29.8%, mean ± SD). As before, pipelines using PyClone showed much higher agreement (91.4 ± 380 

23.3%), likely because of the large number of excluded SNVs (Supplementary Figure 13B). A 381 

similar analysis of subclonal SNVs showed that most subclonal SNVs defined by single-region 382 

reconstructions of the index lesion are subclonal in multi-region reconstructions in pipelines using 383 

PhyloWGS and MuTect (12.2 ± 17.5%, mean ± SD). In contrast, multi-region reconstruction 384 

pipelines using PhyloWGS and SomaticSniper predicted many subclonal SNVs from single-region 385 

reconstructions as clonal instead (55.2 ± 40.3%). This highlights a potential limitation of multi-386 

region subclonal reconstruction algorithms with a need for shared SNVs or CNAs. 387 
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Discussion 388 

It is difficult to benchmark the accuracy of subclonal reconstruction methodologies since a robust 389 

gold-standard experimental dataset does not yet exist. Simulation frameworks are of great value, 390 

but might not fully recapitulate the error-profiles and signal-biases of real data34. To evaluate the 391 

technological variability in estimating aspects of subclonal architectures, we evaluated 293 392 

tumours using sixteen pipelines. These data provide an experimental lower-bound on the 393 

algorithmic variability of tumour subclonal reconstruction in a large high-depth whole-genome 394 

sequencing cohort, at least for a single cancer type and stage. We complement these data by 395 

assessing eighteen subclonal reconstruction pipelines across a set of 10 multi-region tumours to 396 

estimate the degree to which single-sample reconstructions underestimate clonal complexity the 397 

full tumour. 398 

Subclonal reconstruction algorithms differ substantially in their prediction of subclonal 399 

architecture across all mutation detection tool combinations, with no pair of algorithms 400 

consistently achieving similar results in cellularity estimates, prediction of subclone number and 401 

assignment of mutation clonality. While the subclonal CNA detection tool used mostly influenced 402 

cellularity estimates but no other aspects of subclonal architecture, large differences were driven 403 

by changing the SNV detection approach. Differences between SNV detection tools led to major 404 

divergences in subclonal reconstruction: pipelines using MuTect found extensive subclonal 405 

diversity, at least partly due to the greater number of low VAF mutations detected. SNV detection 406 

benchmarking efforts31 could aid in the further characterization of the error profiles of SNV 407 

detection tools and optimize parameter tuning to improve subclonal reconstruction. Future studies 408 

might benefit from merging multiple subclonal reconstruction pipelines, for example to provide a 409 

potential envelope of upper and lower bounds on different features of the reconstruction. 410 

The potential translational and clinical impact of these technical variabilities is considerable. For 411 

example, technological differences between analysis pipelines were larger than the effect-size of 412 

the association between evolutionary complexity and patient survival. This suggests that estimates 413 

of technical variability should be provided for analyses dependent on subclonal architecture, such 414 

as in studies mapping evolutionary and migration trajectories between primary and metastatic 415 

tumours. Studies identifying clonal and especially subclonal driver mutations should be interpreted 416 

with such variability estimates for reference as subclonal mutational landscapes were found to be 417 
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especially vulnerable to pipelines changes when clonal ones were less so. Articulating how these 418 

algorithmic differences relate to the clinical effect-size will greatly improve interpretability of 419 

these types of data. 420 

Future studies also need to carefully consider the failure-rates of different reconstruction 421 

algorithms, as algorithms leveraging clonal or neutral copy number regions might not be suitable 422 

for tumour types characterized by large numbers of CNAs and might call for specific CNA 423 

detection strategies. Computational failures are problematic for clinical applications and, in 424 

combination with the substantive computational requirements that scale with the number of 425 

mutations, could be problematic for cancer types characterized by a high mutational burden. 426 

Our evaluation of subclonal reconstruction using data from spatially distinct regions of tumours 427 

found that reconstructions relying on a single sample systematically underestimated the number of 428 

subclones in a tumour. Input constraints and non-exhaustive sequencing depth and spatial sampling 429 

in multi-region reconstructions also suggest that the current level of underestimation is only the 430 

lower-bound. This is in line with previous work in kidney cancer6,11. These data also agree with 431 

previous work showing the distinct mutational profiles of prostate cancer samples from spatially 432 

distinct regions of the same tumour8 and reinforces the hypothesis that sufficient sampling will 433 

uncover multiple subclones in nearly all cancers. It also suggests that strategies for robust multi-434 

region-aware subclonal mutation detection would be a significant benefit to subclonal 435 

reconstruction analyses. 436 

Larger datasets are necessary to better evaluate the performance of subclonal reconstruction 437 

methodologies. While simulated data is valuable34, single-cell sequencing datasets will likely 438 

significantly improve the evaluation of ground truth for subclonal reconstruction algorithms in 439 

patient samples. In the meantime, this work involving a large clinical cohort will aid in refining 440 

subclonal reconstruction methods and provide guidance for evaluating the subclonal architecture 441 

of cancer samples. 442 

  443 
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Methods 444 

Patient Cohort 445 

We aggregated a retrospective cohort of localized prostate tumours with patient consent and 446 

Research Ethics Board approval from published datasets, with whole-genome sequencing of 447 

tumour samples and matched blood-based normal samples13,23,24,35–38. The cohort includes 293 448 

patients with tumour samples from the index lesion and 10 patients with multiple samples from 449 

intraductal carcinoma and juxtaposed adjacent invasive carcinoma. For patients receiving 450 

radiotherapy, the index tumour was identified on transrectal ultrasound and sampled by needle 451 

biopsies (TRUS-Bx) and was deemed the largest focus of disease that was confirmed 452 

pathologically. A fresh-frozen needle core ultrasound-guided biopsy to this index lesion was 453 

obtained for macro-dissection. For patients receiving surgery, the index tumour was identified 454 

macroscopically by a GU expert pathologist at the point of surgery and later sampled and 455 

biobanked. A fresh-frozen tissue specimen from the index lesion was then obtained from macro-456 

dissection. Details of the patient cohort have been described previously13,24. 457 

We focused on patients with clinical intermediate-risk disease as defined by NCCN, with 458 

intermediate-risk factors (T2b or T2c disease, ISUP Grade Group 2 or 3 or pre-treatment prostate 459 

specific antigen (PSA) serum levels between 10-20 ng/mL). All patients received either precision 460 

image-guided radiotherapy or radical prostatectomy with no randomization or classification and 461 

were hormone naive at time of therapy. Four patients in the multi-region sequencing cohort carried 462 

germline BRCA2 mutations and had formalin-fixed paraffin-embedded tissues instead of fresh-463 

frozen. Sample regions suitable for micro-dissection (tumour cellularity > 70%) were marked by 464 

genitourinary pathologists and manually macro-dissected, followed by DNA extraction and 465 

sequencing. 466 

Whole genome sequencing data analysis 467 

Protocols for whole-genome sequencing data generation and processing have been previously 468 

described13,23,24. Briefly, raw sequencing reads from the tumour and normal samples were aligned 469 

against human reference genome build hg19 using bwa-aln (v0.5.7)39. Lane-level BAMs from the 470 

same library were merged and duplicates were marked using picard (v1.92). Local realignment 471 

and base quality recalibration were performed together for tumour/normal pairs using GATK 472 

(v.2.4.9)40. Tumour and normal sample-level BAMs were extracted separately, had headers 473 
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corrected with SAMtools (v0.1.9)41 and were indexed with picard (v1.107). ContEst 474 

(v1.0.24530)42 was used to estimate lane-level and sample-level sample mix-up and lane-level 475 

cross-individual contamination on all sequences, with no significant contaminated detected. 476 

Tumour Somatic Mutation Assessment 477 

We detected subclonal copy number aberrations from whole-genome sequencing data using 478 

Battenberg (v2.2.6)7, TITAN (v1.11.0)25 and FACETS (v0.5.14)28. First, Battenberg (v2.2.6) was 479 

installed with underlying ASCAT (v2.5)43 using the installation and running wrapper 480 

cgpBattenberg (v3.1.0). Required reference files were downloaded as instructed in 481 

https://github.com/Wedge-Oxford/battenberg and further required data files were generated as 482 

instructed in https://github.com/cancerit/cgpBattenberg. An ignore file was created for the genome 483 

assembly hg19 to exclude all chromosomes not in 1-22. Battenberg (v2.2.6) was run with -gender 484 

of XY for male patients and -t of 14 to run using 14 threads, and otherwise default parameters. The 485 

resulting primary solution was subjected to manual refitting in situations meeting the following 486 

criteria: 1) the solution involved a high copy number segment with high BAF and low logR, 487 

indicating an unrecognized homozygous loss event, 2) nearly all copy number aberrations were 488 

subclonal, 3) there were unreasonably high copy numbers up to infinity. Refitting was performed 489 

until the concerns for refitting were resolved or for three attempts after which the original solution 490 

was accepted. The CNAs obtained from the primary solution, along with tumour cellularity and 491 

ploidy were used for further analysis. We have described subclonal copy number analysis using 492 

TITAN (v1.11.0) previously in detail13. Briefly, TITAN (v1.11.0) was run through the Kronos 493 

(v1.12.0)44 pipeline for whole-genome sequence preprocessing and subclonal copy number 494 

assessment. GC and mappability files for bias correction were prepared using HMMcopy 495 

(v0.1.1)45and bowtie (v2.2.6)46 on the hg19 reference genome. Heterogeneous positions in the 496 

sequence data were identified by MutationSeq (v4.3.7)47 using known dbSNP sites from GATK 497 

(v2.4.9). For each whole-genome sequence, TITAN (v1.11.0) made predictions of the existence of 498 

one to five subclones based on the given input numClusters and the solution with the lowest 499 

S_Dbw validity index25 was used to obtain the cellularity, ploidy and subclonal CNAs for 500 

downstream analysis. Finally, to prepare inputs for subclonal copy number assessment by 501 

FACETS (v0.5.14), the accompanying snp-pileup (v434b5ce) algorithm was installed with 502 

underlying htslib (v1.9)41. A SNP location VCF file was downloaded as instructed for hg19 with 503 

SNP version b151 and human genome build version GrCh37p13 from 504 
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ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/00-505 

common_all.vcf.gz, and snp-pileup (v434b5ce) was run using developer recommended parameters 506 

(-g -q15 -Q20 -P100 -r25,0). All FACETS (v0.5.14) runs used the seed 1234 and default 507 

parameters for all steps, except for procSample where the developer recommended parameter cval 508 

= 150 was used. 509 

We used MuTect (v1.1.4)27 and SomaticSniper (v1.0.2)26 for the detection of somatic single 510 

nucleotide variants from whole-genome sequencing data. MuTect was run to obtain candidate 511 

SNVs with dbSNP13848, COSMIC (v66)49 and default parameters except the -tumor_lod option 512 

(tumor limit of detection). The -tumor_lod option was set to 10 to increase the stringency of 513 

detection. Outputs that contained REJECT were filtered out and the remaining SNVs were used 514 

for downstream analysis. Details for SomaticSniper (v1.0.2) variant detection have been described 515 

previously23. In short, SomaticSniper (v1.0.2) was used to identify candidate SNVs with default 516 

parameters except the -q option (mapping quality threshold), which was set to 1 as per developer 517 

recommendation. Candidate SNVs were filtered through standard and LOH filtering using a pileup 518 

indel file generated on the sequence data using SAMtools (v0.1.9)41, bam-readcount filtering and 519 

false positive filtering. Only high confidence somatic SNVs obtained from the high confidence 520 

filter using default parameters were used for further analysis, as per developer recommendations. 521 

We further performed annotation and filtering on all SNVs, with full details given previously13. In 522 

brief, SNVs obtained by MuTect (v1.1.4) and SomaticSniper (v1.0.2) were annotated with 523 

associated genes and functions by ANNOVAR (v2015-06-17)50 using RefGene, subjected to deny-524 

list filtering to remove known germline contaminants and sequencing artifacts and allow-list 525 

filtering through COSMIC (v70)49. This was done before downstream subclonal reconstruction. 526 

SNVs were further subjected to filtering to remove SNVs not at callable bases (where callable 527 

bases are those with ≥ 17x coverage for the tumour and ≥ 10x coverage for the normal). 528 

Subclonal Reconstruction Pipeline Construction 529 

We define a subclonal reconstruction pipeline as comprised of a SNV detection tool, a CNA 530 

detection tool and a subclonal reconstruction algorithm. A pipeline is said to be using or 531 

comprising of a tool and/or an algorithm when the tool/algorithm is incorporated as one step of the 532 

pipeline. 533 
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For single-region reconstruction, the SNV detection tools SomaticSniper (v1.0.2) and MuTect 534 

(v1.1.4), the CNA detection tools Battenberg (v2.2.6) and TITAN (v1.11.0), and the subclonal 535 

reconstruction algorithms PhyloWGS (v3b75ba9), PyClone (v0.13.0), DPClust (v2.2.5) and 536 

SciClone (v1.0.7) were combined in factorial combinations to construct 16 pipelines. Subclonal 537 

reconstruction was run on the cohort of 293 tumours with index lesion sequencing for single-region 538 

subclonal reconstruction. 539 

For multi-region reconstruction, the SNV detection tools SomaticSniper (v1.0.2) and MuTect 540 

(v1.1.4), the CNA detection tools Battenberg (v2.2.6), TITAN (v1.11.0) and FACETS (v0.5.14), 541 

and the subclonal reconstruction algorithms PhyloWGS (v3b75ba9), PyClone (v0.13.0) and 542 

SciClone (v1.0.7) were combined in factorial combinations to construct 18 pipelines. For the 10 543 

tumours with multi-region sequencing, each individual sequencing sample (total 30, 2-4 samples 544 

per tumour) was first subjected to single-region subclonal reconstruction using the 18 pipelines, 545 

followed by multi-region subclonal reconstruction using the 18 pipelines where all regions of a 546 

tumour were provided as input. 547 

Subclonal Reconstruction of Tumours using PhyloWGS 548 

We used the cnv-int branch of PhyloWGS (https://github.com/morrislab/phylowgs/tree/cnvint, 549 

commit: 3b75ba9c40cfb27ef38013b08f9e089fa4efa0c0)15 for the reconstruction of tumour 550 

phylogenies, as described previously13. Briefly, subclonal CNA segments and cellularity inputs 551 

were parsed using the provided parse_cnvs.py script (the parse_cnvs.py was custom augmented to 552 

process inputs from FACETS [v0.5.14]) and filtered to remove any segments shorter than 10 kbp. 553 

The create_phylowgs_inputs.py script was used to generate PhyloWGS (v3b75ba9) inputs for each 554 

sample. All default parameters were used, including limiting the number of SNVs considered to 555 

5,000 for the interest of runtime to launch reconstructions using evolve.py. Multi-region subclonal 556 

reconstruction was performed by providing all regions belonging to the same tumour as input for 557 

the reconstruction and the procedure was otherwise identical to the single-region reconstructions. 558 

The best phylogenetic clone tree for each run and the CNAs and SNVs associated with each 559 

subclone in that structure were determined by parsing the output JSON files for the tree with the 560 

largest log likelihood value. In addition to the best tree structure, the output JSON file was also 561 

parsed for all predicted tree structures as ordered by log likelihood values to assess the change in 562 

predictions across the 2,500 Markov chain Monte Carlo iterations.  563 
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Subclonal Reconstruction of Tumours using PyClone 564 

We used PyClone (v0.13.0)17 for single- and multi-region mutation clustering. A mutation input 565 

file was created for each sample by obtaining the tumour reference and variant read counts for 566 

each SNV from input VCFs and annotating them with the clonal major and minor copy numbers 567 

for the position from CNA inputs. Since PyClone (v0.13.0) leverages SNVs in clonal CNA 568 

regions, all SNVs in subclonal CNA regions were not considered. SNVs in regions without copy 569 

number information were also discarded, and the normal copy number was set to 2 for autosomes 570 

and 1 for chromosomes X and Y. The mutation input file, along with tumour cellularity as 571 

predicted by the subclonal CNA detection tool were used as inputs for the run_analysis_pipeline 572 

to launch PyClone (v0.13.0)17, using 12345 as the seed for all runs. Notably, since PyClone 573 

(v0.13.0) was originally developed for deep sequencing (>100x) data, the developer recommended 574 

setting the “density” parameter to “pyclone_binomial” to account for characteristics whole-575 

genome sequencing data. The number of Markov chain Monte Carlo iterations were also set to 576 

100,000, with 1,000 burn-ins. Otherwise default parameters were used. PyClone (v0.13.0) 577 

outputted ‘cellular prevalence’ as defined by the authors as ‘the proportion of tumor cells harboring 578 

a mutation’ fits the definition of cancer cell fraction for this study, and cellular prevalence as 579 

defined in this study was calculated by multiplying the outputted ‘cellular prevalence’ with purity 580 

estimates from the respective CNA detection tool. Multi-region reconstructions using PyClone 581 

(v0.13.0) were launched by including all mutation input files and tumour cellularities prepared for 582 

single-region reconstructions as outlined above for all samples of a tumour as input to 583 

run_analysis_pipeline. Cellular prevalence as defined in this study was similarly obtained from 584 

‘cellular prevalence’ as outputted by PyClone (v0.13.0) by individually adjusting for the tumour 585 

contents for each sample of the tumour. 586 

Subclonal Reconstruction of Tumours using DPClust 587 

We used DPClust (v2.2.5)16 for single-region subclonal reconstruction. DPClust (v2.2.5) was run 588 

using the dpc.R pipeline available via the DPClust SMC-HET Docker (https://github.com/Wedge-589 

Oxford/dpclust_smchet_docker, commit a1ef254), using also dpclust3p (v1.0.6). The pipeline was 590 

customized to process inputs from SomaticSniper (v.1.0.2) and TITAN (v1.11.0). The inputs for 591 

each tumour sample were the VCF file provided by the SNV detection tool, and subclonal copy 592 

number, cellularity, ploidy, and purity as predicted by the subclonal CNA detection tool, using 593 

12345 as the seed and otherwise default parameters. The results in the subchallenge1C.txt output 594 
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file were taken as the mutation clustering solution to obtain the number of subclones predicted by 595 

DPClust and their cellular prevalence (v2.2.5)16. Results in the subchallenge2A.txt output file were 596 

taken to define the mutation composition of each cluster. 597 

Subclonal Reconstruction of Tumours using SciClone 598 

We used SciClone (v1.0.7)20 for single- and multi-region subclonal reconstruction. Input VCFs 599 

were used to calculate variant allele frequencies (in percentage) and CNA inputs were used to 600 

determine regions with loss of heterozygosity. Only SNVs in copy number neutral (major = 1, 601 

minor = 1) regions were considered by SciClone (v1.0.7) and all samples were run using default 602 

parameters. Multi-region reconstructions using SciClone (v1.0.7) were run by including inputs for 603 

all samples of a tumour. Mutation clusters defined by SciClone (v1.0.7) were characterized using 604 

variant allele frequencies, and their VAFs were multiplied by a factor of 2 to convert to cellular 605 

prevalence as defined in this study. 606 

Post Processing of Subclonal Reconstruction Solutions  607 

Since subclones in PhyloWGS (v3b75ba9) trees are numbered based on cellular prevalence instead 608 

of evolutionary relationship, trees were transformed to consistent representations to allow 609 

comparison across cohorts following two rules: 1) trees are left-heavy, 2) all nodes at a particular 610 

tree depth must have numbers greater than that of nodes at lower tree depths, with the root node 611 

(normal cell population) starting at 0. Further, pruning of nodes was performed following the 612 

heuristic that each node must have at least 5 SNVs or 5 CNAs and a minimum cellular prevalence 613 

of 10%, creating a subclonal diversity lower bound for each tumour13. A node was pruned and 614 

merged with its sibling if their cellular prevalence difference was ≤2% and if both were driven 615 

purely by SNVs (had ≤5 CNAs). A node was merged with its parent node if their cellular 616 

prevalence difference was ≤2%. When PhyloWGS (v3b75ba9) produced a poly-tumour solution 617 

for the best consensus tree, the algorithm was re-run up to 12 times with different random number 618 

generator seeds after which the final poly-tumour solution was accepted and considered to be a 619 

reconstruction failure. The seeds were applied in the following order: 12345, 123456, 1234567, 620 

12345678, 123456789, 246810, 493620, 987240, 1974480, 3948960, 7897920 and 15795840. In 621 

the event PhyloWGS (v3b75ba9) failed to produce a solution due to reconstruction failures or 622 

excessive runtime (>3 months), the sample was excluded from analysis for that pipeline. 623 
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PyClone (v0.13.0), DPClust (v2.2.5) and SciClone (v1.0.7) identified subclonal populations were 624 

pruned using similar heuristic as that for PhyloWGS (v3b75ba9). Specifically, for each tumour 625 

sample, a mutation cluster was pruned if it had fewer than five supporting SNVs or a cellular 626 

prevalence below 10% if it is the clonal cluster or below 2% if it is a subclonal cluster. If there 627 

were less than 5 total mutations (SNVs) assigned to clusters in a sample, or if all clusters had 628 

cellular prevalence of below 10%, a failed reconstruction was designated to the sample. Otherwise 629 

pruned clusters were merged with their nearest neighbor in cellular prevalence, and the weighted 630 

mean of cellular prevalence was assigned to the merged node. Moreover, two clusters were merged 631 

if they differed in cellular prevalence by ≤ 2%. Finally, mutation clusters were ordered by 632 

decreasing cellular prevalence and renumbered accordingly, and the cluster with the highest 633 

cellular prevalence was treated as the clonal cluster and its cellular prevalence taken as the 634 

cellularity estimated by the pipeline. This was a conservative approach as the detection of multiple 635 

primary tumours is challenging from single-sample subclonal reconstruction13. 636 

Union and Intersection of Mutation Detection Tools 637 

We obtained the union and intersection of raw SNVs by SomaticSniper (v1.0.2) and MuTect 638 

(v1.1.4) for each tumour sample using vcf-isec of vcftools (v0.1.15). The union and intersection 639 

sets of SNVs were then annotated and filtered with the same method as described above before 640 

being used in subsequent analysis13. For the comparison of mutation characteristics as detected by 641 

MuTect (v1.1.4) and SomaticSniper (v1.0.2), all SNVs detected by each tool across all 293 index 642 

lesion samples were pooled to assess their VAFs and trinucleotide contexts. SNVs were grouped 643 

as intersect if detected by both tools, or as MuTect-unique or SomaticSniper-unique, both pre- and 644 

post-filtering. The effect of filtering was assessed by comparing SNVs retained after filtering 645 

(‘SomaticSniper’ and ‘MuTect’) with those removed by it (‘Removed SomaticSniper’ and 646 

‘Removed MuTect’). Trinucleotide context profiles for each group of SNVs were normalized by 647 

the expected number of each trinucleotide across the hg19 genome. 648 

We determined the union and intersection of CNAs detected by TITAN (v1.11.0) and Battenberg 649 

(v2.2.6), first parsed using parse_cnvs.py script of PhyloWGS (v3b75ba9) for consistent 650 

formatting, on a per base-pair basis. The intersection of CNAs, based on genomic coordinates and 651 

major and minor copy number, was determined using the GenomicRanges (v1.28.6)51 package in 652 

R (v3.2.5). Regions with disagreeing copy number were identified using bedtools (v2.27.1)52 and 653 
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bedr (v1.0.6)53. A region is defined to have a tool-unique CNA if one tool detected a copy number 654 

aberration for the region while the other identified it as copy number neutral (major and minor 655 

copy number of 1). Regions were both algorithms detected different copy number aberrations were 656 

classified as disagreements. The union set of CNAs thus contained the intersection of CNAs and 657 

CNAs unique to either tool, and regions of disagreement were excluded as there was no natural 658 

way to resolve discrepancies. In contrast to TITAN, when a region is determined to have a 659 

subclonal aberration, Battenberg (v2.2.6) produces two entries, a clonal and subclonal copy 660 

number for each genomic region. These regions were labelled Battenberg-unique for its clear 661 

delineation of subclonal CNAs. However, the TITAN (v.1.11.0) copy number aberration result for 662 

the region (if any) is used in the union of CNAs to avoid conflicting CNAs in the same region, as 663 

one cannot combine clonal Battenberg (v2.2.6) results with TITAN (v1.11.0) aberrations. The 664 

union and intersection set of CNAs were further filtered to remove any segments under 10 Kbp. 665 

Four pipeline combinations using PhyloWGS (v3b75ba9) and the intersection and union of SNVs 666 

and CNAs were executed on 293 single-region samples. The script create_phylowgs_inputs.py 667 

was used to combine intersect and union of SNVs and CNAs as inputs for PhyloWGS, where no 668 

cellularity estimate was provided as there was no obvious way to derive that for the intersect and 669 

union of CNAs. The pipelines were run with otherwise identical procedure as single-region 670 

reconstructions with PhyloWGS (v3b75ba9). 671 

Clonality Classification 672 

We classified the phylogenetic clone trees outputted by PhyloWGS (v3b75ba9) and mutation 673 

clustering results outputted by PyClone (v0.13.0), DPClust (v2.2.5) and SciClone (v1.0.7) as 674 

monoclonal or polyclonal based on the number of subclones they predicted. Solutions where only 675 

one subclone was predicted were termed monoclonal. In monoclonal reconstructions, the only 676 

subclone detected is then termed the clonal node. Solutions where more than one subclone was 677 

predicted were termed polyclonal. In polyclonal reconstructions, the subclone with the highest 678 

cellular prevalence was deemed clonal, and the rest of the subclones were subclonal. In situations 679 

where PhyloWGS (v3b75ba9) outputted phylogenies showed a normal root node with more than 680 

one direct child, the clone tree was termed polytumour, suggestive of multiple independent primary 681 

tumours. These were excluded from downstream analysis because the reconstruction of these 682 

phylogenies, especially from single sequencing samples, is challenging13. 683 
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CNA and SNV mutations were classified as clonal or subclonal based on their node assignment in 684 

the best PhyloWGS (v3b75ba9) consensus clone tree and PyClone (v0.13.0), DPClust (v2.2.5) and 685 

SciClone (v1.0.7) mutation clusters. The mutations that define the clonal node were classified as 686 

clonal mutations, while all others were classified as subclonal mutations. The cancer cell fraction 687 

(CCF) of mutations was calculated by dividing the cellular prevalence of the node that the mutation 688 

belonged to by the predicted cellularity of the tumour sample. 689 

Analysis of Single Nucleotide Variants 690 

We compared the four pipelines using each subclonal reconstruction algorithm for their inference 691 

of clonal and subclonal SNVs. In each pairwise comparison, for each sample we noted the clonal 692 

SNV set identified by each algorithm and calculated the Jaccard index between the two sets. The 693 

analysis was performed separately for clonal and subclonal SNVs. 694 

Analysis of Copy Number Aberrations 695 

We further filtered the CNAs identified by PhyloWGS using OncoScan data for samples with the 696 

data available, removing the identified CNAs that did not overlap any OncoScan CNAs13. For 697 

samples without OncoScan data, CNAs outputted by PhyloWGS (v3b75ba9) were filtered to retain 698 

only those across genomic locations with recurrence of CNAs in OncoScan-filtered samples, with 699 

10 being the established empirical recurrence threshold13. Bins of 1.0 Mbp were created across the 700 

genome to characterize the copy number profiles for each sample and were assigned the copy 701 

number of overlapping genomic segments, either neutral or mutated. Regions not considered by 702 

PhyloWGS (v3b75ba9) due to lack of information were assumed to have the normal copy number 703 

of two. Profiles were created separately for clonal and subclonal CNAs. We further used 704 

previously identified clonal and subclonal subtypes to cluster samples13. Samples that were 705 

assigned a subclonal subtype in the SomaticSniper-TITAN pipeline13 but had no subclonal 706 

populations detected in another pipeline were excluded from subclonal subtype analysis for that 707 

pipeline. Samples that had no subclonal populations detected in the SomaticSniper-TITAN 708 

pipeline and were therefore never assigned to a subclonal subtype were not considered in any 709 

subclonal subtype analysis. For each pipeline, we used the copy number profiles of all samples 710 

with available data to generate average subtype-specific clonal and subclonal CNA profiles of 711 

localized prostate cancer, with standard deviation. 712 
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We compared the CNA profiles identified by the four PhyloWGS-comprising pipelines by 713 

assessing the difference in clonal and subclonal CNAs between pipeline pairs. For each sample, a 714 

clonal CNA set was generated from pipeline results, where the direction of the CNA is taken into 715 

account. For example, if a sample was identified with a clonal gain in genomic bin 1 and a clonal 716 

loss in genomic bin 2, it would have the clonal CNA set +1, -2. The Jaccard index of clonal and 717 

subclonal CNA sets for each sample were calculated between all pipeline pairs.  718 

We identified CNAs that were differentially altered clonally and subclonally. Using 1.0 Mbp bins 719 

across the genome, we aggregated the number of samples with and without a CNA overlapping 720 

each 1.0 Mbp stretch, with gains and losses considered separately. Clonal and subclonal CNAs 721 

were annotated separately, and only samples with polyclonal phylogenies were considered, since 722 

they have both clonal and subclonal components. Pearson’s χ2 test was used with multiple testing 723 

correction (FDR ≤ 0.05) to define the bins that were significantly enriched for clonal or subclonal 724 

CNAs that were gain or loss. CNAs in these bins were thus considered significantly differentially 725 

altered, with a predisposition to occur clonally or subclonally as a gain or a loss. Genes affected 726 

by differentially altered CNAs were annotated using RefSeq, and the lists of genes considered to 727 

have CNA biases by the four pipelines were compared for overlap. 728 

We performed pathway enrichment analysis on the genes that were identified by all four 729 

PhyloWGS-comprising pipelines as biased to be affected by CNAs clonally or subclonally. Using 730 

all default parameters of gprofiler2 (v0.1.9) in R (v3.5.3)54, statistically significant pathways were 731 

obtained from the data sources Gene Ontology (Biological Process, Molecular Function and 732 

Cellular Component), KEGG and Reactome, with no electronic GO annotations. We discarded 733 

pathways that involved >350 or < 5 genes. Cytoscape (v3.4.0) was used to visualize significant 734 

pathways55. Since all genes identified as significantly differentially altered were biased to be 735 

altered clonally, we defined these pathways as differentially altered clonally. 736 

Driver Mutation Analysis 737 

We gathered a list of known prostate cancer driver genes based on previous large sequencing 738 

studies13,23. The known CNA-affected driver genes considered were MYC, TP53, NKX3-1, RB1, 739 

CDKN1B, CHD1, PTEN and CDH1. The known SNV-affected driver genes considered were ATM, 740 

MED12, FOXA1, SPOP and TP53. PhyloWGS-comprising pipelines identified CNAs overlapping 741 

CNA-affected driver genes and SNVs that occurred in SNV-affected driver genes. These were 742 
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defined to be driver CNAs and driver SNVs, respectively. A sample was considered to have a 743 

consensus driver mutation, CNA or SNV, if the mutation was identified with the same clonality 744 

by all four PhyloWGS-comprising pipelines. 745 

Driver SNVs and CNAs of each sample were categorized by the number of PhyloWGS-comprising 746 

pipelines they were identified in. Since four PhyloWGS-comprising pipelines were used, in each 747 

sample driver SNVs and CNAs could be identified in all four pipelines, three pipelines, two 748 

pipelines or one pipeline. Proportions of each category were calculated by dividing the number of 749 

samples in that category by the sum of samples assigned to all categories for the driver SNV or 750 

CNA. The analysis was done separately for clonal and subclonal mutations, such that the category 751 

of the driver SNVs or CNAs in a sample was defined by the most frequent identification of the 752 

clonality. For example, if a driver SNV in a sample was identified as clonal by two pipelines, 753 

subclonal by one pipeline and wildtype by the last pipeline, it would be counted in both category 754 

two for the clonal analysis and in category one for the subclonal analysis. 755 

Biomarker Survival Analysis 756 

We assessed the utility of clonality (monoclonal vs. polyclonal) as a biomarker in all sixteen 757 

pipelines used for single region subclonal reconstruction of 293 samples. Tumours were grouped 758 

by clonality and the two groups were compared using a log-rank test for differences in outcome. 759 

Tumours were also grouped by integrating the previously defined multi-modal biomarker23 760 

(groups patients into low risk and high-risk) and clonality, creating unified groups (unified-low: 761 

monoclonal low-risk, unified-intermediate: monoclonal high-risk or polyclonal low-risk, unified-762 

high: polyclonal high-risk)13 that were compared using a log-rank test. Primary outcome as time 763 

to biochemical recurrence (BCR) was described in detail previously13. In brief, BCR was defined 764 

as PSA rise of ≥ 2.0 ng/mL above the nadir for radiotherapy patients and two-consecutive post-765 

surgery PSA measurements > 0.2 ng/mL (backdated to the date of first increase in PSA) for surgery 766 

patients. If a surgery patient had a post-operative PSA ≥ 0.2 ng/mL this was considered primary 767 

treatment failure. After salvage radiation therapy, if PSA continued to rise, BCR was backdated to 768 

the first PSA measurement > 0.2 ng/mL, but if not then then this was not considered a BCR. 769 

Salvage therapy (hormone therapy or chemotherapy) was considered a BCR. 770 
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Comparing Reconstruction using Single and Multiple Regions 771 

For each of the 10 tumours with multi-region sequencing, we compared the subclonal 772 

reconstruction solutions from each single region with the solutions obtained from subclonal 773 

reconstruction using all tumour regions. In addition to number of subclones predicted, we 774 

compared SNV and CNA clonality predictions between single- and multi-region reconstructions. 775 

For all SNVs that were identified in a single-region or its corresponding multi-region 776 

reconstruction, we calculated the proportion of SNVs in each of the following categories: 777 

1. Multi- and single-region match: same SNV clonality in single- and multi-region. 778 
2. Clonal in multi-region: SNV identified in both single- and multi-region 779 
reconstructions, but SNV clonal in multi-region and subclonal in single-region. 780 
3. Subclonal in multi-region: SNV identified in both single- and multi-region 781 
reconstructions, but SNV subclonal in multi-region and clonal in single-region. 782 
4. Unique in single-region: SNV only present in single-region reconstruction. 783 
5. Unique in multi-region: SNV only present in multi-region reconstruction. 784 

Similarly, all CNAs that were identified in a single-region reconstruction or its matching multi-785 

region reconstruction were assigned to categories defined in a similar fashion. Additional 786 

separation was added for CNAs to distinguish between clonal and subclonal predictions. 787 

Data Visualization and Reporting 788 

Data was visualized using the R statistical environment (v3.2.5 or v3.5.3), and performed using 789 

the lattice (v0.20-34), latticeExtra (v0.6-28), VennDiagram (v1.6.21)56 and BPG (v5.3.4)57 790 

packages. All boxplots show the median (center line), upper and lower quartiles (box limits), and 791 

whiskers extend to the minimum and maximum values within 1.5 times the interquartile range 792 

(Tukey boxplots). Figures were compiled in Inkscape (v0.91). Standard deviation of the sample 793 

mean was reported for point estimates. All statistical tests were two-sided. Supplementary File 1 794 

visualizes all phylogenies produced by pipelines using PhyloWGS. 795 

List of abbreviations 796 

CCF - Cancer Cell Fraction 797 
CNAs - Copy Number Aberrations 798 
II - Intersect of SNVs and Intersect of CNAs 799 
IU - Intersect of SNVs and Union of CNAs 800 
MB - MuTect-Battenberg 801 
MCMC - Markov chain Monte Carlo 802 
MF - MuTect-FACETS 803 
MT - MuTect-TITAN 804 
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SB - SomaticSniper-Battenberg 805 
SD - standard deviation 806 
SF - SomaticSniper-FACETS 807 
SNVs - Single Nucleotide Variants 808 
ST - SomaticSniper-TITAN 809 
UI - Union of SNVs and Intersect of CNAs 810 
UU - Union of SNVs and Union of CNAs 811 
VAF - Variant Allele Frequency 812 
WGS -Whole-genome Sequencing 813 
  814 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2020. ; https://doi.org/10.1101/418780doi: bioRxiv preprint 

https://doi.org/10.1101/418780
http://creativecommons.org/licenses/by-nc/4.0/


Liu et al. 

 - Page 30 of 40 - 

Data Availability 815 

Data supporting the conclusions of this article is included within it and its additional files, and at: 816 
EGAS00001000900 817 

WGS Data - Baca et al., 2013: dbGaP, phs000447.v1.p135 818 
WGS Data – Berger et al., 2011: dbGaP, phs000330.v1.p136 819 

WGS Data – CPC-GENE Fraser et al., 2017: EGA, EGAS00001000900; GEO: GSE8404323 820 
WGS Data – The Cancer Genome Atlas Research Network, 2015: 821 
https://portal.gdc.cancer.gov/projects/TCGA-PRAD37 822 
WGS Data - Weischenfeldt et al., 2013: EGA, EGAS0000100040038 823 

WGS Data – CPC-GENE Espiritu et al., 2018: EGA, EGAS0000100090013 824 
WGS Data – CPC-GENE Taylor et al., 2017: EGA, EGAS00001001615; EGA, 825 
EGAS00001000025824 826 
Variant Data - CPC-GENE Espiritu et al., 2018: EGA, EGAS0000100090013 827 
Source Data for Figures 4 and Supplementary Figures 4A, B, 5 are provided in Variant Data: 828 
EGAS00001000900. 829 
Source data for Figures 2, 3, 6A,C, 7A and Supplementary Figures 1, 2, 3A, 4C-F, 7A-C, 8B, 9, 830 
10, 11, 12 are provided in Supplementary Tables 1-5. 831 
Source data for Figures 5, 6B, 7B and Supplementary Figures 3B-E, 6, 8A, C, 13 are provided in 832 
Source Data. 833 

Code availability 834 

Custom analysis & data-visualization code is available upon request. 835 

  836 
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Figure Legends 984 

Figure 1 – Reconstruction Workflow and Experimental Design 985 

Raw sequencing data from the tumour and normal samples were aligned against the hg19 build of 986 

the human genome using bwa-aln and GATK. Somatic SNVs were detected using SomaticSniper 987 

and MuTect and annotated for function. Somatic CNAs were detected using TITAN, Battenberg 988 

and FACETS and filtered. All single region tumour samples had their subclonal architectures 989 

reconstructed using sixteen pipelines combining one of SomaticSniper and MuTect, one of 990 

Battenberg and TITAN, and one of PyClone, PhyloWGS, DPClust and SciClone. For tumours 991 

with samples from multiple regions, reconstructions of subclonal architectures were performed by 992 

considering each individual region separately and by considering samples from all regions together 993 

using eighteen pipelines.  994 

Figure 2 – Cellularity Estimates 995 

Cellularity of samples as estimated by the CNA detection tool and by subclonal reconstruction 996 

pipelines using the CNA detection tool Battenberg A) and TITAN B). Each dot represents the 997 

estimate for a sample and colors delineate subclonal reconstruction algorithms. Mutation detection 998 

tool combinations using Battenberg include SomaticSniper-Battenberg and MuTect-Battenberg, 999 

and mutation detection tool combinations using TITAN include SomaticSniper-TITAN and 1000 

MuTect-TITAN. Samples are ordered by cellularity estimates by the CNA detection tool. The 1001 

horizontal line indicates CNA detection tool estimated cellularity 0.75. 1002 

Figure 3 – Number of Subclones Detected 1003 

Each panel compares the number of subclones predicted for each sample by subclonal 1004 

reconstruction pipelines using the same mutation detection tool combinations SomaticSniper-1005 

Battenberg A), SomaticSniper-TITAN B), MuTect-Battenberg C) and MuTect-TITAN D). Each 1006 

marker represents the prediction for a sample, and the color of the marker represents the subclonal 1007 

reconstruction algorithm. In cases were algorithms predicted the same number of subclones, the 1008 

markers were randomly overlaid. Background color indicates the maximum number of subclonal 1009 

reconstruction algorithms that predicted the same number of subclones for that sample. 1010 
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Figure 4 – SomaticSniper and MuTect 1011 

A) Density plots of variant allele frequencies for SNVs across all samples that were detected by 1012 

both SomaticSniper and MuTect (Intersect), only detected by MuTect (MuTect Unique) and only 1013 

detected by SomaticSniper (SomaticSniper Unique). B) Trinucleotide profile of SNVs that were 1014 

detected by both SomaticSniper and MuTect, where the number of SNVs was normalized by the 1015 

expected number of each trinucleotide context across the hg19 genome. Trinucleotide profiles for 1016 

SNVs only detected by SomaticSniper C) and SNVs only detected by MuTect D). 1017 

Figure 5 – Clonal and Subclonal SNVs 1018 

Total number of clonal and subclonal SNVs identified by pipelines using DPClust A), PhyloWGS 1019 

B), PyClone C) and SciClone D). Each stacked bar represents one sample and samples are ordered 1020 

based on the total number of SNVs identified by the pipeline using SomaticSniper and TITAN. 1021 

Color of the stacked bar reflects the clonality of the SNVs it represents (clonal or subclonal). E) 1022 

Jaccard index of pipeline-identified clonal and subclonal SNVs. Each marker represents a pipeline 1023 

pair that is compared, and the x- and y- axis show subclonal and clonal mean SNV Jaccard indices 1024 

across samples, respectively, with error bars indicating one standard deviation. ST, SomaticSniper-1025 

TITAN; MT, MuTect-TITAN; SB, SomaticSniper-Battenberg; MB, MuTect-Battenberg. 1026 

Figure 6 - Single- and Multi-Region Reconstructions by PhyloWGS 1027 

A) Comparison of the number of subclones predicted by pipelines using PhyloWGS for each 1028 

tumour from multi-region reconstruction and reconstructions of each of the individual regions, 1029 

including the index lesion. Missing values indicate a failed reconstruction. B) Clonality of SNVs 1030 

identified by single-region and multi-region reconstructions. Variants were compared at position 1031 

level. Each single-region reconstruction is compared to the multi-region reconstruction of the same 1032 

tumour. SNVs were grouped into five categories: ‘Match in Multi and Single’ if the SNV was 1033 

predicted to be the same clonality in single- and multi-region reconstructions, ‘Clonal in Multi-1034 

region’ if the SNV was clonal in multi-region reconstruction but subclonal in single-region 1035 

reconstruction, and ‘Subclonal in Multi-region’ if vice versa. If a SNV was only analyzed in single-1036 

region reconstruction, it is ‘Unique in Single-region’, while SNVs only analyzed in multi-region 1037 

reconstruction are ‘Unique in Multi-region’. C) The disagreement in clonal and subclonal CNA 1038 

clonality predictions between single- and multi-region subclonal reconstructions. CNAs are 1039 
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compared by 1.0 Mbp genomic bins between single-region reconstructions and their corresponding 1040 

multi-region reconstructions. Categories are similar to those for SNVs. 1041 

Figure 7 - Single- and Multi-Region Reconstructions by PyClone 1042 

A) Number of subclones predicted by pipelines using PyClone for each tumour from multi-region 1043 

reconstruction and reconstructions of each of the individual regions, including the index lesion. 1044 

Missing values indicate a failed reconstruction. B) Clonality of SNVs identified by single-region 1045 

and multi-region reconstructions. Variants were compared at position level and each single-region 1046 

reconstruction is compared to the multi-region reconstruction of the same tumour. Match in Multi 1047 

and Single: SNVs predicted to be the same clonality in single- and multi-region reconstructions; 1048 

Clonal in Multi-region: SNVs clonal in multi-region reconstruction but subclonal in single-region 1049 

reconstruction; Subclonal in Multi-region: SNVs subclonal in multi-region reconstruction but 1050 

clonal in single-region reconstruction; Unique in Single-region: SNVs only analyzed in single-1051 

region reconstruction; Unique in Multi-region: SNVs only analyzed in multi-region 1052 

reconstruction. 1053 

  1054 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2020. ; https://doi.org/10.1101/418780doi: bioRxiv preprint 

https://doi.org/10.1101/418780
http://creativecommons.org/licenses/by-nc/4.0/


Liu et al. 

 - Page 40 of 40 - 

Source Data 1055 

Source Data 1 – Sample Subclonal Architecture Reports 1056 

Subclonal reconstruction solutions from four pipelines using PhyloWGS for 293 samples with 1057 

single-region sequencing, followed by 10 samples with multi-region sequencing. The first page 1058 

contains a legend explaining the components of single- and multi-region subclonal reconstruction 1059 

figures. Subsequent pages have details for all single-region samples followed by details for single- 1060 

and multi-region reconstructions for all multi-region samples. 1061 

Source Data 2 – Sample SNV Data 1062 

SNV reconstruction solutions for 293 samples with single-region sequencing and 10 samples with 1063 

multi-region sequencing, combined across all subclonal reconstruction pipelines. A SNV is present 1064 

if it was used by any pipeline and represented by chromosome and position. For all pipelines that 1065 

predicted the clonality of each SNV, the SNV is annotated with the predicted cancer cell fraction 1066 

from the pipeline, where a cancer cell fraction of 1 indicates that the SNV is clonal. 1067 

Source Data 3 – Sample Tree Summary 1068 

Subclonal architecture solutions for 293 samples with single-region sequencing in pipelines using 1069 

PhyloWGS, presented in the format (.json) as outputted by PhyloWGS. A file is presented for 1070 

every PhyloWGS-comprising pipeline that each sample was successfully executed in. The json 1071 

file contains subclonal architecture predictions across the 2500 MCMC iterations of PhyloWGS 1072 

and their log likelihoods. 1073 
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