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Abstract 

The exploration of the relationship between gene expression profiles and neural response 

patterns known to be altered in major depressive disorder provides a unique opportunity to 

identify novel targets for diagnosis and therapy. Here, we estimated the spatial association 

between genome-wide transcriptome maps and brain activation patterns from functional 

magnetic resonance imaging (fMRI) with two established paradigms of great relevance for 

mood disorders. While task-specific neural responses during emotion processing were 

primarily associated with expression patterns of genes involved in cellular transport, reward 

processing was related to neuronal development, synapse regulation, as well as gene 

transcription. Multimodal integration of single-site and meta-analytic imaging data with risk 

genes associated with depression revealed a regional susceptibility of functional activity, 

modulated by master regulators TCF4 and MEF2C. The identification of multiple subordinate 

genes correlated with fMRI maps and their corresponding regulators presumably will reshape 

the prospects for neuroimaging genetics, especially for psychiatric disorders. 
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Introduction 

Over the last decades, genetic and neuroimaging studies have significantly contributed to 

current knowledge about human neural functions. While single neuroscientific methods 

contributed to the comprehension of physiological processes as well as pathological 

alterations in psychiatric disorders, a multimodal integration of large-scale data has proven to 

be even more conducive for in-depth understanding, especially on the molecular scale1,2. In 

particular, post-mortem gene expression data from the Allen Human Brain Atlas (AHBA) was 

repeatedly applied to investigate the relationship between the transcriptome and protein 

distribution3, brain connectivity4, or morphology5. These studies add up to numerous wide-

ranging research findings combining topological mRNA expression with neuroimaging 

properties, partially offering toolboxes for an integrative data analysis6,7. Different methods 

offer designated benefits and disadvantages, e.g. the precise temporal resolution of 

electroencephalography contrasts to its low spatial resolution8. In case of positron emission 

tomography, molecular specificity allows quantification of protein distributions in vivo, but 

availability of specific radioligands is limited9. The most prominent feature of the AHBA, 

however, is the availability of widespread gene expression across the whole brain. Regarding 

the measurement of brain activation during execution of specific paradigms, functional 

magnetic resonance imaging (fMRI) has evolved into one of the most popular neuroimaging 

techniques. Although a promising approach to contrast topological brain activation and gene 

expression patterns making use of the meta-analytic Neurosynth database was presented by 

Fox and colleagues10, their study lacked disease-related aspects. Other studies, by contrast, 

have successfully integrated post-mortem data and in vivo imaging findings, to assess the 

influence of regional gene expression on neurological or psychiatric disorders11,12. While 

fMRI can depict neural correlates of specific psychological processes with high spatial 

resolution, measured signal patterns also appear susceptible to genotype variations13. In this 

context, the role of specific master regulators (MRs) modulating differentially expressed 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2020. ; https://doi.org/10.1101/2020.06.27.175257doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.27.175257
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

genes that might influence regional blood oxygenation level dependent (BOLD) signaling has 

not been resolved yet. 

From all psychiatric disorders, major depressive disorder (MDD) is now the leading cause of 

disability worldwide and a strong contributor to the overall global burden of disease, with 

increasing prevalence over the years14 as well as occurrence of subthreshold symptoms within 

the general population15. Granted that additive genetic effects attribute to approximately 9 % 

of the variation in liability of MDD16, regional variations in gene expression profiles may 

determine brain function within a continuum, spanning from a physiological to a more critical 

pathological state. In this regard, paradigms examining core depressive symptoms like 

impaired affect modulation or loss of interest and pleasure in common experiences are 

amongst the best-established within the realms of MDD. Furthermore, alterations of BOLD 

reactivity during processing of negatively valenced information as well as motivation- or 

incentive-based learning emphasize the characterization of neuropsychiatric disorders in 

terms of functions rather than diagnoses17,18. Positive valence systems and systems for social 

processes thereby comprise prominent behavioral elements currently part of the Research 

Domain Criteria (RDoC) framework, which justifies the application of emotion and reward 

processing paradigms to investigate major domains of human functioning. 

In this study, static gene expression patterns that correlated with task-specific brain activation 

were evaluated in regard to biological processes according to the Gene Ontology (GO) 

database19 and their relationship with MDD risk genes obtained from conventional Genome-

wide association studies (GWAS)16. Potential influences of master regulating genes on 

functional neuroimaging properties were evaluated by means of single-site fMRI data and 

subsequently validated using meta-analytic activation maps from the Neurosynth online 

framework20. Ultimately, we aimed to identify MRs implicated in depression that exert effects 

on individual genes associated with topological brain activation patterns during emotion and 

reward processing. 
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Results 

Topological specificity of emotion and reward processing 

In conjunction with known abnormalities in social interaction and reward responsiveness of 

patients with depressive disorders, fMRI activation within the social processes and positive 

valence systems domains of the RDoC framework was evaluated. We minimized unspecific 

signal variations related to visual, auditory, attentional and executive processing by 

contrasting brain activation elicited by the experimental condition with task control conditions 

in each participant. Sequentially, second level analyses provided specific activation patterns 

elicited by emotion and reward processing (full acquisition and analysis pipeline described in 

Methods section). The applied emotional face recognition task didn’t focus attention on the 

emotional content of presented faces, but requested gender discrimination instead, provoking 

rather implicit emotional processing in limbic as well as non-limbic areas such as prefrontal 

cortices. When testing reward responsiveness, significant activations in dopaminergic brain 

regions were observed after acceptance of priorly conditioned stimuli, particularly in the 

mesolimbic reward system (Supplementary Table 1). 

To expand the scope of results generated with single-site fMRI data, we obtained 

corresponding uniformity maps from the Neurosynth database, which inform about the 

consistency of functional brain activation for particular processes of emotion and reward 

circuits. Spatial activation clusters detected at our institution were thereby validated using 

matching statistical inference maps derived from 91 and 246 studies associated with the terms 

“fearful faces” and “rewards”. Both meta-analytic maps, which can be obtained online from 

the Neurosynth framework, were representative of the expected neural correlates elicited by 

emotional face and reward tasks, respectively. 
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Associations between the transcriptome and functional brain activation 

For each paradigm, correlation analyses showed spatial associations between functional brain 

activation and mRNA expression for a large number of individual genes (rankings of genes as 

well as corresponding Spearman’s correlation coefficients for both datasets are reported in 

Supplementary Table 2). We performed all correlation analyses separately for cortical and 

subcortical regions, to prevent a possible bias that might arise from expression differences of 

the transcriptome between broad anatomical areas. Findings were highly specific for each 

paradigm, accounted for by the weak overlap of compiled correlation lists between the two 

psychological processes, i.e. emotion and reward processing (subcortex: rhoRRHO = -0.282; 

cortex: rhoRRHO = 0.205) (Supplementary Fig. 1). In contrast, high agreement of ranked 

mRNA-fMRI correlations between two different brain parcellation atlases was observed both 

for emotional face recognition (subcortex: rhoRRHO = 0.697; cortex: rhoRRHO = 0.822) and 

acceptance of monetary rewards (subcortex: rhoRRHO = 0.748; cortex: rhoRRHO = 0.918) (Fig. 

1).  

 

Regarding single-site data, brain activity patterns evoked by emotion processing correlated 

positively as well as negatively with whole-brain transcriptome maps. Region-wise 

correlations yielded similar results compared to voxel-wise analyses, ranging from rho = 

-0.739 to rho = 0.865 for subcortical and from rho = -0.449 to rho = 0.431 for cortical regions 

(Supplementary Fig. 2). Out of all spatial associations between gene expression and brain 

function the 10 highest positive correlating genes are listed in Table 1. In subcortical regions, 

MALL showed the strongest voxel-wise correlation (rho = 0.633), while C10orf125 showed 

the highest region-wise correlation (rho = 0.865). In the cortex, SPDYA yielded strongest 

voxel-wise (rho = 0.328) and FOXN4 strongest region-wise (rho = 0.431) correlation. 

FOXN4 also showed a high cortical ranking applying voxel-wise analysis (rho = 0.285, 5th 

rank) (Fig. 2a,b).  
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Analogous to the emotion task, compiled ranked lists included genes spatially correlated with 

measured brain activity patterns related to the reward system, whereby the 10 highest positive 

correlating genes are listed in Table 2. Region-wise analyses yielded higher correlation 

coefficients than the voxel-wise approach with less prominent associations in the cortex (rho 

= -0.639 to rho = 0.698), compared to subcortical regions (rho = -0.788 to rho = 0.81). In the 

subcortex, MDK showed the strongest voxel-wise correlation of all genes (rho = 0.488) and 

also a high region-wise correlation coefficient (rho = 0.803, 3rd rank) (Fig. 2c,d). Comparing 

strongest voxel-wise vs. region-wise correlations in the cortex, 7 out of 10 genes were 

congruent (DUSP3, CA10, PIK3CD, HDAC9, LASS6, GRB14, OLFM3), indicating high 

agreement between both approaches (Supplementary Fig. 3). Overall, gene expression of 

DUSP3 showed strongest cortical correlations with reward processing both in the voxel-wise 

(rho = 0.548) as well as the region-wise analysis (rho = 0.698) (Supplementary Fig. 4).  

 

Ontological analysis of task-specific biological processes 

Considering both strong positive and negative mRNA-fMRI correlations, multiple genes 

associated with imaging data overlapped with specific gene sets listed in the GO 

knowledgebase (presented in detail in Supplementary Table 3 and Supplementary Fig. 5). 

Notably, a marked redundancy between GO terms was present within each paradigm, 

indicating rather task-specific associations of molecular programs with gene expression 

patterns throughout the human brain (Fig. 3). Considering neural responses during emotional 

face recognition in subcortical regions, significantly associated biological programs were 

related to cellular transport processes and mainly included genes that showed positive 

correlations between gene expression and imaging data. In line with the assumed relevance of 

molecular transduction for emotion regulation processes, the most significant overlap was 

observed for the GO term peptide transport. In total, 203 genes positively correlated with 

emotion processing were also present within this gene set (pcorr = 0.013), representing 7.9 % 
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of genes included within the GO term (GO:0015833). Functional brain activation in cortical 

regions yielded no significant overlap with biological processes. Analyzing neural responses 

during acceptance of monetary rewards in subcortical regions, associated GO terms mainly 

included genes with positive mRNA-fMRI correlations, predominantly comprising 

transcription processes. Highest significance was present for nucleic acid metabolic process 

(GO:0090304, pcorr < 0.001, 536 genes, 8.95 %), RNA metabolic process (GO:0016070, pcorr 

< 0.001, 486 genes, 8.89 %), as well as cellular macromolecule biosynthetic process 

(GO:0034645, pcorr < 0.001, 485 genes, 8.45 %). GO terms associated with genes negatively 

correlated with the acceptance of monetary rewards within subcortical regions mainly related 

to synaptic processes and neuronal development. Thereby, most significant GO terms were 

chemical synaptic transmission (GO:0007268, pcorr < 0.001, 54 genes, representing 6.19 % of 

genes included within this term) and modulation of chemical synaptic transmission 

(GO:0050804, pcorr < 0.001, 35 genes, 6.4 %). However, in the cortex only two overlapping 

GO terms were found for genes positively associated with reward processing (autophagy of 

mitochondrion, GO:0000422, pcorr < 0.05, 4 genes, 3.96 % and sensory perception of sound, 

GO:0007605, pcorr = 0.04, 4 genes, 2.34 %). 

 

The role of risk genes implicated in depression 

The relationship between neuronal activation patterns and 42 functional genes associated with 

MDD obtained from a pre-defined gene set was investigated to evaluate the superordinate role 

of these risk genes on specific BOLD activation. Single-site master regulator analysis of co-

regulatory networks based on previously compiled ranked lists including strongest mRNA-

fMRI correlations and revealed individual candidate MRs for each paradigm that potentially 

regulate genes spatially associated with imaging data. We found 4 regulators from the MDD 

risk gene set for emotion and 3 for reward processing in subcortical regions, with 79 and 89 

possible targets, respectively (p < 0.001) (Table 3). Curiously, PAX6, LHX2, as well as 
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MEF2C were associated with negatively correlated genes for both paradigms, indicating a 

rather superordinate role of these MRs in MDD, regardless of cognitive system. Alternatively, 

TCF4 was identified both as a regulator for genes negatively correlated with emotion as well 

as genes positively correlated with reward processing. Overall, strongest regulation was found 

for genes negatively correlated with reward processing, whereby LHX2 and MEF2C 

coordinated more than half of the possible targets. Considering regulation for genes that 

showed positive spatial correlations with brain activation patterns, two MRs (SOX5 and 

TCF4) were identified for reward processing, while no significant regulators were found for 

genes positively correlated with emotion processing. While corresponding cortical analyses 

yielded no significant results, subcortical results were validated by means of an independent 

meta-analytical dataset from the Neurosynth framework. Identically, MEF2C emerged as 

regulator of genes negatively correlated with emotional face recognition as well as acceptance 

of monetary rewards (Fig. 4a), while TCF4 showed an inversed regulation of genes correlated 

with the emotion (negative association) and reward (positive association) paradigm (Fig. 4b).  

Both, single-site and meta-analytical results from gene set enrichment analysis (GSEA) 

complemented our findings from GO as well as master regulator analyses, showing an 

inversed aggregation of MDD risk genes for emotion and reward processing. Rather than 

focusing solely on ranks of single genes, by means of GSEA we assessed the role of the 

whole gene set associated with depressive disorders. Regarding emotion processing, risk 

genes were predominantly enriched within positively correlated genes (maximum enrichment 

score, ES: 2.881, p = 0.43) in single-site data, albeit not reaching statistical significance. In 

contrast, an enrichment of risk genes was present within negative correlations for reward 

processing (maximum ES: -0.2, p = 0.527). Within the Neurosynth dataset, the maximum 

subcortical ES yielded 0.275 (p = 0.051) for emotion and -0.243 for reward processing (p = 

0.65), respectively (Fig. 4c). In the cortex, GSEA yielded identical enrichment of MDD risk 

genes compared to the subcortical analyses (Supplementary Fig. 6). 
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Discussion 

Here, we applied a comprehensive and integrative methodological approach to investigate the 

relationship between regional gene expression patterns and macroscopic BOLD responses 

elicited by emotional face recognition and the acceptance of monetary rewards, under the 

assumption that strongly correlated genes would coincide with distinct biological programs 

and genes implicated in depressive disorders. Large-scale screening for spatial associations 

between mRNA expression and functional brain activation resulted in ranked lists of 18,686 

genes positively and negatively correlated with BOLD signaling in healthy male and female 

subjects. Similar distributions of Spearman’s correlation coefficients were present for emotion 

(ranging from rho = -0.739 to rho = 0.865 in subcortical and from rho = -0.449 to rho = 0.431 

in cortical areas) and reward processing (from rho = -0.788 to rho = 0.81 in the subcortex and 

from rho = -0.639 to rho = 0.698 in the cortex). Considering strongest brain activation elicited 

by emotion processing in ventral striatum, amygdala, ventral tegmental area, fusiform gyri, 

insula and medial prefrontal cortex, in that order, it seems plausible that higher correlation 

levels were observed in subcortical regions, compared to the cortex. Similarly, subcortical 

activation was more prominent in the reward paradigm. Exploring the GO knowledgebase, we 

detected task-specific processes related to cellular transport as well as neuronal development, 

synapse regulation, and transcription for emotion and reward processing, respectively. 

Notably, associated ontologies were interrelated solely within each fMRI paradigm, thus 

indicating unique biological programs for both investigated RDoC domains. Focusing on 

systems for social processes and positive valence systems, a meta-analytic validation sample 

was obtained from the Neurosynth framework, comprising activation maps from over 90 

fMRI studies. Based on correlations between imaging parameters and gene expression, we 

identified master regulators associated with depressive disorders and task-specific functional 

brain activation, TCF4 and MEF2C, in two independent datasets. While MEF2C showed a 

congruent regulation with negative associations related to emotion and reward processing, 
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TCF4 appeared simultaneously as a regulator for genes negatively correlated with the emotion 

task, but positively correlated with reward processing. Albeit not reaching statistical 

significance, the supplementary GWAS enrichment analysis suggested an inversed 

distribution of risk genes implicated in major depression, showing a rather positive 

association with imaging data for emotional face recognition and a negative association for 

the acceptance of monetary rewards. 

 

Although the role of the transcriptome has been reviewed for several fMRI measures4,5, 

individual genetic influences on emotional face recognition or adaptive reward-based 

decision-making have only been evaluated for the presence of single gene variants of 

functional proteins (i.e. CREB1), irrespective of topological distribution13. Particularly in 

MDD, additive genetic effects may attribute to individual differences in the phenotype and 

highlight the importance of large-scale data in systems medicine to resolve unsettled genetic 

influences on neuroimaging paradigms21. While over 322 million people worldwide suffer 

from depressive disorders, a number that increased by 18.4 % between 2005 and 201514, a 

significant part of the population is also affected by subthreshold depressive symptoms, 

potentially originating from different levels of genetic susceptibility in relevant neuronal 

systems. Our findings strongly support the idea of a dimensional genetic background affecting 

brain regions involved in emotion and reward processing that continuously progresses from 

physiological to pathological states, recently highlighted within the much-noticed RDoC 

framework18. In line with the debilitating symptoms of depressive disorders, we investigated 

paradigms reflecting principal functions of both the reward responsiveness construct within 

the positive valence systems domain as well as the social communication construct, which is 

part of the systems for social processes domain. Hyper- as well as hypoactivations of brain 

regions involved in the integration of social information and a reduced reward sensitivity 

together with decision-making efficiency suggest a polygenic nature of depressive disorders 
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with distinct imaging features22-24. However, identifying the core set of risk genes is 

complicated due to widespread and disease-specific network interactions as well as 

modulatory MRs.  

 

In this study, regulating genes associated with MDD included protein coding MEF2C 

(Myocyte Enhancer Factor 2C), which plays a role in neuronal development, as well as 

hippocampus-dependent learning and memory25,26. Relevance for synapse regulation arises 

due to alternatively spliced transcript variants involved in neuronal processes, e.g. activated 

TLR4 signaling or the cAMP response element-binding protein (CREB) pathway. Besides 

depressive disorders, associations of this transcription activator with other psychiatric 

disorders like schizophrenia27 or attention-deficit/hyperactivity disorder28 have been reported. 

Most notably, significant dependence of striatal neuronal activation was described for an 

identified risk variant in the TMEM161B-MEF2C gene cluster during a reward task, 

endorsing well-known deficits of reward processing in MDD, observed as anhedonia29. 

Besides, we affirm previously reported relationships between neuropsychiatric disorders and 

mutations of TCF4, which has been implicated not only in depression, but also in 

schizophrenia and autism30,31. The transcription factor is mainly characterized by its 

regulatory role for the proliferation and differentiation of neuronal and glial progenitor cells32. 

Interestingly, the master regulatory role of TCF4 in schizophrenia was recently endorsed by 

Torshizi et al., based on the analysis of transcriptional networks in two independent datasets33. 

Since gene variants exhibit their effects by uncountable molecular mechanisms, a closer 

investigation of genes strongly associated with imaging parameters, as well as the MRs 

reported in this study, will prospectively allow further statements about regional protein 

biosynthesis and allocation of resulting proteins to cellular compartments. For example, 

DNA-binding transcription factor FOXN4 (Forkhead Box N4), belonging to the Forkhead-

box (FOX) superfamily, showed highest correlation with the emotional face recognition 
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paradigm in the cortex. FOX transcription factors are involved in regulatory biological 

processes and mutations in forkhead genes have been linked to developmental disorders in 

humans due to substitutions or frameshifts that disable or remove the DNA binding domain34. 

The subtype FOXN4 thereby expresses developmental functions in neural and non-neural 

tissues, particularly during spinal neurogenesis by modulating a specific expression mosaic of 

other proneural factors35. Further relevance for neural development was shown by Chen et 

al.36, who demonstrated location of FOXN4 on neurons and astrocytes, as well as an increased 

expression after spinal cord injury lesions. Although associations with depressive or other 

neuropsychiatric disorders have not been published, the modulatory role of FOXN4 as a key 

transcriptional regulator during developmental processes demands further research, especially 

since the full set of its targets in the CNS are not known yet. Accordingly, the C10orf125 

gene (Fucose Mutarotase, FUOM), expressed in the brain and other tissues, showed highest 

correlation with emotional face recognition in the subcortex. The corresponding gene 

transcript, fucose mutarotase, is an enzyme of the fucose-utilization pathway performing the 

interconversion between α-L-fucose and β-L-fucose on human cell surfaces. Hereof, besides 

one animal study demonstrating male-like sexual behavior in FUOM knock-out mice, 

presumably resulting from reduced fucosylation during neurodevelopment37, further 

associations with pathological states in mammals have not been published for this gene. 

Regarding reward processing, the protein coding DUSP3 (Dual-specificity phosphatase 3) 

gene, member of the dual-specificity protein phosphatase subfamily, showed strongest 

correlation with measured fMRI data in the cortex. Members of these protein tyrosine 

phosphatases (PTPs) regulate the phosphorylation of the mitogen-activated protein (MAP) 

kinase signaling pathway and control cell signaling, especially in regard to cytoskeleton 

reorganization, apoptosis and RNA metabolism38. DUSP3 shows a wide expression in 

different tissues as an opposing factor of protein tyrosine kinases (PTKs) and acts as a central 

mediator of cellular proliferation and differentiation. Whereas a role in neoplastic disorders, 
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pathologies related to immunology, angiogenesis as well as Parkinson’s disease (PD) have 

been related to anomalous tyrosine phosphorylation39,40, associations with psychiatric 

disorders have not been described. In subcortical regions, MDK (midkine) was among the 

highest correlating genes for the reward paradigm. MDK transcribes one of two growth 

factors from the heparin-binding cytokine family and plays a role during the differentiation of 

neurons41. An important role of this gene has been suggested within dopaminergic pathways, 

particularly facilitating neuroprotective effects in neurodegenerative disorders, drug-induced 

neurotoxicity in the striatum, or after neural injury42. Further, disease-related publications 

suggest accumulation of midkine in senile plaques and increased serum levels in patients with 

Alzheimer's disease43, genetic variations associated with PD44, and an influence on addictive 

behaviors45. A possible therapeutic target of MDK was proposed for autoimmune diseases 

including multiple sclerosis46, and more recently, associations of elevated serum levels of the 

neurotrophic factor have been found in autism spectrum disorder47. 

 

Despite advances and decreased costs of high-throughput gene expression profiling the 

necessity for large cohorts in genetic studies call for collaborations and integrative 

approaches. By including whole-brain expression patterns, our approach can be discriminated 

from previous neuroimaging studies solely investigating effects of individual disease-related 

SNPs or environmental factors. Still, a range of influencing factors hampers interpretation of 

spatial associations between gene expression and functional imaging data, like outdated 

annotation information or inaccurate sample assignment. Further, ubiquitous noise due to 

expression of genes with a low spatial dependence occurs, which has also been addressed by 

Gryglewski et al.48. While mRNA levels don’t necessarily reflect actual in vivo protein 

densities, signal alterations in fMRI studies are also impaired by confounding variables, such 

as network-architectures, structural and functional connectivity measures, or non-specific 

brain activation. To minimize BOLD signaling elicited by superimposed executive functions, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2020. ; https://doi.org/10.1101/2020.06.27.175257doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.27.175257
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

control conditions were implemented for each task, facilitating specificity of performed 

correlations for both paradigms. Noteworthy, meta-analytic brain activation maps eventually 

confirmed findings from single-site fMRI measurements. In contrast to a previous study10 that 

identified gene-cognition associations based on the Neurosynth framework, we increased 

spatial resolution and advanced probe selection of gene expression data by application of 

interpolated mRNA maps with continuous expression estimates throughout the whole brain. 

Surely, results of this study are limited due to the structure of applied data sets and reflect 

rather subtle genetic influences on psychological processes, disregarding the dynamic nature 

of short-term regulatory mechanisms, environmental factors or individual variations due to 

genetic ancestry. Inter-individual differences regarding effects of sex, age or genotype cannot 

be considered, when performing integrative analyses on the basis of the AHBA that originally 

derived expression values from only 6 post-mortem brains49,50. Since female gene expression 

was acquired from solely one donor, sex-specific differences had to be neglected in this study. 

Predictions of in vivo gene expression are further limited due to locally and functionally 

regulated epigenetic and epitranscriptomic modifications that affect actual protein 

distribution51. Despite unbalanced sex distribution of the donor brains, the AHBA still offers 

the most comprehensive database for the investigation of human whole-brain gene expression, 

comprising nearly 20,000 genes. Within the framework of future studies, the vast potential of 

the AHBA might even be increased by re-assigning available mRNA probes to corresponding 

genes on the basis of the latest sequencing information to increase the number of specifically 

annotated genes. Additionally, harmonized data processing pipelines or methodological 

guidelines, instead of rather unique approaches to data integration and corresponding 

statistical measures, could increase comparability between studies52-54. Although a whole-

brain proteome atlas including relevant genotypes would reflect actual protein expression 

more reliably, such database has not been published yet. 
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Since explanations of altered fMRI activations often neglect the spatial distribution of 

investigated genetic substrates, evaluating the role of gene expression in neuropsychiatric 

disorders requires an integration of high-resolution neural information from molecular sources 

for more precise interventions in the future. Our analyses highlight the advantages of a 

comprehensive approach to reveal genetic influences on functional brain imaging by 

integrating multimodal imaging and large-scale transcriptome data with sufficient power. 

While insignificant results of the performed GSEA are partly affected by the small number of 

risk genes implicated in depression, low enrichment of the risk gene set might also be caused 

by a more prominent role of individual MRs that modulate up- and downregulation of 

subordinate genes, including risk and non-risk genes. In general, the GWAS performed by 

Wray and colleagues16 is among the largest ever conducted in psychiatric genetics and 

provides a solid basis for further research about the genetic architecture of MDD. In this 

study, we performed an enrichment analysis with this GWAS data to explore imaging 

paradigms that specifically integrate core depressive symptoms in line with current RDoC, 

like dysfunction in social interaction and inability to properly experience reward. 

 

While traditional imaging genomics strategies have solely investigated the effects of 

individual genotype variations, integration of whole-brain gene expression patterns provide 

superior information for the understanding of neuropsychiatric disorders. Here, biological 

programs related to cellular transport, neuronal development, synapse regulation, and 

transcription processes were specifically associated with the emotion and reward system, 

highlighting the role of topological gene expression for imaging paradigms. Further, 

identification of regulatory genes TCF4 and MEF2C endorses the investigation of commonly 

altered brain activation during emotional face recognition and the acceptance of monetary 

rewards in depressed individuals. Overall, our work exemplifies an integrative approach 
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including complementary information from multiscale data, which seems to be increasingly 

relevant in the big data era.   
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Materials and Methods 

Participants 

Healthy subjects were recruited from the university environment and gave written informed 

consent to study procedures previously approved by the Ethics Committee of the University 

Medical Center Göttingen. Included participants were aged between 22 and 52 years (M = 

40.5, SD = 14.37), of Caucasian European ethnicity and were fluent in German language. 

Exclusion criteria comprised contraindications to MRI, past or present psychiatric, 

neurological, or medical disorders, consumption of psychotropic drugs as well as positive 

family history of psychiatric disorders. In total, a number of 26 men and 22 women completed 

two fMRI paradigms including reward processing and emotional face recognition. Excessive 

movement in any of the three translation (> 2 mm) or rotation (> 2°) planes resulted in 

exclusion of 4 participants. 

 

Functional brain imaging 

Functional imaging data was acquired using a 3 T scanner (Siemens Magnetom TRIO, 

Siemens Healthcare, Erlangen, Germany) and a 32-channel head coil with a 2 x 2 x 2 mm 

voxel size, TR 2500 ms, TE 33 ms, 70° flip angle, 10 % distance factor, FOV 256 mm and 60 

slices with multiband factor of 3 for the acquisition of T2*-weighted images. Imaging data 

analysis was performed using Statistical Parameter Mapping (SPM12; Wellcome Department 

of Imaging Neuroscience, Institute of Neurology, London, UK) and Matlab R2015b (The 

Mathworks Inc., Natick, MA, USA). First, echo planar imaging (EPI) images were standardly 

preprocessed with slice time correction, realignment, and normalization into the MNI space, 

as well as smoothing with an 8 x 8 x 8 mm FWHM Gaussian kernel. 

Two different fMRI paradigms were analyzed for the same group of participants during two 

states. First, specific activation maps reflected brain activation during performance of the 

tasks. In contrast, corresponding control conditions represented non-specific hemodynamic 
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activity inherent to any task performance during fMRI measurement, caused by unspecific 

physiological activation, e.g. related to visual, auditory, attentional or motor functions. 

Estimates of neural activity were initially computed with a general linear model (GLM) for 

each subject individually (first-level analysis) with nuisance movement parameters regressed 

as covariates-of-no-interest. Later, experimental and control conditions were evaluated at 

group level (second-level analysis) and resulting activation maps, which represented task-

specific brain activation, were used for further analyses.  

 

Emotional face recognition 

The paradigm of implicit emotional face recognition contains two different contexts: human 

faces and geometric objects. Pictures of males and females with varying negative face 

expressions obtained from the Radboud database55 were presented for 17 s, during which 

participants responded to the gender of the presented person with a button press. Thereby, 

perception of emotions was rather implicit, which has been shown to enhance the activation 

of emotional correlates56. For the control condition, participants were instructed to respond 

analogously to the shape of an object, either an ellipse or a rectangle, positioned in the face 

area and made from scrambling original face trials. All trials were controlled for brightness, 

contrast and presented in a very similar composition. The activation patterns representing the 

experimental and control conditions were computed using first-level (single-subject) contrasts 

of the trials from emotional faces and object blocks, respectively. Resulting data were then 

used for second-level (group) analysis, as standardly performed for random effects model.  

 

Reward processing 

For this study, a previously established fMRI paradigm was implemented, which has been 

broadly used to investigate physiological and pathological reward mechanisms57,58. Briefly, 

participants performed a modified delayed match to sample task, including two contexts 
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involving previously conditioned stimuli to monetary rewards: acceptance or rejection of 

rewards, i.e. pressing a button when squares are shown. Subjects were instructed they would 

receive 30 € for their participation, and that they were able to double this amount according to 

their task performance. As control trials, subjects responded with a button press to stimuli that 

required motor performance as well as attentional and memory resources, but were not 

conditioned to monetary reward. To compute the control condition, first-level (single-subject) 

contrasts of correctly matched sample trials within the same experimental block of reward 

trials were used. For experimental conditions, first-level experimental contrasts were 

calculated from brain activation elicited during acceptance of previously conditioned stimuli. 

At group-level, activations related to experimental and control trials were contrasted to obtain 

functional activation patterns.  

 

Meta-analytic functional brain activation 

Besides fMRI data obtained from participants performing two different tasks at our 

institution, we evaluated large-scale meta-analytical imaging data from the Neurosynth 

platform (https://neurosynth.org/), which provides probabilistic brain activation maps 

computed from an automated meta-analysis based on published fMRI studies. This online 

database combines text-mining and machine-learning techniques to generate statistical 

inference maps of currently 1,335 imaging terms from 14,371 fMRI studies including male 

and female participants20. Within the framework of the Neurosynth database, particular 

psychological processes are labeled with terms of interest and represented by uniformity test 

maps. For this study, activation maps related to emotion (“fearful faces”) and reward 

(“rewards”) processing were downloaded in MNI152 2 mm space resolution to validate fMRI 

data obtained at our institution. Each uniformity test map provides z-scores, which reflect the 

proportion of studies that report cerebral activation at a given voxel. Thus, obtained 
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Neurosynth maps depicted specific brain areas that were consistently reported in studies 

investigating fMRI activation for emotion and reward processing, respectively. 

In a first step, activation maps, with z-scores representing how brain regions are related to the 

chosen term, were generated from the Neurosynth online database. Since the online user 

interface only provides thresholded maps, we used the Neurosynth toolbox for python to 

create unthresholded maps that were further smoothed using 8 x 8 x 8 mm FWHM to match 

the kernel size of single-site data. Assessment of conformity between meta-analytic data and 

measured fMRI maps was performed qualitatively and quantitatively. Thereby, region-wise 

Spearman’s correlation coefficients were calculated in cortical and subcortical regions, 

whereby the Neurosynth terms “fearful faces” and “rewards” matched well with functional 

activation related to recognition of negative faces and the acceptance of monetary rewards, 

respectively. Due to low fMRI activity, cerebellum was not considered for the comparison. In 

contrast to single-site fMRI data, meta-analytical information comprises rather positive 

values, due to the sparse reporting of brain regions showing negative activation in most 

neuroimaging studies. Hence, when processing unthresholded data from the uniformity test 

maps, mainly positive values determined the association analysis between single-site and 

Neurosynth data.  

 

Whole-brain gene expression 

The AHBA (www.brain-map.org) consists of microarray assessments from 3,702 brain tissue 

samples collected across 6 human donors (1 female, mean age = 42.5, SD = 13.4) derived 

from diverse regions of the brain, extensively described in the original publications49,50. As 

delineated by other authors54, multiple data processing steps such as gene annotation, probe 

selection, or sample assignment need to be considered to facilitate subsequent correlation 

analyses between gene expression and neuroimaging data. Also, by using common 

parcellation schemes expression levels in numerous brain regions devoid of tissue samples 
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remain indefinite, thus demanding the generation of whole brain transcriptome maps. To 

sufficiently meet proposed methodological requirements, gene expression data (log2-values) 

from the AHBA were obtained according to by Gryglewski et al.48 to compensate for inter-

individual differences between mRNA probes and donor brains as well as sparse anatomical 

sampling, attributable to high efforts in tissue preparation and processing. Sex-specific 

differences were not considered due to low validity of female transcriptome data within the 

AHBA. Using Gaussian process regression, interpolated transcriptome maps comprising 

expression of 18,686 genes associated with Entrez Gene IDs at all cortical and subcortical 

structures were created (predicted transcriptome maps are available for download at 

www.meduniwien.ac.at/neuroimaging/mRNA.html). Nonetheless, for a certain number of 

remaining genes transcriptome maps have not been predicted sufficiently due to presence of 

insensitive probes or missing allocations to gene IDs.  

 

Spatial correlation between gene expression and brain activity 

Initially, gene lists ranking correlations between transcriptome maps and functional brain 

activation patterns elicited by selected paradigms were compiled, whereby the ranking of each 

gene depended on its correlation strength with the corresponding single-site BOLD activation 

map. After initial inspection, the cerebellum was excluded from further analysis, due to 

marginal activation during both fMRI paradigms. On the basis of known differences in gene 

expression between broad anatomical regions49,59 correlation analyses were assessed within 

cortical and subcortical regions separately (Supplementary Fig. 7). To conduct association 

analyses, all available transcriptome maps were aligned with group-averaged fMRI activation 

maps in MNI space for each paradigm. To account for partly non-symmetrical distribution of 

mRNA data and existence of outliers, Spearman’s correlation coefficients were calculated 

between each gene-imaging pair (mRNA expression vs. fMRI activation). Main findings are 

reported for region-wise analyses, along with additional results for voxel-wise correlations 
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(total number of voxels was 129,817 in the cortex and 10,863 in subcortex; zero-values 

outside of the investigated area were excluded). Thereby, each statistical map was segmented 

into brain regions according to the Brainnetome atlas, which was selected for primary 

analyses, because it labels a sufficient number of subcortical (n = 36) and cortical (n = 210) 

regions-of-interest (ROIs)60. A complementary analysis with fewer brain regions (12 

subcortical and 78 cortical ROIs) was done using the automated anatomical labeling (AAL) 

brain atlas61, in order to evaluate influences of different parcellation methods. Both atlases 

were aligned with fMRI maps as well as transcriptome maps in MNI space using SPM12, 

while extraction of ROIs and correlation analyses were performed in MATLAB2018a 

(www.mathworks.com). Statistical significances of region-wise correlations were assessed by 

means of randomization tests, including 10,000 iterations. For each sampled permutation, 

mRNA values were randomly shuffled and correlated with fMRI data. Two-sided p-values 

were calculated as the proportion of sampled permutations where the absolute value was 

greater than the true correlation coefficient (non-shuffled data). 

 

Identification of overlap between analyzed data set 

To compare various sets of mRNA-fMRI correlations we used Rank-Rank Hypergeometric 

Overlap (RRHO) package (version 1.26.0) in R 

(https://www.bioconductor.org/packages/release/bioc/html/RRHO.html), which allows 

statistical testing of the extent of overlap between two ranked lists. RRHO determines the 

degree of differential expression observed in profiling experiments using the hypergeometric 

distribution. While originally applied for the comparison of gene expression profiles between 

different microarray platforms or types of model system, we used RRHO to compare genes 

that ranked according to relevant measures of differential information, in this case the 

correlation strength with fMRI data. Thereby, genes of two datasets were ranked according to 

their names and corresponding ranks tested for statistical overlap. We provide both a 
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graphical representation of the characteristics of analyzed datasets (corresponding p-values) 

as well as a statistical measure of overlap (rhoRRHO). A high overlap implies that positively 

correlating genes of a given list show high ranks in the second list, while genes with a 

negative correlation are also negatively associated in the alternative list. Applying this method 

offered the advantage of using the whole continuum of previously correlated genes without 

the need to truncate the list by pre-defined thresholds for each combination of used datasets.  

 

Analysis of biological processes 

Making use of the GO knowledgebase19,62, a comprehensive resource for computational 

analysis of large-scale data, we explored enriched biological processes that included genes 

with expression patterns highly correlated with each fMRI paradigm. Cytoscape plugin 

“ClueGO”63 was used to compute GO enrichment (default parameters), comprising all listed 

terms at the time of analysis (18,361 biological process terms). Only findings of specialized 

biological processes (GO levels higher than 4) were reported, to attain more conclusive 

information about underlying genetic substrates and their functions within investigated 

emotion and reward systems. Compiled ranked lists originating from region-wise analyses 

were included for the investigation of gene ontology, due to more refined results. For each 

paradigm, the GO analysis was performed separately for positively and negatively correlated 

genes with cut-off values for correlation coefficients above rho = 0.5 and below rho = -0.5, 

which excluded non-spatially depending genes showing insufficient associations with fMRI 

data. Significance level was set to a p-value minimum of 0.05, after applying Bonferroni 

correction to the enriched GO terms. Considering potential overlaps across imaging 

paradigms, interrelations between all significant biological processes found in the GO 

analysis were quantified by means of Spearman’s correlation coefficients. 
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Association of risk genes implicated in major depression with functional imaging data 

Topological expression patterns of genes implicated in major depression and their association 

with neuroimaging properties have not yet been investigated. Regarding genetic risks for 

depressive disorders, recently 44 genetic risk loci for major depression were identified in a 

genome-wide association meta-analysis by Wray et al.16, which included 135,458 cases and 

344,901 controls. Based on this meta-analysis, we investigated if the MDD risk gene set 

contained MRs of previously compiled genes showing strong correlations between gene 

expression and imaging data. Thereby, the role of all 42 functional risk genes proposed by 

Wray et al. was evaluated for each fMRI paradigm (Supplementary Table 4). 

By using the cytoscape plugin iRegulon64, we performed master regulator analysis separately 

for all positive and negative mRNA-fMRI correlations above rho = 0.6 and below rho = -0.6, 

respectively. Rather low thresholds were set to ensure a sufficient number of evaluated genes 

in subcortical regions. In the cortex, insufficient data availability hampered analyses of co-

regulatory networks, due to generally lower correlation coefficients of mRNA-fMRI 

associations compared to the subcortex. Parameters, such as enrichment score and 

significances, were used as default; distance from TSS was set to 500bp. We compared the 

master regulators on each predicted regulon with the genes associated with risk for major 

depression. 

Additionally, potential enrichment of GWAS risk genes implicated in major depression was 

assessed by means of GSEA65,66 for each fMRI paradigm. Based on initially compiled gene 

lists that were ranked by correlation strengths with fMRI data, the position of each MDD risk 

gene was compared to the position of all other genes. Thereby, risk genes clustered either 

within positive or negative correlations with imaging data, depending on the investigated 

paradigm. In terms of the methodology, the GSEA enrichment score reflects the degree to 

which the analyzed MDD risk gene set is overrepresented within each ranked list. We tested, 

whether MDD risk genes were randomly distributed throughout each ranked list or primarily 
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found at the top (showing positive correlations with fMRI data) and bottom (showing 

negative correlations). We used the GSEA implementation in R available in the package 

clusterProfiler67. Ranked correlation coefficients indicating the relationship between imaging 

and transcriptome data and corresponding p-values were defined as input factors for the 

enrichment analysis, which required a summarized biological value for each included gene. 

Genes ranked in higher positions contributed more to resulting enrichment p-values than 

lower ranked genes. Corresponding to a weighted Kolmogorov-Smirnov-like statistic, the ES 

was calculated by a stepwise increase or decrease of the total sum statistic of the ranked list, 

depending on the ranking of MDD risk genes, as described by Subramanian et al.65. The 

maximum ES (with positive or negative values), representing the maximum deviation from 

zero, thereby indicated enrichment of positive or negative correlations, respectively. 
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Fig. 1: Rank–rank hypergeometric overlap (RRHO) visual representation of measured 

imaging data applying automated anatomical labeling (AAL) vs. the Brainnetome atlas. 

Analyzing single-site data, region-wise RRHO comparing ranked lists including 18,686 genes 

indicated high agreement between the atlases. Genes with congruent correlation coefficients 

(either positive or negative) show higher statistical significance in the bottom left and top 

right corner. Comparisons of both parcellation methods were performed for emotional face 

recognition in the subcortex (rhoRRHO = 0.697) and cortex (rhoRRHO = 0.822), as well as for 

reward processing in subcortical (rhoRRHO = 0.748) and cortical regions (rhoRRHO = 0.918).  
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(d)  

 

 

Fig. 2: Comparison of task-specific functional brain activation and mRNA expression of high-

correlating genes in cortical and subcortical regions. (a) The scatter plots depict correlations 

between cortical mRNA levels of FOXN4 and single-site imaging data (emotional face 

recognition) for voxel-wise (rho = 0.285; 129,817 voxels) and region-wise (rho = 0.431; 210 

regions, p < 0.0001) analyses. Each dot represents expression values and corresponding 

imaging parameters at target coordinates or within anatomical regions, respectively. (b) 

Cortical FOXN4 gene expression and brain activation patterns during emotion processing are 

visualized in MNI space based on whole-brain transcriptome maps (log2) and functional 

magnetic resonance imaging data (t-value). (c) Associations between subcortical mRNA 

levels of MDK and single-site imaging data (acceptance of monetary rewards) for voxel-wise 

(rho = 0.488; 10,863 voxels) and region-wise (rho = 0.803; 36 regions, p < 0.0001) analyses. 

(d) Subcortical MDK gene expression (log2) and brain activation patterns during reward 

processing (t-value).  
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Fig. 3: Heatmap depicting interrelations of associated biological processes listed within the 

gene ontology (GO) knowledgebase for emotion and reward processing. Overall, 5 (emotion, 

positive), 78 (reward, negative), and 27 (reward, positive) GO terms that overlapped with 

genes strongly correlated with single-site imaging data were compared in subcortical regions 

(GO terms of analyzed biological programs are provided in Supplementary Table 3). Results 

yielded marked redundancies for both paradigms (emotional face recognition: blue; 

acceptance of monetary rewards: red). Considering the multitude of possible associations of 

18,686 genes with all listed GO terms, analyses were restricted to higher ontological 

hierarchies (GO levels above 4). Further, only reasonable correlations between imaging and 

gene expression data were analyzed, with a cut-off value of rho < -0.5 and > 0.5, respectively. 
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Fig. 4: Relationship between risk genes for depressive disorders and genes correlated with 

functional brain imaging. (a) Two master regulators associated with depressive disorders and 

corresponding subordinate genes correlated with emotion and reward processing present in 

single-site and meta-analytical data sets are presented. Graphical visualizations are based on 

associations between gene expression and single-site imaging data in subcortical regions (p < 

0.001). The size of each circle corresponds to the absolute value of Spearman’s correlation 

coefficient of the respective gene. MEF2C mainly regulates genes with expression patterns 

negatively correlated with emotion (16 targets, blue) and reward processing (51 targets, red). 

(b) In contrast, TCF4 inversely regulates genes showing negative associations with emotion 

(15 targets), but positive associations with reward processing (67 targets). (c) Gene set 

enrichment analysis revealed an inversed relationship between emotion and reward processing 

in the subcortex. Vertical lines on the x-axis represent positions of 42 functional risk genes 

within each ranked list including 18,686 genes, dashed lines mark the locations of the 

maximum enrichment score (ES) which draws a density line depicting the peak enrichment of 

risk genes. Analyzing data from the Neurosynth framework, ES yielded a positive value for 

emotion (0.275, p = 0.051) and a negative value for reward processing (-0.243, p = 0.65). 
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Tables 

Table 1: Ranking of Spearman’s correlation coefficients for genes with expression patterns 

showing highest positive associations with single-site imaging data (emotional face 

processing).  

Subcortex Cortex 

Voxel-wise correlations Region-wise correlations Voxel-wise correlations Region-wise correlations 

rho Gene name rho Gene name rho Gene name rho Gene name 

0.633 MALL 0.865 C10orf125 0.328 SPDYA 0.431 FOXN4 

0.616 HRASLS5 0.845 PTRH1 0.298 CCDC62 0.395 PIK3R6 

0.614 FAT4 0.818 GHRLOS 0.296 PYGO2 0.390 RYBP 

0.612 SCARA5 0.817 SLC24A4 0.289 CPZ 0.387 STC1 

0.610 MESP1 0.817 AC022098.3 0.285 FOXN4 0.384 CCDC62 

0.608 LINC00260 0.812 ZNF280C 0.283 FRMD3 0.379 FUBP1 

0.604 SKAP2 0.810 FUT1 0.282 PHOX2B 0.378 SMYD1 

0.602 SCPEP1 0.804 NLE1 0.280 ATXN10 0.356 MIA2 

0.596 CRHBP 0.803 FBP1 0.276 XAGE3 0.356 TMPRSS4 

0.594 RAB3GAP1 0.803 C16orf55 0.273 EGFL6 0.350 DLG3 

Footnote: All listed region-wise correlation coefficients were significant in permutation tests 

(p < 0.0001). Genes marked in bold ranked within the 10 highest positively correlating genes 

in both voxel-wise and region-wise analyses. 
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Table 2: Ranking of Spearman’s correlation coefficients for genes with expression patterns 

showing highest positive associations with single-site imaging data (acceptance of monetary 

rewards).  

Subcortex Cortex 

Voxel-wise correlations Region-wise correlations Voxel-wise correlations Region-wise correlations 

rho Gene name rho Gene name rho Gene name rho Gene name 

0.488 MDK 0.810 VMO1 0.548 DUSP3 0.698 DUSP3 

0.481 HELLS 0.805 OSTM1 0.547 CA10 0.681 CA10 

0.475 RBBP8 0.803 MDK 0.542 PIK3CD 0.680 PIK3CD 

0.453 ATF1 0.798 KRT18P19 0.533 GRB14 0.653 HDAC9 

0.451 KRT18P19 0.791 IMPACT 0.517 ASS1 0.640 LASS6 

0.450 CD274 0.787 USP24 0.516 LASS6 0.639 CCNYL1 

0.446 C8orf22 0.784 NEK1 0.505 HDAC9 0.637 GRB14 

0.442 SALL4 0.782 RCBTB2 0.504 FBXL2 0.627 OLFM3 

0.440 USP24 0.782 PCBD2 0.497 OLFM3 0.609 SHC1 

0.439 SFRP5 0.781 CD99 0.492 TMEM150C 0.607 NT5DC2 

Footnote: All listed region-wise correlation coefficients were significant in permutation tests 

(p < 0.0001). Genes marked in bold ranked within the 10 highest positively correlating genes 

in both voxel-wise and region-wise analyses. 
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Table 3: Master regulator analysis in subcortical regions for emotion and reward processing. 

 Emotional face recognition Acceptance of monetary rewards 

 Negative gene 

associations 

Positive gene 

associations 

Negative gene 

associations 

Positive gene 

associations 

Single-site 

imaging data 

TCF4 (15/79) 

MEF2C (16/79) 

LHX2 (18/79) 

PAX6 (18/79) 

--- PAX6 (20/89) 

LHX2 (43/89) 

MEF2C (51/89) 

SOX5 (57/513) 

TCF4 (67/513) 

Meta-analytical 

imaging data 

MEF2C (52/1332) 

TCF4 (649/1332) 

--- MEF2C (21/348) 

 

TCF4 (87/208) 

Footnote: Master regulators were evaluated in single-site as well as meta-analytical imaging 

datasets by means of co-regulatory networks built with iRegulon software (p < 0.001). 

Ranked genes that showed highest correlation with brain activation maps and 42 functional 

risk genes associated with major depression were used as input data. Values in parenthesis 

represent the number of targets of each regulatory gene within the group and total number of 

possible targets. 
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