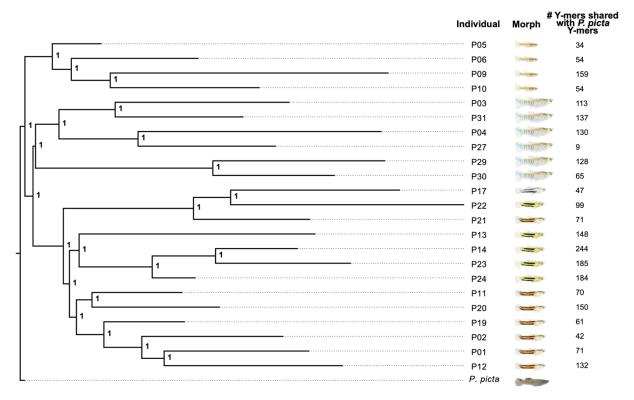
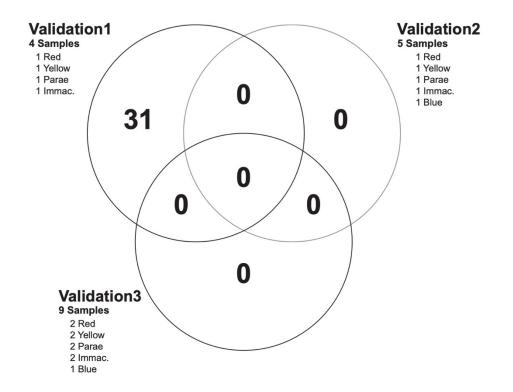
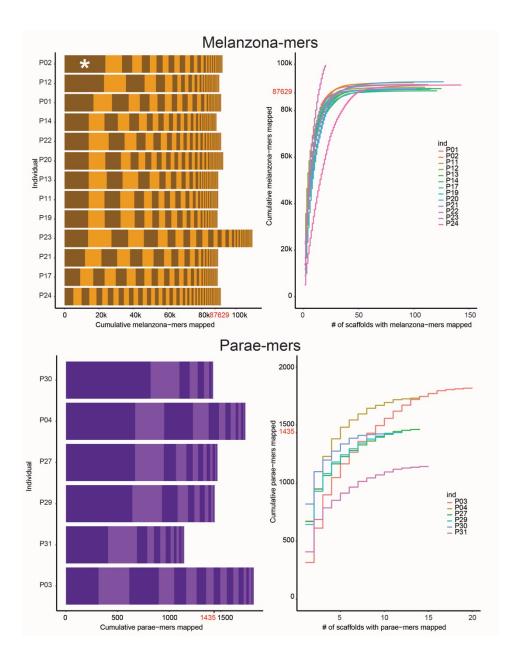

Supplementary Information for


Extreme Y chromosome polymorphism corresponds to five extreme male reproductive morphs

Benjamin A Sandkam^{*}, Pedro Almeida, Iulia Darolti, Benjamin Furman, Wouter van der Bijl, Jake Morris, Godfrey Bourne, Felix Breden, Judith E. Mank


*Benjamin A Sandkam Email: <u>sandkam@zoology.ubc.ca</u>


Fig. S1. Divergence between X and Y in *Poecilia parae* and the sister species *Poecilia picta* indicate recombination was stopped before the five morphs controlled by the Y chromosome evolved in *Poecilia parae*. M:F log₂ coverage of RACA anchored scaffolds for all five morphs of *P. parae* (red) and the close relative *P. picta* (black) (Darolti *et al.* 2019). Lines represent sliding window of 15 scaffolds. Shaded bars represent the 95% confidence interval based on bootstrapping coverage across the autosomes for *P. parae* (pink) and *P. picta* (grey).

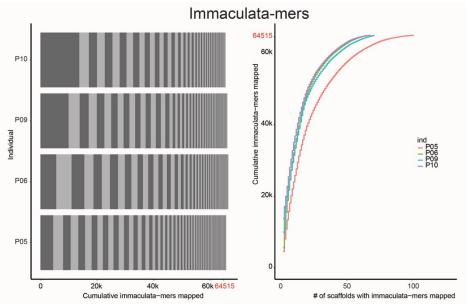


Fig. S2. Bayesian phylogeny built on presence/absence of the 27,950,090 *P. parae* Y-mers and the 646,754 *P. picta* Y-mers in each individual and rooted on *P. picta* (as in Figure 2). The posterior probability is presented at each node. The number of Y-mers each individual shares with *P. picta* Y-mers is denoted to the right. *P. picta* Y-mers are distributed across all morphs indicating that they have been segregating on non-recombining regions of the Y chromosome since recombination was stopped in the common ancestor of *P. parae* and *P. picta*.

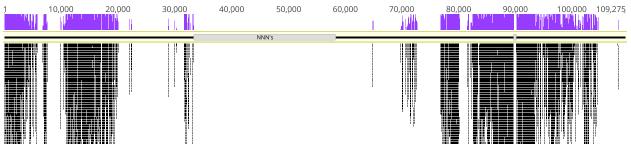


Fig. S3. Validation of morph-mer identification pipeline using random sets of individuals from each of the different morphs. Different samples were used for each set except for blue where the 1 sample was used in validation set 2 and validation set 3. There were a low number of Y-mers unique to sets of four random individuals and zero Y-mers unique to sets with more than four individuals. This demonstrates the false positive rate of our analysis was quite low because all major morphs had at least four individuals.

Fig. S4. Mapping distribution for each set of morph-mers mapped to *de novo* scaffolds of males of that morph with no mismatches, gaps, or trimming. Left: cumulative morph-mers mapped for each individual, each change in hue is a different scaffold. A large percentage of morph-mers generally map to just one or a few scaffolds indicating that our *k*-mer approach reveals regions of highly diverged morph specific sequence rather than single SNPs distributed throughout the genome. Right: cumulative morph-mers mapped presented as a function of the number of scaffolds. The strong deviation from 1:1 shows morph-mer mapping is non-random and further supports the morph-mers approach is identifying regions of morph specific sequence. The total number of unique morph-mers identified for that morph is indicated in red on the axis (note the variation in number of morph-mers mapped is due to some individuals having morph-mers map to multiple scaffolds). Astrix in P02 of the melanzona-mers indicates the example alignment scaffold with melanzona-mers presented in Supplementary Figure 4.

Fig. S5. Melanzona-mers aligned to scaffold 104666 of sample P02 with no mismatches, gaps, or trimming. Each 31bp melanzona-mer is shown aligned below the reference sequence, and coverage is shown in purple above the reference sequence. Of the 87,629 unique melanzona-mers; 23,773 aligned to this scaffold. Regions of Ns are denoted on the reference genome in grey and could explain a lack of melanzona-mers aligning to these regions. The strong clustering and overlapping nature of the melanzona-mers indicates sequence is highly diverged both from females and from the other morphs.

	Parae	Immaculata	Melanzona Red	Melanzona Yellow	Melanzona Blue	Ref.
Physiology						
Body Size	Large	Small	Medium	Medium	Medium	1
Color Pattern	Vertical stripes	Resembles juvenile female	Horizontal stripes	Horizontal stripes	Horizontal stripes	1,2,3
Coloration	Silver/purple	None	Red	Yellow	Blue	1,2,3
Absolute Testis Mass	Medium (90% of immaculata)	Largest	Small (70% of immaculata)	Medium (90% of immaculata)	Small (70% of immaculata)	1
Testis/Body Mass	Intermediate	High	Low	Intermediate	Low	1
Sperm Midpiece	Long	Short	Long	Long	Long	1
Flagellum Length	Short	Long	Short	Intermediate	Short	1
Sperm per Ejaculate	Fewer	Most	Fewer	Fewer	Fewer	1
Sperm Length	Short	Long	Short	Long	Short	1
Behavior						
Interaction w/ other males	Highly aggressive	Non-aggressive	Aggressive	Aggressive	Non-aggressive	3
Courtship Behavior	Force copulate	Sneak copulate	Display	Display	Display	1

Table S1. Phenotypic characteristics that differ across the five male morphs of *Poecilia parae*.

(1) Hurtado-Gonzales and Uy. 2009. Anim. Behav. 77,1187-1194. (2) Lindholm et al. 2004. Heredity 92, 156-162. (3) Hurtado-Gonzales and Uy. 2010. BMC Evol Biol 10, 391.

(4) Liley. 1966. Behaviour Supplement 13, 1-197.

Morph	Sample	Population	Sequencing	# Paired Reads
	P 15	Cemetery	10X	566,474,152
	P 26	Seawall Trench	10X	586,091,672
	P 32	Cemetery	10X	642,872,944
	P 34	Seawall Trench	10X	599,429,008
	P 36	Cemetery	10X	587,807,726
Females	P 37	Seawall Trench	10X	586,019,978
	P 16	Cemetery	Illumina	755,768,880
	P 25	Seawall Trench	Illumina	861,217,302
	P 33	Cemetery	Illumina	591,002,416
	P 35	Cemetery	Illumina	813,848,774
	P 39	Seawall Trench	Illumina	541,464,112
	P 05	Seawall Trench	10X	665,696,764
	P 06	Seawall Trench	10X	687,641,508
Immaculata Morph	P 09	Seawall Trench	10X	666,405,666
	P 10	Seawall Trench	10X	628,472,300
	P 40	Seawall Trench	Illumina	492,568,288
	P 03	Seawall Trench	10X	636,937,278
	P 04	Seawall Trench	10X	673,606,290
Parae Morph	P 27	Seawall Trench	10X	682,154,596
	P 29	Seawall Trench	10X	697,480,156
	P 30	Seawall Trench	10X	598,808,486
	P 31	Seawall Trench	10X	634,574,988

Table S2. Sequencing method (10X Chromium linked reads or direct PE Illumina) andnumber of paired reads used for coverage analyses of all 40 wild caught individuals.

	P 28	Cemetery	Illumina	799,757,386
	P 01	Cemetery	10X	605,264,908
	P 02	-	_	
	P 02	Cemetery	10X	599,899,768
	P 11	Seawall Trench	10X	663,454,532
Red Melanzona	P 12	Cemetery	10X	679,401,488
Morph	P 19	Cemetery	10X	619,323,522
	P 20	Seawall Trench	10X	614,834,422
	P 21	Cemetery	10X	564,829,682
	P 38	Seawall Trench	Illumina	789,618,098
	P 13	Seawall Trench	10X	632,280,752
Yellow	P 14	West Watuka	10X	622,311,946
Melanzona Morph	P 22	Seawall Trench	10X	649,735,580
	P 23	West Watuka 10X		674,089,582
	P 24	West Watuka	10X	587,826,556
	P 17	Cemetery	10X	705,952,894
Blue Melanzona	P 07	Seawall Trench	Illumina	771,876,214
Morph	P 08	Cemetery	Illumina	479,310,754
	P 18	Seawall Trench	Illumina	813,513,894

Table S3. Assembly statistics for each of the 29 genomes *de novo* assembled by Supernova. Bold samples indicate those used for follow-up coverage analyses. Genome size is expected to be ~730MB based on close relatives with known genome sizes (*Poecilia reticulata* 731Mb, *Xiphophorus helleri* 730Mb).

Morph	Sample	Assembly Size (MB)	Scaffold N50 (kb)	No. Scaffolds <u>></u> 10kb	No. Scaffolds <u>≥</u> 1kb	Contig N50 (kb)	Phased N50 (kb)	Coverage
	P01	663.83	3201.95	2081	20376	38.36	2252.96	53X
	P02	664.43	2150.00	2493	20516	38.78	1359.88	51X
	P11	562.45	44.07	17986	70941	23.36	70.98	52X
Red Melanzona	P12	661.61	3683.18	2114	22269	37.97	2240.87	60X
	P19	582.84	47.86	17071	67134	23.08	100.55	48X
	P20	611.40	45.28	18734	63207	23.45	94.87	42X
	P21	665.11	1679.06	2677	20797	38.28	1266.47	51X
	P13	654.30	1212.01	3205	23821	36.88	1120.80	53X
	P14	616.95	50.94	16711	58496	24.61	115.13	49X
Yellow Melanzona	P22	665.85	61.08	15566	53875	27.00	137.91	46X
	P23	655.37	97.46	12443	43298	27.22	190.30	61X
	P24	234.10	17.09	13932	117930	13.32	5.82	45X
Blue Melanzona	P17	654.75	1995.50	2568	23989	33.84	1598.03	63X
	P03	655.50	93.43	12361	43771	28.68	165.34	51X
	P04	658.87	599.09	4375	25416	34.50	599.94	55X
Deves Merch	P27	667.40	274.95	6754	28937	30.94	312.62	59X
Parae Morph	P29	599.06	38.95	20291	68801	21.92	84.43	46X
	P30	341.91	20.87	17566	108816	15.66	40.56	39X
	P31	604.74	39.45	20427	65373	21.69	91.41	44X
lunum o cuil o t-	P05	71.97	14.71	4740	138919	13.03	5.44	42X
Immaculata	P06	623.35	46.83	18525	62105	24.07	105.78	53X

	P09	651.69	3308.41	2291	22613	35.38	2284.14	61X
	P10	650.86	105.21	11446	39921	28.88	183.48	52X
	P15	69.89	15.53	4441	140510	13.68	3.91	44X
	P26	96.86	13.50	6848	144112	11.90	6.34	38X
Female	P32	600.79	40.57	19565	62451	23.02	75.27	48X
remaie	P34	508.35	34.52	18503	79658	20.75	92.35	37X
	P36	329.51	23.33	15804	103659	16.40	35.28	18X
	P37	382.74	23.43	18121	95193	17.16	41.07	21X

Morph	Sample	Number of Scaffolds	Amount of sequence
	P01	77	995,370
	P02	80	1,122,565
	P11	85	865,095
	P12	81	1,153,044
	P13	92	1,610,202
Malanzana	P14	91	926,825
Melanzona	P17	104	4,250,903
Morph	P19	82	990,514
	P20	94	877,954
	P21	80	1,070,743
	P22	95	1,164,800
	P23	98	1,283,990
	P24	113	668,430
	P03	19	164,531
	P04	14	127,542
Daraa Marah	P27	14	84,778
Parae Morph	P29	12	90,235
	P30	9	96,497
	P31	14	114,805
	P05	126	521,712
Immaculata	P06	100	1,035,078
Morph	P09	100	9,748,162
	P10	81	1,388,117

Table S4. Amount of sequence in scaffolds with >5 morph-mers. Bold indicatessamples used for annotation.

Table S5. Genes annotated on the scaffolds with the Y-mers that are present in every male.

Gene Name	Copies
CRYBB1	3
CRYBA4	1
GGTA1	1
Retrovirus-related Pol polyprotein from	
type-2 retrotransposable element R2DM	
Retrovirus-related Pol polyprotein from	
type-1 retrotransposable element R2	

Table S6. *Melanzona morph*: Genes predicted on sample P01 (red melanzona) scaffolds containing >5 melanzona-mers and >1.5-fold melanzona male: female coverage. Scaffolds with >0.025X coverage by melanzona males but <0.025X coverage by females are considered 'Male Unique'. Scaffolds with >0.025X coverage by melanzona males but <0.025X coverage by non-melanzona males are considered 'Melanzona Unique'.

Gene	P01 Scaffold	Melanzona:Female Coverage	Melanzona:Non- Melanzona Coverage
TRIM35	111589_P01	Male Unique	Melanzona Unique
Tbx3	113310_P01	Male Unique	5.08
Tbx3	113310_P01	Male Unique	5.08
Texim2	114702_P01	Male Unique	14.57
KAT7	115621_P01	Male Unique	4.09
Retrovirus-related	111503_P01	Male Unique	3.15
Texim3	111503_P01	Male Unique	3.15
Translation initiation factor IF-2 (low E)	112167_P01	15.69	0.55
Texim2	103684_P01	13.63	10.75
Unknown	103684_P01	13.63	10.75
Unknown	111891_P01	8.69	4.48
LINE-1 type transposase	115646_P01	3.78	3.52
Texim2	112537_P01	1.67	2.12
Unknown	112537_P01	1.67	2.12
Amyloid-beta A4 precursor	116260_P01	1.91	0.97

Table S7. *Immaculata morph*: Genes predicted on sample P09 scaffolds containing >5 immaculata-mers and >1.5 fold immaculata male: female coverage. Scaffolds with >0.025X coverage by immaculata males but <0.025X coverage by females are considered 'Male Unique'. Scaffolds with >0.025X coverage by immaculata males but <0.025X coverage by non-immaculata males are considered 'Immaculata Unique'.

Gene	P09 Scaffold	Immac:Female Coverage	Immac:Non-Immac Coverage
NLRC3	124510_P09	Male Unique	Immaculata Unique
Trim39	125211_P09	Male Unique	Immaculata Unique
Ty3 retrotransposon	141715_P09	Male Unique	2.01
MSI1	143420_P09	Male Unique	11.57
Tbx3	143386_P09	Male Unique	2.40
Trypsin-2	143386_P09	Male Unique	2.40
R2DM retrovirus	154564_P09	Male Unique	3.94
Tbx3	140269_P09	Male Unique	1.62
TBX3	87093_P09	Male Unique	0.94
GPI-anchored protein 58	102953_P09	4.14	8.25
NLRC3	139939_P09	4.06	7.46
unknown	139939_P09	4.06	7.46
NLRC3	124079_P09	4.13	3.01
Cetn3	137893_P09	1.57	1.15
Retrovirus PABLB	149075_P09	4.17	2.08
Texim2	131979_P09	3.90	1.31
unknown	126759_P09	5.56	1.27
unknown	148405_P09	3.56	1.95

Table S8. Scaffolds containing >5 of the 59 Y-mers present in all males contain 8,547transposable elements in their 30,558,901bp.

Class/family	Copies identified by repeat masker
DNA	264
DNA/CMC-EnSpm	297
DNA/Crypton-V	10
DNA/Dada	13
DNA/Ginger-1	13
DNA/IS3EU	62
DNA/Kolobok-T2	32
DNA/MULE-MuDR	27
DNA/Maverick	99
DNA/Merlin	31
DNA/P	5
DNA/PIF-Harbinger	63
DNA/PIF-ISL2EU	63
DNA/PiggyBac	12
DNA/Sola-1	2
DNA/TcMar	8
DNA/TcMar-ISRm11	34
DNA/TcMar-Tc1	4626
DNA/TcMar-Tc2	30
DNA/TcMar-Tigger	5
DNA/Zisupton	31
DNA/hAT	17
DNA/hAT-Ac	314
DNA/hAT-Blackjack	14
DNA/hAT-Charlie	225
DNA/hAT-Tip100	75

DNA/hAT-hAT5	35
DNA/hAT-hAT6	11
LINE/Dong-R4	120
LINE/I	54
LINE/L1	77
LINE/L1-Tx1	30
LINE/L2	776
LINE/Penelope	14
LINE/R2-Hero	2
LINE/RTE-BovB	361
LINE/Rex-Babar	399
LTR/Copia	6
LTR/ERV1	37
LTR/Gypsy	113
LTR/Ngaro	65
LTR/Pao	36
RC/Helitron	22
Retroposon	4
SINE	1
SINE/tRNA-Core-RTE	1
SINE/tRNA-V	7
SINE/tRNA-V-RTE	4

Table S9. Scaffolds containing >5 melanzona-mers contain 392 transposable elementsin their 995,370bp.

Class/family	Copies identified by repeat masker
DNA	13
DNA/CMC-EnSpm	22
DNA/Dada	1
DNA/IS3EU	11
DNA/Kolobok-T2	3
DNA/Maverick	10
DNA/Merlin	3
DNA/PIF-Harbinger	1
DNA/PIF-ISL2EU	1
DNA/TcMar-Tc1	3
DNA/Zisupton	2
DNA/hAT	6
DNA/hAT-Ac	27
DNA/hAT-Charlie	28
DNA/hAT-Tip100	2
LINE/I	2
LINE/L1	24
LINE/L1-Tx1	2
LINE/L2	38
LINE/RTE-BovB	27
LINE/Rex-Babar	1
LTR/Copia	3
LTR/ERV1	5
LTR/Gypsy	43
LTR/Pao	22
RC/Helitron	90
SINE/tRNA-Core-RTE	2

Class/Family	Copies identified by repeat masker
DNA	103
DNA/CMC-EnSpm	104
DNA/Crypton-H	1
DNA/Crypton-V	7
DNA/Dada	4
DNA/Ginger-1	3
DNA/IS3EU	47
DNA/Kolobok-T2	13
DNA/MULE-MuDR	8
DNA/MULE-NOF	1
DNA/Maverick	25
DNA/Merlin	25
DNA/P	1
DNA/PIF-Harbinger	20
DNA/Sola-1	1
DNA/TcMar	4
DNA/TcMar-ISRm11	9
DNA/TcMar-Tc1	1026
DNA/TcMar-Tc2	21
DNA/TcMar-Tigger	4
DNA/Zisupton	8
DNA/hAT	12
DNA/hAT-Ac	145
DNA/hAT-Blackjack	2
DNA/hAT-Charlie	68
DNA/hAT-Tip100	39
DNA/hAT-hAT5	18
DNA/hAT-hAT6	4
DNA/hAT-hobo	1
LINE/Dong-R4	37
LINE/I	21
LINE/L1	28
LINE/L1-Tx1	7

Table S10. Scaffolds containing >5 immaculata-mers contain 2,565 transposableelements in their 9,748,162bp.

LINE/L2	340
LINE/Penelope	3
LINE/R2-Hero	1
LINE/RTE-BovB	112
LINE/Rex-Babar	112
LTR/Copia	1
LTR/ERV1	12
LTR/Gypsy	55
LTR/Ngaro	14
LTR/Pao	9
RC/Helitron	38
Retroposon	1
SINE/tRNA-Core-L2	45
SINE/tRNA-V	4
SINE/tRNA-V-RTE	1