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Timescales distributions considering 3 populations of cell types based on spike widths. 
We clustered units in cell populations based on spike waveform features, notably spike width 
(Fig. 1c in main text). In the main analysis we pooled together units with large and very large 
spike widths into a Regular Spiking population (RS, long spikes; nMCC=257, nLPFC=215 units) 
that we contrasted with Fast Spiking cells (FS, short spikes; nMCC=37, nLPFC=61 units) for 
timescale descriptions. We verify here that considering 3 cell populations (FS, short spikes: 
nMCC=37, nLPFC=61 units; RS1, long spikes: nMCC=183, nLPFC=162 units and RS2 longer spikes: 
nMCC=36, nLPFC=28 units) lead to the same conclusions than when pooling the two RS 
populations. As in Fig. 2c, TAU are higher in the MCC than in the LPFC (Fig. S1a, linear model fit 
on BLOM transformed TAU for normality, TAU = Area * Unit type, F(5,487)=28.4, Area : p<10-4, 
Unit type: p=0.05, interaction: p=0.91). Autocorrelogram peak latencies were longer for both 
MCC RS1 and RS2 populations (Fig. S1b, linear model fit on BLOM transformed Latency for 
normality, Latency = Area * Unit type, F(5,487)=23.63, interaction: p<0.005). 
 

Figure S1. Spike autocorrelogram features considering 3 populations 
in the MCC and LPFC. (a) TAUs and (b) LAT distribution in the 3 cell 
populations in the MCC and the LPFC. Densities were computed using 
a gaussian kernel with standard deviation of 50ms and 15ms 
respectively for TAU and peak latencies. 
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Relationship between firing rate and temporal signatures 
As both the firing rate and TAU are features extracted from the distribution in time of action 
potentials, the relationship between the two remained a persistent question throughout our 
analyses. Firing rates are classically computed in bins of hundreds of milliseconds around events 
of interest to capture the activity dynamics. In the context of our study which describes intrinsic 
properties of units, we think that the maximum firing rate of a given units is informative of its 
physiological range of activity. We computed the firing rate of units in 2 second bins and then 
considered the maximum firing rate as the average of the bins with firing rate above the third 
quartile. Varying the bin width (from 200ms to 2sec by step of 200ms) did not change the firing 
rate measure extracted. The population of FS has higher firing frequency (Supplementary Fig. 
2a; linear model fit on BLOM transformed firing rate for normality, FiringRate = Area * Unit type, 
F(3,566)=12.61, p<10-7, interaction: ns, Area: ns, Unit type: p<10-4). There is no relationship 
between the firing rate and TAU (Supplementary Fig. 2b; Pearson's correlation: r(491)=0.060, 
p=0.19). 
 

 

Figure S2a. Relationship between firing rate and timescale (a) 
Distributions of firing rates for fast spiking and regular spiking units in 
MCC and LPFC. (b) Scatter plot of firing rate as a function of TAU. There is 
no significant correlation between the two. 

 
 



Fontanier, Sarazin, Stoll, Delord and Procyk   Supplementary material 

Anatomical organization of temporal signatures 
 

 
 

Figure S2b. Anatomical distribution of LAT in MCC and LPFC for the 2 monkeys. 
 
We tested whether units with different temporal signatures were topographically organized 

across the recording sites. Because of the limited extent of positions on the mediolateral axis, 
and because of previous suggestions of organization along the anteroposterior axis1,2, we 
focused on the latter. TAU and LAT averaged over neurons were computed for each level. For 
the two animals, coordinates were referenced to the anterior level of the genu of the arcuate 
sulcus (ArcGen)3.  We tested whether TAU and LAT differed depending on the position of units 
in the rostro-caudal axis. TAU and LAT were not homogeneous along the anteroposterior axis. 
Specific monkey per monkey analyses specifically for TAU of RS units are presented in the main 
text. Data for LAT are presented in Fig. S2b. Statistics showed no significant variation of LAT 
along the MCC rostro-caudal axis, and a significant variation for monkey H in LPFC (ANOVA on 
Blom transformed LAT: MCC, monkey A: F(5,112)=1.4, p=0.47, monkey H: F(5,54)=0.6, p=1, 
LPFC, monkey A: F(6,110)=1.0, p=0.86, monkey H: F(6,64)=2.7, p=0.046). Linear regression 
analyses revealed only a positive trend in the MCC for monkey A (linear regression on Blom 
transformed LAT: MCC, monkey A: t(1,112)=5.1, p=0.05, monkey H: t(1,54)=1.2, p=0.54, LPFC, 
monkey A: t(1,110)=1.4, p=0.49, monkey H: t(1,64)=4.0, p=0.10 ; all p-values are FDR corrected 
for n=2 comparison per monkey). 
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Parametric explorations in the pyramidal neuron model 

 
Biophysical properties of neurons can affect autocorrelation parameters in several ways. In 

principle, increasing the refractory period (through increased hyperpolarizing ionic 
conductance) shifts the distribution of 1st order lags (ISIs), thus increasing LAT (Fig. S3a i)4. 
Increasing burstiness of the spike discharge (through increased depolarizing conductance-
mediated positive feedback) also increases the latency, because higher-order lag distributions 
are more peaked. Moreover, conductances with slow time constants (including many bursting-
mediating conductances) increase that of the autocorrelogram itself. Finally, all these factors 
may interact in complex ways in vivo to set the spiking pattern that shapes autocorrelations. 

We first explored these alternatives with a detailed biophysical Hodgkin-Huxley model of a 
generic frontal pyramidal cortical neuron, simulated in in vivo conditions. Pyramidal neurons 
display a huge electrophysiological diversity set by ionic channels, which, together with synaptic 
inputs, influences spiking patterns. Two conductances, i.e. cationic non-specific (CAN) and 
potassium after-hyperpolarization (AHP), were the sole couple able to affect both the LAT and 
TAU of the autocorrelation (compare Fig. S3a ii & iii). Interestingly, these conductances are 
prominent in monkey LPFC and MCC, as well as rodent prefrontal pyramidal neurons where 
they control regenerative discharge, bistability and burstiness5–9. Within physiological ranges, 
1) the autocorrelogram LAT essentially increased with the maximal gAHP conductance, while 2) 
TAU increased in an intermediate range of gAHP and increased with gCAN (Fig. S3b), possibly 
accounting for differences between LPFC and MCC in monkeys. Remarkably, the low-threshold 
calcium (CaT), high-threshold calcium (CaL) and hyperpolarization-activated H conductances, 
which are ubiquitous and govern spiking patterns through spiking adaptation and rebound, as 
well as NMDA and GABA-B synaptic input conductances, which display long time constants, 
were all ineffective in adequately modulating autocorrelation parameters (Fig. S4).  

Computing an estimation of the bivariate probability density distribution of neuronal 
autocorrelogram parameters for LPFC and MCC RS units (Fig. S3c) allowed to build a map of the 
similarity of the cellular model to RS units temporal signatures in monkey LPFC and MCC, 
defined as the bivariate probability density observed for the LAT and TAU yielded by the cellular 
model, given a (gCAN, gAHP) couple of parameters (see Online Methods). We found that the model 
displayed large (i.e. sub-maximal) similarity to the LPFC in a substantial region of (gCAN, gAHP) 
parameters (Fig. S3d). By contrast, this was not true for the MCC (Fig. S3d), because the model 
was unable to generate LAT in the 100-150 ms range that characterizes the MCC (Fig. S3b), even 
when exploring large ranges of CAN and AHP conductance kinetic parameters. 
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Figure S3. Temporal signature in the pyramidal biophysical neuron model.  (a) In (i) schematic shapes 
of the autocorrelogram of a neuron (e.g. regular spiking, blue), of the same neuron with a larger 
refractory period (e.g. due to increased hyperpolarizing ionic conductance, red) or with higher burstiness 
of the spike discharge (e.g. due to increased depolarizing conductance-mediated positive feedbacks, 
green). (ii-iii) Autocorrelogram of a model pyramidal neuron (ii) in the absence (gCAN=0mScm-2, 
gAHP=0mScm-2) of CAN or AHP, or (iii) with gCAN=0.05mScm-2 and gAHP=0.1mScm-2. Scaling bars 1s and 25 
mV. (b) Maps of the autocorrelogram latency (left) and time constant (right), as a function of gCAN and 
gAHP maximal conductances. (c) Bivariate probability density distribution of neuronal autocorrelogram 
LAT and TAU in RS units in both the LPFC (left) and MCC (right) in monkeys. (d) Similarity of the temporal 
signature between the frontal pyramidal neuron model and the population of RS units in the LPFC (left) 
and MCC (right), as a function of gCAN and gAHP maximal conductances. 
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Figure S4. Temporal signature in the pyramidal neuron model as a function of 
adaptation and rebound intrinsic and slow synaptic conductances. Maps of LAT (left) and 
TAU (right), as a function of (a) the high-threshold calcium and after-hyperpolarization 
maximal conductances (gCaL and gAHP) that set adaptation properties, (b) the low-threshold 
calcium (CaT) and hyperpolarization-activated H maximal conductances (gCaT and gH) that 
set post-inhibitory rebound properties, and (c) the synaptic NMDA and GABA-B maximal 
conductances (gNMDA, gGABA-B) that set slow synaptic transmission. 
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Parametric explorations in the network model 
 
We first assessed whether variations of a single biophysical parameter could explain the differences 

in the temporal signature of the MCC, compared to the LPFC: an increased TAU for RS and FS units and 
an increased LAT for RS (but not for FS) units. To do so, we tested many biophysical parameters 
determining the architectural, synaptic and intrinsic properties of the network, but none were able to 
account for these differences between frontal areas (not shown). 

However, these explorations unraveled four model parameters of interest that were able, when 
varied within their physiological range (i.e. realistic regimes of network activity), to 1) affect either LAT 
in Exc (but not Inh) neurons, TAU in Exc neurons or TAU in Inh neurons, and 2) do so in a gradual fashion, 
i.e. allowing some possible form of (developmental, homeostatic or plastic) regulatory control. Indeed, 
several other parameters could vary TAU or LAT, but they did so abruptly, because their effects occurred 
at the vicinity of network bifurcations, where network activity dramatically saturated or was silenced, 
i.e. in non-physiological regimes. 

The parameters of interest were the maximal conductances, on the one-hand, of two membrane 
ionic currents setting the intrinsic excitability and spiking pattern of cortical pyramidal neurons (gCAN and 
gAHP) and, on the other hand, of two neurotransmitter-gated channels that set slow synaptic 
neurotransmission in cortical networks (gNMDA and gGABA-B). 

Firstly, decreasing gCAN, the maximal conductance of the spike-triggered calcium-dependent 
cationic current, which controls regenerative discharge and spiking bistability in pyramidal neurons6, 
gradually increased LAT in Exc neurons, although this occurred at low values where the network was 
nearby silence and displayed very low firing frequency (Fig. S5a, upper left). The CAN current is absent 
in Inh neurons10, so that changing gCAN (i.e. only in Exc neurons) left LAT constant in Inh neurons (Fig. 
S5a, lower left). Besides, increasing the CAN maximal conductance gradually increased TAU in Exc 
neurons (Fig. S5a, upper right). This arose because gCAN increases burstiness, a factor that can increase 
the autocorrelogram time-constant4. However, it had no effect on TAU in Inh neurons, where it is absent 
(Fig. S5a, lower right). Thus, while gCAN possibly accounted for LAT in frontal areas (increased LAT in MCC 
Exc neurons, no change in Inh neurons), as well as for the increased TAU in MCC Exc neurons, it could 
not explain the TAU difference in Inh neurons (Table S1). Moreover, accounting for LAT and TAU in the 
MCC required incompatible gCAN ranges of values and this was the same for LPFC (Table S1). 

Secondly, the maximal conductance of the medium AHP current (gAHP), a spike-triggered calcium-
dependent potassium current, which balances the CAN current in the patterning of spiking in pyramidal 
neurons, increased LAT in Exc neurons (Fig. S5b, upper left); this arose because AHP increases the 
refractory period, which can increase LAT4. Similarly to CAN, the AHP current is absent in Inh neurons10, 
so changing gAHP (i.e. in Exc neurons) left LAT constant in Inh neurons (Fig. S5b, lower left). Besides, 
although gAHP is largely known for its effect on firing frequency adaptation, an important determinant of 
discharge temporal patterning, it displayed an extremely weak effect on TAU (Fig. S5b, right). Thus, 
while gAHP possibly accounted for LAT in frontal areas (increased LAT in MCC Exc neurons, no difference 
in Inh neurons), it could not explain differences in TAU (Table S1). 

Together, these effects of intrinsic conductances at the network scale shared important trends with 
those in the cellular model, inasmuch as gAHP increased LAT and gCAN increased TAU in Exc neurons. 

Thirdly, the NMDA receptor maximal conductance, gNMDA, displayed no effect on LAT (Fig. S5c, left), 
but it increased TAU (Fig. S5c, right) in Exc and, to a lesser extent, in Inh neurons, because of its slow 
synaptic action (decay time constant, 75ms) on both neuronal types. However, these effects on TAU 
occurred at high gNMDA values where the network was nearby saturation and displayed unrealistic high 
frequency activity. Thus, while gNMDA possibly accounted for TAU in frontal areas and for the absence of 
change in LAT in Inh neurons, it could not explain the difference in LAT in Exc neurons between LPFC and 
MCC (Table S1). 

Fourthly, the GABAB receptor maximal conductance, gGABA-B, as for the NMDA current, displayed no 
effect on LAT (Fig. S5d, left), but it increased TAU (Fig. S5d, right) both in Exc and Inh neurons, because 
of its slow synaptic action (rise and decay time constants, 90ms and 160ms, respectively) on both 
neuronal types. Thus, while gGABA-B possibly accounted for TAU differences in frontal areas and for the 
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absence of change in LAT in Inh neurons, it could not explain the difference in LAT in Exc neurons 
between LPFC and MCC (Table S1). 

Interestingly, both NMDA and GABA-B currents, which had no effect at the individual level, were 
essential at the network scale, suggesting that the influence of slow synaptic transmission on recurrent 
collective network dynamics are central in determining the time constant TAU in frontal areas. 

In summary, one-dimensional network explorations showed that : 1) gAHP was the sole biophysical 
parameter that changed LAT in Exc but not in Inh, while keeping network activity within the physiological 
regime (gCAN also changed LAT in Exc, but at the border of network silencing); 2) gGABA-B was the sole 
biophysical parameter that changed TAU in both Exc and Inh (gCAN and gNMDA also changed TAU, mainly 
in Exc, but at the border of unrealistic regimes, i.e. network silence and saturation). 

Together, these results pointed to gAHP and gGABA-B as major candidates, with the idea that their 
combined effect in the (gAHP, gGABA-B) space could account for the differences in temporal signature 
between the LPFC and the MCC. However, because ionic and synaptic conductances typically display 
strong non-linear interactions whereby some forms of counter-intuitive compensatory or amplificatory 
effects can emerge, we nevertheless conducted two-dimensional explorations in the (gAHP, gCAN), (gAHP, 
gNMDA) and (gAHP, gGABA-B) spaces, with the idea that the relative balance of gAHP, which affects LAT, on the 
one-hand, and of either gCAN, gNMDA or gGABA-B, which affect TAU, on the other-hand, could synergistically 
account for both the larger LAT and larger TAU observed in the MCC, compared to the LPFC (Fig. S6 and 
Fig. S3). 

 
Exploring the (gAHP, gCAN) space, we found that combined increases of gAHP and gCAN could both 1) 

increase LAT in Exc neurons but not in Inh neurons (Fig. S6a, top) and 2) increase TAU in Exc neurons 
(Fig. S6a, bottom), which translated, quantitatively, as two domains of smaller and larger (gAHP, gCAN) 
parameter values that displayed higher similarity to LPFC and MCC data, respectively (Fig. S6b; see 
Methods). However, increasing gCAN and gAHP only very weakly varied TAU in Inh neurons (as in one-
dimensional explorations), one of the three major changes observed in FS units in the MCC (together 
with higher LAT and TAU in RS units). While this incapacity marginally reflected in the similarity measure 
(which integrates similarity in Exc (RS) and FS (Inh) neurons proportional to their relative abundance, i.e. 
0.2 for Inh neurons), the model therefore revealed qualitatively insufficient to account for the 
differences in LPFC and MCC temporal signatures. 

The exploration of the (gAHP, gNMDA) space indicated a situation where combined increases of gAHP 
and gNMDA could increase LAT in Exc neurons but not in Inh neurons (Fig. S6c, top) but could hardly 
reproduce TAU in Exc and Inh neurons (Fig. S6c, bottom), so the qualitative agreement was weak. As a 
result, quantitatively, the domain of largest MCC similarity displayed modest similarities (Fig. S6d). 
Moreover, as in one-dimensional explorations, gNMDA increased TAU mostly at high values (gNMDA ~ 1), 
where the network model was near saturation (unrealistic high frequency), while intracellular recordings 
show no difference in Exc post-synaptic current amplitudes between MCC and LPFC in Monkeys5. 

Contrarily to explorations in (gAHP, gCAN) and (gAHP, gNMDA) spaces, exploration in the (gAHP, gGABA-B) 
provided two domains of high similarity to LPFC and MCC that indicated a strong quantitative agreement 
of the model to monkey data (see Main Text). Moreover, these domains were large (relative to the mean 
values of gAHP and gGABA-B in said domains) indicating robustness to the inherent biological variability 
present in frontal cortical structures. Finally, qualitative agreement was present, in addition to the 
quantitative agreement revealed by the similarity measure, in the sense that all three main qualitative 
differences between LPFC and MCC (with higher LAT and TAU in RS units and a higher TAU in Inh 
neurons) were well reproduced in this set-up. 
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Observable LAT TAU Distinct 
correct effects 

occur 
at similar 

parameter values? 

Correct effects 
occur at realistic  

 network dynamics 
(silence, saturation)? 

Neuron type Exc. Inh. Exc. Inh. 

Expected 
LPFC vs MCC 
difference ? 

 
YES 

 
NO 

 
YES 

 
YES 

P
ar

am
e

te
r gCAN ↓ NO ↑ NO NO NO 

gAHP ↑ ↓ NO NO YES YES 

gNMDA NO NO ↑ ↑ YES NO 

gGABA-B NO NO ↑ ↑ YES YES 

 
Table S1. Summary of the effects of the main parameters determining TAU and LAT in the network 
model. Expected area differences (LPFC vs MCC) in Exc and Inh neurons are depicted in blue. 

 

 
 

Figure S5. One-dimensional explorations of key parameters determining TAU and LAT in the network 
model. LAT (left) and TAU (right) in Exc (upper) and Inh (lower) neurons in the model (green), as a 
function of the (a) CAN, (b) AHP, (c) NMDA and (d) GABA-B maximal conductances. The default LPFC 
model parameter value is indicated (black) as well as experimental LAT and TAU in the LPFC (blue) and 
MCC (grey). 
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Figure S6. Two-dimensional explorations in (gAHP, gCAN) and (gAHP, gNMDA) spaces. (a) Mean 
population LAT (top), TAU (bottom) in Exc (left) and Inh (right) neurons, as a function of AHP and CAN 
maximal conductances. (b) Similarity of the temporal signature between the network model and 
monkey data in the LPFC (left) and MCC (right), as a function of AHP and CAN maximal conductances 
(see Methods). (c) Same as (a) and (d) same as (b) as a function of AHP and NMDA maximal 
conductances. 
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ISI structure in the network model 
 

 

 
 

Figure S7. Relationship between autocorrelogram latency and first-order (ISI) latency in LPFC FS units 
/ inhibitory (Inh) neurons, and in MCC RS units / excitatory (Exc) and MCC FS units / Inh neurons. 
Bivariate probability density distribution of the autocorrelogram LAT and first-order latency (i.e. the 
latency of the ISI distribution) in (a) LPFC monkey FS units (left) and network Inh neurons (right), (b) MCC 
monkey RS units (left) and network Exc neurons (right) and (c) MCC monkey FS units (left) and network 
Inh neurons (right). 
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