bioRxiv preprint doi: https://doi.org/10.1101/2020.08.20.259390; this version posted August 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1	Path tortuosity changes the transport cost paradigm in terrestrial animals
2	Short title: Track tortuosity and minimum cost of transport speed
3	
4	R. P. Wilson ^{1*} , K. A. R. Rose ^{1*} , R. S. Metcalfe ² , M. D. Holton ³ , J. Redcliffe ¹ , R. Gunner ¹ , L.
5	Börger ¹ , A. Loison ⁴ , J. Miloš ⁵ , M. S. Painter ⁵ , V. Silovský ⁵ , N. Marks ⁶ , M. Garel ⁷ , C. Toigo ⁷ ,
6	P. Marchand ⁷ , N. C. Bennett ⁸ , M. A. McNarry ² , K. A. Mackintosh ² , M. R. Brown ⁹ , D. M.
7	Scantlebury ⁶ .
8	
9	
10 11 12	¹ Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Singleton Park, Swansea
13 14 15	² Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, College of Engineering, Swansea University, Bay Campus, Swansea
16 17	³ College of Science, Swansea University, Fabian Way, Swansea
17 18 19	⁴ LECA - CNRS, University Savoie, 73370 Le Bourget du Lac, France
20 21	⁵ Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague 165 00, Czech Republic
22 23	⁶ School of Biological Sciences, Queen's University Belfast, Belfast
24 25 26	⁷ Office National de la Chasse et de la Faune Sauvage, Unité Ongulés Sauvages, 38610 Gières, France
27 28 29	⁸ Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
30 31 32	⁹ 417 EN College of Engineering, Bay Campus, Swansea University, Fabian Way, Swansea
33	*Corresponding authors
34 35 36 37 38 39 40	Emails: <u>R.P.Wilson@swansea.ac.uk_and K.A.R.Rose@swansea.ac.uk</u> ,

1 Abstract

2

3 Animal movement paths are variously tortuous, with high turn rates predicted to be 4 energetically costly, especially at high speeds. Animals travel most efficiently at the speed that 5 gives the lowest cost of transport (COT), a well-defined point for movement in fluid media. 6 However, theoretically, land animals should travel at their maximum speed to minimize COT, 7 which they do not, instead travelling at walking pace. We measured oxygen consumption in humans to demonstrate that the energetic costs of turning increase disproportionately with both 8 speed and angular velocity. This resulted in the minimum COT speed occurring at very low 9 10 speeds, which reduced with increased path tortuosity. Data on turn rates from six free-ranging 11 terrestrial species underpinned this because all individuals turned faster at the slowest speeds across the full speed range. The optimum movement speed for minimum COT in land animals 12 13 thus depends on the environment and behavior since both affect track tortuosity.

14 Introduction

15

16 Reaction to stimuli by movement is a fundamental tenet of the animal kingdom, with 17 appropriate responses enhancing survival and lifetime reproductive success [1]. Movement 18 requires energy, which varies according to the speed of the animal [2]. The speed that an animal 19 selects for movement, and therefore the energy designated to it over time, depends on the 20 purpose of the movement [3]. There are three primary reasons for this: (i) animals may move 21 at any speed, including their maximum, to evade predators or capture prey [4], to maximize net rate of acquisition of food energy [5], or to provide young with food at an appropriate rate 22 23 for their growth [6]. (ii) animals may move at a speed that minimizes power costs (a concept that is primarily applicable for flying animals) [7]. In addition, (iii) animals may move at a 24 25 speed that minimizes the cost of transport (COT_{min}), maximizing the distance travelled per unit 26 of energy [8, 9]. This last paradigm [10] is particularly important because most travel is 27 assumed to be under strong selection pressure for animals to maximize output while minimizing input, which occurs at COT_{min} [e.g. 11, 12]. COT_{min} is well defined for any instance 28 29 where power for movement increases with speed at a greater than linear rate, such as in aquatic 30 and volant animals. Indeed, wild animals in fluid media generally travel at these speeds [13]. 31 However, beyond basal metabolic rate [14], most terrestrial animals have a linear relationship 32 between power and speed [10, 15] and therefore, because COT is derived by dividing the power 33 by the speed, COT in these animals will always decrease with increasing speed. In short, the lowest theoretical costs of transport in terrestrial animals should occur at their maximum speeds 34 35 (but see [16, 17]). Yet these are not the speeds at which animals normally travel in natural 36 contexts [18]. Although the probability of accident and injury increases at very high speeds 37 (e.g. [19]), which is a clear reason to avoid them unless there is a compelling motive to sprint 38 (e.g. in cursorial predators and their prey [20]), there is currently no energy-based explanation 39 as to why land animals travel through their environments at their normal chosen speeds.

Based on recent studies that found that the costs associated with turning are substantial [21, 22], we hypothesized that track tortuosity should therefore alter the speed of COT_{min} in terrestrial animals. To test this, we set up experiments to gain empirical data on how speed and angular velocity in humans relate to energy expenditure and thereby to the cost of transport. At the same time, we equipped 6 species of free-living animal with tags that allowed us to study animal speed in tandem with angular velocity to see whether our physiological findings translated into patterns of movement in the natural environment.

- 47
- 48
- 49

1 **Results**

2

Empirical data from humans show how increasing track tortuosity reduces the minimum cost of transport speed to a slow walk

We examined the energetics of moving in humans by measuring oxygen consumption in 20
subjects walking defined trajectories consisting of varying angles between straight-line
sections at defined speeds. We noted how power increased disproportionately with increasing
angular velocity, which resulted in clear cost of transport minima that did not occur at the
higher walking speeds. Rather, minimum costs of transport occurred at lower walking speeds
when angular velocities were high.

12 Our calculations of power-use by participants walking variously angled courses showed 13 a significant interaction effect between walking speed and turn angle on total mass-specific metabolic power (speed² x angle category, F = 101.81, P<0.001), with the rate of increase in 14 15 power for a given increase in travel speed increasing disproportionately with turn angle (Fig 16 1a, Table 1). Consequently, there was a significant interaction between walking speed and turn angle on the total mass-specific cost of transport (speed² x angle category, F = 59.13, P<0.001) 17 (Fig. 1b, Table 1). The cost of transport curve showed distinct minima for paths incorporating 18 19 turns, becoming more U-shaped, and with COT_{min} shifting to progressively lower walking 20 speeds with increasing turn angle (Fig 1b).

Similarly, significant interaction terms were found for the quadratic relationships between speed and turn cost (J kg⁻¹, speed² x angle category, F = 37.98, P<0.001) and turn power (W kg⁻¹, speed² x angle category, F = 66.87, P<0.001) (Table 1), with the rate of increase with speed becoming greater as angle increased (Fig 2). Table 1. Summary of the outputs of linear mixed-effects models conducted to investigate the effects of speed and angle on angular velocity or metabolic parameters and the effects of speed and angular velocity on metabolic parameters.

ngle [as factor]	1037.87			f +		
ngle [as factor]	1037.87	1 200	-0.001	factors	0.002	
	52(5.22	1,289	<0.001 <0.001	0.979	0.983	$0^{\circ}: = 0U + 0$ 90^{\circ}: = 31.94U + 28.07
	5365.33	3,289	0.00-			
": angle [as factor]	170.86	3, 289	< 0.001			$135^\circ:=46.60U+43.28$
	1 (001 07	1 200		0.050	0.000	$180^{\circ} = 73.5 \ U + 43.92$
0		· ·		0.979	0.982	0.69 m s⁻¹ : = 0.54(angle) + 0.89
						0.97 m s⁻¹ : = $0.64(angle) + 0.38$
ngle: U [as factor]	168.49	3, 289	< 0.001			1.25 m s⁻¹ : = $0.74(angle) + 0.86$
-						1.53 m s⁻¹ : = 0.88 (angle) -1.10
1				0.769	0.919	0° : = 1.99(speed) ² - 2.39(speed) + 3.80
12) -				90° : = 2.48(speed) ² - 2.39(speed) + 3.59
						$135^{\circ} = 2.97(\text{speed})^2 - 2.39(\text{speed}) + 3.53$
						180° : = 3.87(speed) ² - 2.39(speed) + 3.13
7		· ·		0.471	0.860	0° : = 2.38(speed) ² - 6.71(speed) + 7.83
12		· ·				90° : = 2.66(speed) ² - 6.71(speed) + 7.80
ngle [as factor]						135° : = 2.90(speed) ² – 6.71(speed) + 7.97
² : angle [as factor]	59.13	3,284	< 0.001			180° : = 3.43(speed) ² - 6.71(speed) + 7.86
I	1.58	1,203	0.209	0.658	0.770	90° : = 3.46(speed) ² – 4.66(speed) + 2.29
12	9.73	1,203	0.002			135° : = 4.70(speed) ² - 4.66(speed) + 2.99
ngle [as factor]	147.09	2,203	< 0.001			180° : = 7.34(speed) ² - 4.66(speed) + 2.56
² : angle [as factor]	37.98	2,203	< 0.001			
T	7.77	1,203	0.006	0.739	0.814	90° : = 4.73(speed) ² - 7.79(speed) + 3.62
12	26.60	1,203	< 0.001			$135^{\circ} = 6.00(\text{speed})^2 - 7.79(\text{speed}) + 3.71$
ngle [as factor]	154.09	2,203	< 0.001			$180^{\circ} = 8.62(\text{speed})^2 - 7.79(\text{speed}) + 2.64$
² : angle [as factor]	66.87	2,203	< 0.001			
ngular velocity	1.87	1,284	0.285	0.711	0.770	0.69 m s⁻¹ : $0.0002(\text{angular velocity})^2 + 0.0079(\text{angular velocity}) - 0.0686$
0	13.67	1,282	< 0.001			0.97 m s⁻¹ : 0.0003 (angular velocity) ² + 0.0079 (angular velocity) - 0.2339
0 1	5.66		< 0.001			1.25 m s⁻¹ : $0.0004(\text{angular velocity})^2 + 0.0079(\text{angular velocity}) - 0.1453$
ngle [as factor] ² :	3.49	· ·	0.016			1.53 m s⁻¹ : $0.0004(\text{angular velocity})^2 + 0.0079(\text{angular velocity}) - 0.2471$
0 1		,				
	0.80	1,204	0.371	0.734	0.817	0.69 m s⁻¹ : $0.0002(\text{angular velocity})^2 + 0.0018(\text{angular velocity}) - 0.0334$
	46.83	· ·	< 0.001			0.97 m s⁻¹ : $0.0002(\text{angular velocity})^2 + 0.0018(\text{angular velocity}) - 0.1211$
0 1						1.25 m s⁻¹ : 0.0003 (angular velocity) ² + 0.0018 (angular velocity) - 0.0595
						1.53 m s ⁻¹ : 0.0004 (angular velocity) ² + 0.0018 (angular velocity) - 0.1199
	2.70	-,	0.011			
7 n 7 n / _ / / / n / _ / / n / _ / / / / / /	2 gle [as factor] 2 gle [as factor] 2 1 1 1 1 1 1 1 1 1 1 1 1 1	$[as factor]$ 345.09 $gle: U[as factor]$ 168.49 2 9.37 $gle[as factor]$ 201.83 2 201.83 2 101.81 2 101.81 2 1252 $2gle[as factor]$ 201.83 2 101.81 2 12.52 $2gle[as factor]$ 234.82 2 234.82 2 234.82 2 234.82 2 234.82 2 37.98 2 7.77 26.60 154.09 3 7.98 2 7.77 26.60 154.09 3 7.98 2 7.77 26.60 154.09 3 1.57 $12gle[as factor]$ 1.67 $12gle[as factor]^2$ 13.67 $12gle[as factor]^2$ 3.49 $12gle[as factor]^2$ 3.49 $12gle[as factor]^2$ <t< td=""><td>$\begin{bmatrix} as factor] \\ gle : U [as factor] \\ gle : U [as factor] \\ \end{bmatrix} 345.09 \\ 3, 289 \\ 3, 289 \\ 3, 289 \\ \hline \end{bmatrix} 3, 284 \\ \hline] 201.83 \\ 3, 284 \\ \hline] 201.83 \\ 3, 284 \\ \hline] 201.83 \\ 3, 284 \\ \hline] 21, 252 \\ 1, 284 \\ 137.17 \\ 1, 284 \\ 122.52 \\ 1, 284 \\ 122.52 \\ 1, 284 \\ 122.52 \\ 1, 284 \\ 122.52 \\ 1, 284 \\ 122.52 \\ 1, 284 \\ 122.52 \\ 1, 284 \\ 122.52 \\ 1, 284 \\ 122.52 \\ 1, 284 \\ 122.52 \\ 1, 284 \\ 123.82 \\ 3, 284 \\ \hline] 234.82 \\ 3, 284 \\ \hline] 234.82 \\ 3, 284 \\ \hline] 21, 203 \\ 22, 203 \\ \hline] 21, 203 \\ 22, 203 \\ \hline] 21, 203 \\ \hline] 21, 203 \\ \hline] 22, 203 \\ \hline] 21, 203 \\ \hline] 21, 203 \\ \hline] 22, 203 \\ \hline] 21, 203 \\ \hline] 21$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></t<>	$\begin{bmatrix} as factor] \\ gle : U [as factor] \\ gle : U [as factor] \\ \end{bmatrix} 345.09 \\ 3, 289 \\ 3, 289 \\ 3, 289 \\ \hline \end{bmatrix} 3, 284 \\ \hline] 201.83 \\ 3, 284 \\ \hline] 201.83 \\ 3, 284 \\ \hline] 201.83 \\ 3, 284 \\ \hline] 21, 252 \\ 1, 284 \\ 137.17 \\ 1, 284 \\ 122.52 \\ 1, 284 \\ 122.52 \\ 1, 284 \\ 122.52 \\ 1, 284 \\ 122.52 \\ 1, 284 \\ 122.52 \\ 1, 284 \\ 122.52 \\ 1, 284 \\ 122.52 \\ 1, 284 \\ 122.52 \\ 1, 284 \\ 122.52 \\ 1, 284 \\ 123.82 \\ 3, 284 \\ \hline] 234.82 \\ 3, 284 \\ \hline] 234.82 \\ 3, 284 \\ \hline] 21, 203 \\ 22, 203 \\ \hline] 21, 203 \\ 22, 203 \\ \hline] 21, 203 \\ \hline] 21, 203 \\ \hline] 22, 203 \\ \hline] 21, 203 \\ \hline] 21, 203 \\ \hline] 22, 203 \\ \hline] 21, 203 \\ \hline] 21$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

1 Wild animal data support the idea that normal travel speed varies with angular velocity 2

3 We fitted five wild mammal species (African lions Pathera leo, chamois Capra rubicapra,

4 ibex Capra ibex, mouflon Ovis orientalis, wild boar Sus scrofa) and one domestic animal (the

5 goat *Capra aegagrus*) allowed to range freely, with devices that enabled us to record speed (or

6 a proxy for it) and angular velocity. All individuals tended to travel relatively slowly, but they

- predominantly engaged in the highest angular velocities at the lowest speeds (using dynamic
 body acceleration as a proxy for speed [23]) decreasing angular velocities in their turns as their
- 9 travel speeds increased (Fig 3). The incidence of turning behavior was apparent in examples of
- 10 the free-living animal movement data when resolved at sub-second level, which showed
- 11 intensive and extensive turning behavior, even when movement paths appeared directed at
- 12 larger scales (e.g. Fig 4).
- 13

14 **Discussion**

15

16 There have been extensive studies of the relationship between terrestrial animal speed and 17 power, the vast majority of which have been conducted on a treadmill to show that power 18 increases linearly with speed [10]. While fundamental, this highly controlled scenario does not 19 echo the situation found in nature where variability in, for example, topography and surface 20 penetrability will also affect power to travel [24] and thereby the cost of transport. Interestingly, in a recent study of how scaling affects costs in animals moving on inclines, Halsey and White 21 [25] present data that show clear minima in costs of transport with slope (although the effect 22 23 of speed is not detailed). This, therefore, already points to an important effect of how the environment is expected to structure selection of animal speed for energetically optimum 24 25 movement. But animals turn frequently, as our Figure 4 shows, and presumably much more 26 than they encounter varying inclines. Previous works have indicated that turns are energetically 27 costly [21, 22] but, due to their experimental protocol, these could not have defined how the 28 costs of transport relate to angular velocity and speed, nor that angular velocity could have 29 created clear minima in costs of transport at such low speeds. The extraordinary magnitude of 30 the increase in power costs with increasing angular velocity and speed is, in part, explained by 31 animals having to develop forces to counteract the centripetal force incurred in the turn, given 32 by: $F = m v^2/r$, where m is the mass, v, the velocity and r the radius of the turn. Thus, some of the energy used for turning has to be used in developing lateral forces. However, acute turns 33 will also require some forces opposing the drive force, being manifest as deceleration followed 34 35 by corrective acceleration for straight-line travel after a turn. This will occur even at low speeds, which explains the sharp drop off in angular velocity in turns, even at low speeds in 36 37 our wild animals (Fig 3) and the minimum cost of transport occurring at such low walking 38 speeds of humans during 180° turns (Fig 1).

The high power associated with turns translates into well-defined minima in the costs 39 40 of transport for defined speeds and angular velocities (Fig 2b). This means that an overall 41 optimum speed for a wild animal, moving to minimize transport costs, will depend on the 42 frequency and extent of turns. These will depend on a large number of turn elicitors that confer benefit to the animal if it turns. These will range from barriers, including localized ones such 43 44 as trees/shrubs (e.g. [18]), or navigating through differential energy landscapes [24], through 45 to acquisition strategies for food, such as area-restricted search [26], or mates [27]. Indeed, we 46 suggest that the incidence of turning behavior in wild animals has been underestimated, not least because we have little capacity to resolve it at the scale necessary to be energetically 47 48 meaningful, even using GPS technology [28]. A notable exception is with inertial/deadreckoned data (e.g. [29]), which show that animal paths can consist of extensive and intensive
turning behavior (e.g. Fig 4).

51 Variation in the environment or in animal behavior would also lead us to expect animals 52 to vary travel speed accordingly, even intra-specifically, reflecting different motivations for 53 speed selection [3], which is consistent with the animal data we present here (Fig 3). Clearly, although such data may not always agree with animals actually using COT_{min} for a number of 54 55 reasons [3], the interplay of speed and angular velocity, and the huge effect that they have on 56 movement energetics, points to the importance of both in modulating trajectories according to 57 function. Indeed, future treatises that attempt to link this with the multiple other factors that 58 affect the energy costs of travel (the energy landscape [24] may find that we can explain animal 59 speed- and turn velocity-selection much more satisfactorily than we can at present.

60 Our treatment is simplistic for a number of reasons. Not least, we only consider power and COT metrics as bi-dimensional when they will be affected by multiple properties of the 61 environment that modulate power use, such as slope and surface penetrability [24]. This will 62 63 be further complicated by gait changes [30-34]. This work nevertheless demonstrates the profound effect that turns have on cost of transport for terrestrial animals using humans as a 64 65 model, although we expect the principle to be the same for flying and aquatic animals. If we are to progress with models purporting to help us understand animal trajectories from an 66 energetic, and ultimately behavioral, perspective though, we will have to accept that small 67 68 things, such as acute corners can sometimes make big differences in understanding the details 69 and elicitors of movement trajectories [35]. 70

71 Materials and Methods

72 73

74**Participants.** Twenty able-bodied male participants (mean \pm SD: age 30 \pm 8 years; body mass7575.6 \pm 11.2 kg; stature 1.78 \pm 0.06 m; body mass index: 24.0 \pm 3.2 kg·m⁻²) gave their written76informed consent to volunteer for this study. Ethical approval was granted by the Swansea77University ethics committee. Stature (Holtain, Crymych, UK) was measured to the nearest 0.0178m and body mass (Seca, Germany) to the nearest 0.01 kg.

79

Trials. Participants walked at four different speeds (0.69, 0.97, 1.25 and 1.53 m s⁻¹) and four 80 turn angle extents (0, 90, 135 and 180°), giving a total of sixteen speed and angle combinations. 81 Separate walking tracks were marked onto a flat-surfaced sports lab floor using tape for each 82 83 angle of interest. Each track alternated between 5 m straight lines and turns with equal numbers 84 of left and right turns (0°: a 25 m straight line with markers every 5 m; 90°: two squares sharing one 5 m straight; 135°: two eight-angled star polygons sharing a 5 m straight; 180°: a 5 m 85 straight). Participants' average walking speed was controlled using a metronome at either 8, 86 87 12, 15 or 18 bpm. Participants walked barefooted, carried out only step-turns (not spin-turns), 88 and reached a corner (or 5 m mark) on each metronome beat (i.e. travelled 5 m between beats). Walking conditions were block-randomized by turning angle: all speed trials for a given angle 89 90 were conducted before moving on to the next angle, but average travel speed and the sequence 91 in which the angle conditions were completed by each participant were randomized and 92 counterbalanced. Each walking condition lasted 3 minutes to allow achievement of a metabolic 93 steady state, and each condition was separated with 3-minutes of quiet seated rest.

94

Respirometry. A portable and wireless breath-by-breath respirometry system (MetaMax 3B,
 Cortex, Biophysik, Leipzig, Germany) was used to measure rates of oxygen consumption (VO₂,

- 97 $L \cdot \min^{-1} \cdot kg^{-1}$) and carbon dioxide production (VCO₂, $L \cdot \min^{-1} \cdot kg^{-1}$). Prior to each trial, reference
- gases were used to calibrate the O_2 and CO_2 analysers and the turbine volume transducer was

calibrated using a 3 L syringe (Hans Rudolph, Kansas City, MO). Respiratory exchange ratios (VCO₂:VO₂) and their thermal equivalents taken from (36) were used to convert VO₂ to metabolic power ($\overline{P_{met}}$, W·kg⁻¹). The cost of transport (J·kg⁻¹·m⁻¹) was calculated by dividing $\overline{P_{met}}$ by average travel speed (m s⁻¹).

103

Identifying angular velocity from turns. All participants were equipped with a lower back, 104 105 mid-line mounted 'Daily Diary' tag (37) recording tri-axial (orthogonal) acceleration and magnetic field intensity at 40 Hz. Post-experiment, all magnetic field data were plotted on a 106 107 tri-axial spherical plot of magnetic field intensity (m-sphere; see (38) for details). While 108 participants walking in straight-lines led to little variation in tri-axial plotted position on the msphere, those that executed turns resulted in rapid movement of points across the m-sphere 109 surface which clearly showed at which points turns began and ended so that turn duration could 110 be derived. Maximum resolution for this was 1/40th second. The duration of turns was 111 determined for 5 turns per individual per speed and turn angle combination. 112

113

Derivation of costs. Metabolic measurements for the 0° trials were corrected for the costs of 114 115 180° turns that were necessary at the end of every 25 m of straight-line walking. In order to calculate the cost of transport for straight line walking, a series of calculations were undertaken. 116 Firstly, the time taken t, to travel one length (either 5 m or 25 m) and execute one turn for any 117 given track was calculated as distance travelled divided by speed, $\frac{a}{b}$. The total mass-specific 118 cost of walking one length and executing one turn was then calculated as the time taken x P_{met} 119 (tP_{met}) . The total mass-specific cost of walking in a straight line for 20 m was then calculated 120 by subtracting the mass-specific cost of walking $5 \text{ m} + 1 \text{ turn in } 180^{\circ}$ trials from 25 m + 1 turn121 in the 0° trials; $T_{CoW} = tP_{met}|_{d=25} - tP_{met}|_{d=5}$. The total mass-specific cost of walking in a straight 122 123 line for 20 m was then divided by 20 in order to derive the total mass-specific cost of transport (J kg⁻¹ m⁻¹). Turn costs for any given speed and angle combination were calculated by 124 subtracting $5 \times$ the cost of transport for straight-line walking from the total mass-specific cost 125 of walking 5 m and executing one turn. Each participant's turn costs were divided by their 126 127 mean turn durations in order to calculate turn power (W kg⁻¹).

128

Animal tagging. Five wild mammal species (African lions Pathera leo, chamois Rupicapra 129 rupicapra, ibex Capra ibex, mouflon Ovis orientalis and wild boar Sus scrofa) and one 130 domestic mammal (domestic goat *Capra aegagrus*), which was allowed to range freely, were 131 fitted with collar-mounted GPS-enabled 'Daily Diary' tags (2) recording tri-axial magnetic 132 field intensity and tri-axial acceleration at 10-40 Hz (see species-specific details in table 1). 133 Tags were left in place for between 15 and >250 days before being retrieved. Downloaded data 134 were treated to determine movement patterns using dead-reckoning as described in (29), 135 correcting for drift using the periodic GPS positions (29). From these data, a random period 136 137 (24-50h) was isolated from each individual, with some variation in durations to ensure that appreciable movement had taken place. For these periods, the vectorial dynamic body 138 acceleration (VeDBA), a good proxy for speed (23, 39), was calculated according to (40) as 139 well as the angular velocity over one second at approximately 10 s intervals so as to give ca. 140 20,000 angular velocity-VeDBA pairs per individual. Data from five individuals for all species 141 were used in this manner except for the mouflon, where only 4 animals were used. 142

143

144Table 2. Details of tag deployments on free living animals

Species	No.	Study area	Tag	Tag weight as	Deployment period	Deployment length (days)	Ethical permissions
			weight	% body weight			
			(g)				
Panthera leo	5	Kalahari, S. Africa	1240- 1330	<2	Feb-19	18-21	Queen's University Belfast (QUB-BS-AREC-18- 006), Pretoria University (NAS061-19), South African Parks (011-18)
Rupicapra rupicapra	5	Les Bauges, France	450	1.13	June 2017-May 2018	>250 days	IP 1516-14
Capra ibex	5	Belledonne, France	450	0.64	April 2017-March 2018	>250 days	IP 1516-14
Ovis gmelini	4	Caroux-Espinouse, France	450	0.90	May 2017-April 2018	>250 days	IP 1516-14
Sus scrofa	5	Kostelec, Czech republic	850	0.8-1.3	May - Oct 2019	30-120	Ministry of environment CZ (MZP/2019/630/361)
Capra aegagrus	5	Les Bauges, France	510	1.28	August-September 2017	29 days	SU-Ethics-Student-190717/246
Homo sapiens	20	Swansea, UK	<1	<1	July-November 2019	< 1 day	Swansea University CoE ethics: 2012:075

Statistical analyses. Linear mixed-effects models (lme4 package in R Studio v 1.2.1335) were conducted in order to investigate the relationship between angular velocity and average travel speed with differing angle extent; angular velocity with angle extent at different speeds, mass-specific metabolic parameters and speed with different angle extent; and mass-specific metabolic parameters with angular velocity at different speeds or angle extent. Participant identity was included in the models as a random factor. The F statistic and marginal and conditional R^2 were determined using the 'car (3.0-5)' and 'MuMIn (1.43.6)' packages, respectively.

Acknowledgements

RPW conceived the overall study while KAR, RSM developed and executed the human-based work with support from MAM and KAM. DMS, NM, NCB, and RPW conceived specific ideas for the lion work and JR, RG, LB, AL, JM, MSP, VS, MG, CT, PM conceived methodologies and implemented various aspects of the fieldwork for the other species. DMS, NM and NCB acquired funding and support. KAR, RSM, JR, RG and RPW performed the analyses while MDH developed and provided software and analytical ideas. All authors contributed to the manuscript preparation.

References

- 1. Williams BK, Nichols JD, Conroy MJ. Analysis and management of animal populations: Academic Press; 2002.
- 2. Dickinson MH, Farley CT, Full RJ, Koehl M, Kram R, Lehman S. How animals move: an integrative view. Science. 2000;288(5463):100-6.
- Wilson RS, Husak JF, Halsey LG, Clemente CJ. Predicting the movement speeds of animals in natural environments. Integrative and comparative biology. 2015;55(6):1125-41.
- Williams TM, Wolfe L, Davis T, Kendall T, Richter B, Wang Y, et al. Instantaneous energetics of puma kills reveal advantage of felid sneak attacks. Science. 2014;346(6205):81-5.
- 5. Wilson RP, Ropert-Coudert Y, Kato A. Rush and grab strategies in foraging marine endotherms: the case for haste in penguins. Animal Behaviour. 2002;63(1):85-95.
- Shepard EL, Wilson RP, Quintana F, Laich AG, Forman DW. Pushed for time or saving on fuel: fine-scale energy budgets shed light on currencies in a diving bird. Proceedings of the Royal Society of London B: Biological Sciences. 2009:rspb20090683.
- 7. Tucker VA. Bird metabolism during flight: evaluation of a theory. Journal of Experimental Biology. 1973;58(3):689-709.
- Watanabe YY, Sato K, Watanuki Y, Takahashi A, Mitani Y, Amano M, et al. Scaling of swim speed in breath-hold divers. J Anim Ecol. 2011;80(1):57-68. doi: 10.1111/j.1365-2656.2010.01760.x. PubMed PMID: WOS:000285110600006.
- 9. Tucker VA. Energetic cost of locomotion in animals. Comparative Biochemistry and Physiology. 1970;34(4):841-6.

- Taylor CR, Schmidtn.K, Raab JL. Scaling of Energetic Cost of Running to Body Size in Mammals. Am J Physiol. 1970;219(4):1104-&. PubMed PMID: WOS:A1970H466000046.
- 11. Langman VA, Rowe MF, Roberts TJ, Langman NV, Taylor CR. Minimum cost of transport in Asian elephants: do we really need a bigger elephant? The Journal of experimental biology. 2012;215(9):1509-14.
- 12. van der Hoop JM, Fahlman A, Hurst T, Rocho-Levine J, Shorter KA, Petrov V, et al. Bottlenose dolphins modify behavior to reduce metabolic effect of tag attachment. The Journal of experimental biology. 2014;217(23):4229-36.
- Pennycuick CJ, Akesson S, Hedenstrom A. Air speeds of migrating birds observed by ornithodolite and compared with predictions from flight theory. J R Soc Interface. 2013;10(86). doi: ARTN 20130419 10.1098/rsif.2013.0419. PubMed PMID: WOS:000321614300010.
- White CR, Seymour RS. Mammalian basal metabolic rate is proportional to body mass2/3. Proc Natl Acad Sci U S A. 2003;100(7):4046-9. Epub 2003/03/15. doi: 10.1073/pnas.0436428100. PubMed PMID: 12637681; PubMed Central PMCID:
 - РМСРМС153045.
- Taylor CR, Heglund NC, Maloiy GMO. Energetics and Mechanics of Terrestrial Locomotion .1. Metabolic Energy-Consumption as a Function of Speed and Body Size in Birds and Mammals. J Exp Biol. 1982;97(Apr):1-21. PubMed PMID: WOS:A1982NP45000001.
- Daley MA, Channon AJ, Nolan GS, Hall J. Preferred gait and walk-run transition speeds in ostriches measured using GPS-IMU sensors. J Exp Biol. 2016;219(20):3301-8. doi: 10.1242/jeb.142588. PubMed PMID: WOS:000386834800017.
- 17. Hoyt DF, Taylor CR. Gait and the Energetics of Locomotion in Horses. Nature. 1981;292(5820):239-40. doi: DOI 10.1038/292239a0. PubMed PMID: WOS:A1981LX62500030.
- 18. Schooley RL, Sharpe PB, VanHorne B. Can shrub cover increase predation risk for a desert rodent? Can J Zool. 1996;74(1):157-63. doi: DOI 10.1139/z96-020. PubMed PMID: WOS:A1996TY14800020.
- 19. Wynn ML, Clemente C, Nasir AF, Wilson RS. Running faster causes disaster: tradeoffs between speed, manoeuvrability and motor control when running around corners in northern quolls (Dasyurus hallucatus). J Exp Biol. 2015;218(Pt 3):433-9. Epub 2015/02/06. doi: 10.1242/jeb.111682. PubMed PMID: 25653423.
- Wilson AM, Hubel TY, Wilshin SD, Lowe JC, Lorenc M, Dewhirst OP, et al.
 Biomechanics of predator-prey arms race in lion, zebra, cheetah and impala. Nature.
 2018;554(7691):183-8. Epub 2018/01/25. doi: 10.1038/nature25479. PubMed PMID: 29364874.
- 21. McNarry MA, Wilson RP, Holton MD, Griffiths IW, Mackintosh KA. Investigating the relationship between energy expenditure, walking speed and angle of turning in humans. Plos One. 2017;12(8). doi: ARTN e0182333 10.1371/journal.pone.0182333. PubMed PMID: WOS:000407396200045.
- 22. Wilson R, Griffiths I, Legg P, Friswell M, Bidder O, Halsey L, et al. Turn costs change the value of animal search paths. Ecology letters. 2013;16(9):1145-50.
- 23. Bidder OR, Soresina M, Shepard EL, Halsey LG, Quintana F, Gomez-Laich A, et al. The need for speed: testing acceleration for estimating animal travel rates in terrestrial

dead-reckoning systems. Zoology. 2012;115(1):58-64. doi: 10.1016/j.zool.2011.09.003. PubMed PMID: WOS:000301032400007.

- 24. Shepard ELC, Wilson RP, Rees WG, Grundy E, Lambertucci SA, Vosper SB. Energy Landscapes Shape Animal Movement Ecology. Am Nat. 2013;182(3):298-312. doi: 10.1086/671257. PubMed PMID: WOS:000322901300005.
- 25. Halsey LG, White CR. A different angle: comparative analyses of whole-animal transport costs when running uphill. J Exp Biol. 2017;220(Pt 2):161-6. Epub 2016/11/02. doi: 10.1242/jeb.142927. PubMed PMID: 27802142.
- 26. Walsh PD. Area-restricted search and the scale dependence of patch quality discrimination. J Theor Biol. 1996;183(4):351-61. doi: DOI 10.1006/jtbi.1996.0227. PubMed PMID: WOS:A1996VY98700001.
- 27. Bau J, Carde RT. Modeling Optimal Strategies for Finding a Resource-Linked, Windborne Odor Plume: Theories, Robotics, and Biomimetic Lessons from Flying Insects. Integr Comp Biol. 2015;55(3):461-77. doi: 10.1093/icb/icv036. PubMed PMID: WOS:000360006000011.
- 28. Hulbert IAR, French J. The accuracy of GPS for wildlife telemetry and habitat mapping. J Appl Ecol. 2001;38(4):869-78. doi: DOI 10.1046/j.1365-2664.2001.00624.x. PubMed PMID: WOS:000170568000016.
- 29. Bidder OR, Walker JS, Jones MW, Holton MD, Urge P, Scantlebury DM, et al. Step by step: reconstruction of terrestrial animal movement paths by dead-reckoning. Mov Ecol. 2015;3(1):23. Epub 2015/09/19. doi: 10.1186/s40462-015-0055-4. PubMed PMID: 26380711; PubMed Central PMCID: PMCPMC4572461.
- Granatosky MC, Bryce CM, Hanna J, Fitzsimons A, Laird MF, Stilson K, et al. Interstride variability triggers gait transitions in mammals and birds. P Roy Soc B-Biol Sci. 2018;285(1893). doi: ARTN 20181766 10.1098/rspb.2018.1766. PubMed PMID: WOS:000465428300005.
- Maloiy GMO, Rugangazi BM, Rowe MF. Energy expenditure during level locomotion in large desert ungulates: the one-humped camel and the domestic donkey. J Zool. 2009;277(3):248-55. doi: 10.1111/j.1469-7998.2008.00535.x. PubMed PMID: WOS:000263521400008.
- Nudds RL, Folkow LP, Lees JJ, Tickle PG, Stokkan KA, Codd JR. Evidence for energy savings from aerial running in the Svalbard rock ptarmigan (Lagopus muta hyperborea). Proc Biol Sci. 2011;278(1718):2654-61. Epub 2011/02/04. doi: 10.1098/rspb.2010.2742. PubMed PMID: 21288943; PubMed Central PMCID: PMCPMC3136837.
- Watson RR, Rubenson J, Coder L, Hoyt DF, Propert MWG, Marsh RL. Gait-specific energetics contributes to economical walking and running in emus and ostriches. P Roy Soc B-Biol Sci. 2011;278(1714):2040-6. doi: 10.1098/rspb.2010.2022. PubMed PMID: WOS:000290956100018.
- Dawson TJ, Taylor CR. Energetic Cost of Locomotion in Kangaroos. Nature. 1973;246(5431):313-4. doi: DOI 10.1038/246313a0. PubMed PMID: WOS:A1973R392800043.
- 35. Schick RS, Loarie SR, Colchero F, Best BD, Boustany A, Conde DA, et al. Understanding movement data and movement processes: current and emerging directions. Ecology letters. 2008;11(12):1338-50.
- 36. Brody S. Bioenergetics and growth, with special reference to the efficiency complex in domestic animals. New York,: Reinhold; 1945. xii, 1023 p. p.

- Wilson R, Shepard E, Liebsch N, Wilson R, Shepard E. Prying into the intimate details of animal lives: use of a daily diary on animals. Endangered Species Research. 2008;3.
- Williams HJ, Holton MD, Shepard ELC, Largey N, Norman B, Ryan PG, et al.
 Identification of animal movement patterns using tri-axial magnetometry. Mov Ecol.
 2017;5. doi: ARTN 6
 10.1186/s40462-017-0097-x. PubMed PMID: WOS:000397817700001.
- 39. Bidder OR, Qasem LA, Wilson RP. On higher ground: how well can dynamic body acceleration determine speed in variable terrain? Plos One. 2012;7(11):e50556. Epub 2012/12/12. doi: 10.1371/journal.pone.0050556. PubMed PMID: 23226313; PubMed Central PMCID: PMCPMC3511514.
- 40. Qasem L, Cardew A, Wilson A, Griffiths I, Halsey LG, Shepard ELC, et al. Tri-Axial Dynamic Acceleration as a Proxy for Animal Energy Expenditure; Should We Be Summing Values or Calculating the Vector? Plos One. 2012;7(2). doi: ARTN e31187 10.1371/journal.pone.0031187. PubMed PMID: WOS:000302853600123.

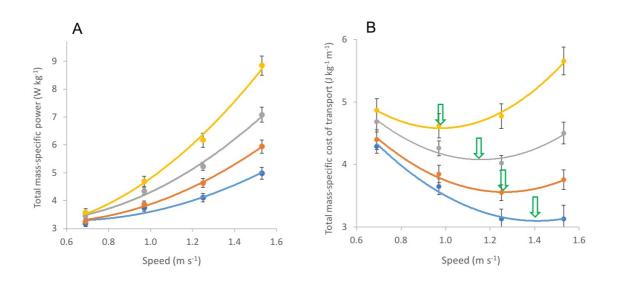
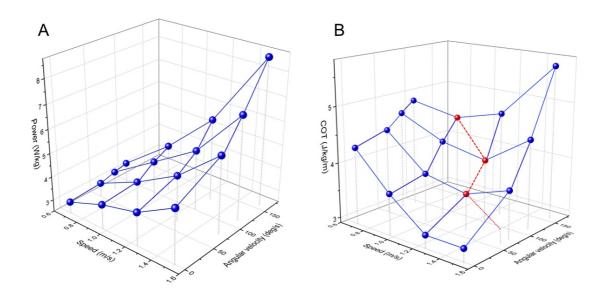



Fig 1. Metabolic measurements versus average walking speed for 20 human participants walking tracks with turns of varied extent. (A) Mean (\pm SE) total mass-specific power and (B) mean (\pm SE) total mass-specific cost of transport for straight movement (blue), 90° turns every 5 m (orange), 135° turns every 5 m (grey) and a 180° turns every 5 m (yellow). Quadratic curves were fitted using the coefficients of the outputs of linear mixed-effects models (see Table 1). Arrows show COT_{min}.

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.20.259390; this version posted August 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Fig 2. 3D representations of how mass-specific metabolic power and the mass-specific cost of transport are influenced by average travel speed and angular velocity. (A) Mass-specific power, and (B) mass-specific cost of transport (COT) for twenty male participants walking courses with defined angle turns interspaced with straight sections. Each point represents a mean value from twenty values, each of which is derived from a single participant. Power costs increase with both speed and angular velocity. Against this, the accelerating power costs of higher angular velocities produce cost of transit minima (highlighted in red) where any turning occurs and these minima occur at lower speeds with higher angular velocities.

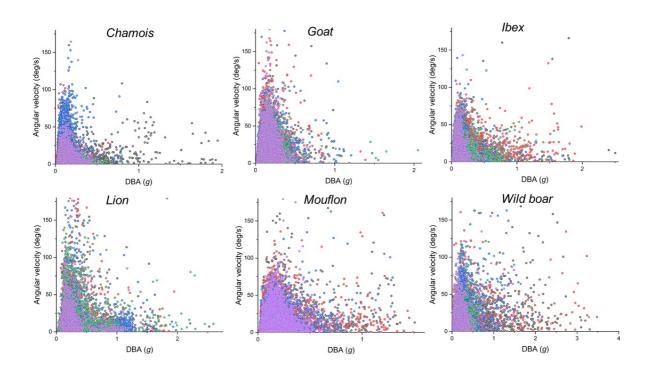


Fig 3. Incidence of angular velocity against dynamic body acceleration (DBA) – a linear proxy for travel speed – in 6 free-living terrestrial species. The lion data show both DBA [black numbering on x-axis] and speed [red numbering] because these animals were equipped with high resolution GPS – see inset). Each point shows a value taken at *ca*. 10 s intervals over a length of time that corresponds to about 20,000 points for each individual (N = 5 per species except for the mouflon where N = 4, with individuals depicted by different colors). Note how all distributions show decreasing angular velocities with increasing speed across all speed ranges, starting with the slowest.

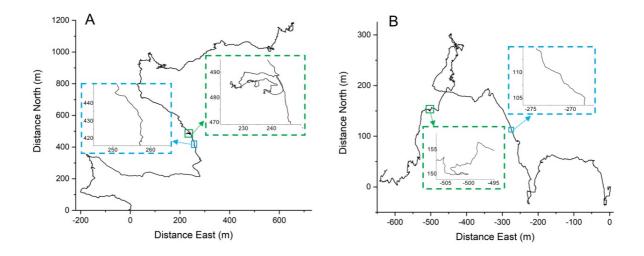


Fig 4. Examples of 20 h movement paths (at 4 Hz and elucidated by dead-reckoning) of two of the study animals. (A) a chamois and (B) an Ibex, showing in the insets the scale over which turns are made (cf. our VO₂ study on humans). Note how even apparently straight-line paths (blue boxes) show clear turns, although angles are obtuse, while tortuous sections (green boxes) show both obtuse and acute turns.