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Abstract 
Magnetic resonance imaging (MRI) continues to drive many important neuroscientific advances. 
However, progress in uncovering reproducible associations between individual differences in 
brain structure/function and behavioral phenotypes (e.g., cognition, mental health) may have 
been undermined by typical neuroimaging sample sizes (median N=25)1,2. Leveraging the 
Adolescent Brain Cognitive Development (ABCD) Study3 (N=11,878), we estimated the effect 
sizes and reproducibility of these brain-wide associations studies (BWAS) as a function of 
sample size. The very largest, replicable brain-wide associations for univariate and multivariate 
methods were r=0.14 and r=0.34, respectively. In smaller samples, typical for brain-wide 
association studies (BWAS), irreproducible, inflated effect sizes were ubiquitous, no matter the 
method (univariate, multivariate). Until sample sizes started to approach consortium-levels, 
BWAS were underpowered and statistical errors assured. Multiple factors contribute to 
replication failures4–6; here, we show that the pairing of small brain-behavioral phenotype effect 
sizes with sampling variability is a key element in wide-spread BWAS replication failure. Brain-
behavioral phenotype associations stabilize and become more reproducible with sample sizes 
of N⪆2,000. While investigator-initiated brain-behavior research continues to generate 
hypotheses and propel innovation, large consortia are needed to usher in a new era of 
reproducible human brain-wide association studies.  
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Main 
The advent of MRI has given us the remarkable ability to non-invasively map human 

brain structure7,8 (e.g. cortical thickness) and function (e.g. resting-state functional connectivity 
[RSFC])9,10. In addition to brain mapping, linking individual differences in brain structure and 
function to typical variation in behavioral phenotypes (e.g., cognitive ability, psychopathology) is 
a central goal of human neuroscience. Such brain-wide association studies (BWAS) hold great 
promise for predicting and reducing psychiatric disease burden and advancing our 
understanding of the cognitive abilities that underlie humanity’s intellectual feats. However, 
obtaining MRI data remains very expensive (~$1,000/hr), resulting in many small-sample BWAS 
studies (e.g., median N=251,2), whose results often fail to replicate1,11–15.  

Factors contributing to replication failures include methodological variability6, data mining 
for “significant” results (p-hacking), confirmation and publication biases16, and inadequate 
statistical power4,5. These factors of poor reproducibility are known from population-based 
research in psychology17, genomics (i.e. genome-wide association studies [GWAS])18, and 
medicine19. Behavioral and neuroimaging researchers are starting to address replication failures 
by standardizing analyses, pre-registering hypotheses, publishing null results, and data/code 
sharing1. While these open science efforts are improving reproducibility, reliance on sample 
sizes achievable by individual research groups may be the most significant obstacle to 
identifying reproducible brain-wide associations. If brain-wide associations have subtle true 
effect sizes (e.g., r=0.1), larger samples will be required to reproducibly measure them, simply 
due sampling variability (i.e., random variation). Sampling variability decreases and effect sizes 
stabilize towards their true values20 with increasing sample sizes, at the rate of "(𝑁). Therefore, 
epidemiology and genomics researchers were forced to steadily increase sample sizes from 
N<100 to N>1,000,00018,21,22 to overcome sampling variability and small effect sizes.  

Recently, neuroimaging consortia aimed at linking brain measures to behavioral 
phenotypes have collected samples orders of magnitude larger than before, harmonizing 
imaging methodologies across sites (e.g., ABCD Study3, N=11,878; Human Connectome 
Project23 [HCP], N=1,200). Growing sample sizes have also facilitated the use of multivariate 
techniques (e.g., support vector regression [SVR], canonical correlation analysis [CCA]), with 
the hope of detecting reproducible brain patterns associated with behavioral phenotypes. Here, 
using the ABCD Study data, we performed a series of univariate and multivariate analyses to 
generate more precise estimates of brain-behavioral phenotype associations and to evaluate 
reproducibility as a function of sample size, ranging from typical (N=25) to very large (N=3,928).  
 
Brain-Wide Associations Cannot Be Estimated Precisely in Typically Sized Studies 

Associations between the brain and behavioral phenotypes are classically estimated 
using univariate models in which a brain feature (e.g., RSFC between two regions [“edge”]) is 
correlated with typical variation in a behavioral phenotype (e.g., cognitive ability). To estimate 
the effect sizes of brain-wide associations in ABCD data, we correlated widely used cortical 
thickness and RSFC metrics with 41 measures indexing demographics, cognition, and mental 
health (Extended Data Table S1). Brain-wide associations were estimated across multiple levels 
of anatomical resolution in both structural (i.e., cortical vertices, regions of interest [“ROI”], 
networks; see Methods) and functional (resting-state connections [“edges”], principal 
components [“components”], networks) data. To ameliorate the effects of nuisance variables 
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such as head motion, we applied extremely rigorous denoising strategies (N=3,928; >8mins 
RSFC data post frame censoring at a framewise displacement [FD] filtered<0.08mm). Repeat 
analyses employing less rigorous motion censoring, and thus retaining a larger subset of the full 
ABCD sample (N=9,753), replicated the effect sizes across all brain-wide associations (see 
Methods). 

In Fig. 1a,b, we show the univariate associations between cortical thickness/RSFC and 
two extensively studied behavioral phenotypes, cognitive ability (NIH Toolbox total composite 
score) and psychopathology (Child Behavior Checklist24 [CBCL] total problem score; see 
Methods & Extended Data Table S1). In the full denoised sample (N=3,928), across all brain-
wide associations, the median effect size was |r|=0.01 (Extended Data Fig. S1). The 99th 
percentile (largest 1%) of all possible brain-wide associations was |r|>0.06. The strongest 
correlation between a brain metric and a behavioral measure was |r|=0.16 (edge-level: RSFC 
with cognitive ability). Across all brain-wide associations, the single largest correlation that 
replicated out-of-sample was |r|=0.14 (edge-level: RSFC with crystallized intelligence composite 
score [NIH Toolbox]25). For exemplar behavioral phenotypes (cognitive ability, 
psychopathology), the strongest associations were distributed across sensorimotor and 
association cortex (Fig. 1c,d). These patterns of brain-wide associations suggest that cognitive 
ability and psychopathology are supported by widely distributed circuitry.  
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Fig 1. Effect Sizes and Sampling Variability of Univariate Brain-Wide Associations as a Function of Sample 
Size. Correlations of (a) cortical thickness with cognitive ability (left; green), psychopathology (right; purple) at 
different levels of analysis (vertex, ROI, network) and  (b) RSFC with cognitive ability (left; green),   psychopathology 
(right; purple) at different levels of analysis (edge, network, component). Brain regions with the largest brain-wide 
associations (top 10%) for (c) cortical thickness with cognitive ability (left; green), psychopathology (right; purple); (d) 
RSFC with cognitive ability (left; green), psychopathology (right; purple). Sampling variability (range of observed 
correlations; 1,000 resamplings per sample size) for the largest brain-wide associations; (e) cortical thickness with 
cognitive ability (left; green), psychopathology (right; purple); (f) RSFC with cognitive ability (left; green), 
psychopathology (right; purple). Solid lines represent the mean across 1,000 simulated studies (resamplings). 
Shading represents the minimum and maximum correlation across the 1,000 resamples for a given sample size. Gray 
dotted line denotes the 95% confidence interval (CI). Black dotted line denotes the 99% CI. (g) Default Mode network 
(DMN) cortical thickness with cognitive ability (left; green), psychopathology (right; purple) correlations from two N=25 
samples, in which significant, but inaccurate correlations with opposite signs are observed (top vs. bottom). Black 
dotted line denotes least squares fit from the full sample (h) Default Mode network (DMN) RSFC with cognitive ability 
(left; green), psychopathology (right; purple) correlations from two N=25 samples, in which significant, but inaccurate 
correlations with opposite signs are observed (top vs. bottom).  
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Smaller brain-wide association studies have reported larger correlations than the largest 
effect size in the ABCD Study26. How can that be? In Fig. 1e,f, we show that sampling variability 
(99% confidence interval [CI] of observed correlations) alone generates nominally significant 
(p<0.05), but inflated correlations, which would then be falsely reported2,27. We charted 
sampling variability as a function of sample size (N=25 to 3,928) for the strongest brain-wide 
associations as defined in the full sample (N=3,928, strict denoising). We chose the strongest 
association (RSFC with cognitive ability: r=0.16 in full sample, r=0.14 out-of-sample) as an 
illustrative example. At the median sample size of existing BWAS (N=25), the 99% CI for RSFC 
and cognitive ability associations ranged from r=-0.39 to r=0.62 (Fig. 1e,1f), demonstrating how 
sampling variability alone can account for a broad range of observed brain-wide associations. 
Although sampling variability decreases with increasing sample size, a sample as large as 
N=2,000 still contains measurable sampling variability. For example, the sampling variability 
(99% CI) of the strongest RSFC, cognitive ability association (r=0.16) at N=2,000 was 0.10-
0.22.  

In Fig 1g,h, we provide examples of the potentially deleterious effects of sampling 
variability using the heavily-studied association between default mode network (DMN) and 
cognitive ability/psychopathology. Here, two N=25 subsamples (e.g., cortical thickness with 
cognitive ability) can reach the opposite conclusion (r=0.64 vs. r=-0.69; full sample: r=0.08) with 
nominal statistical significance (both p<0.001), solely due to sampling variability of the 
association. The effects of sampling variability shown in Fig. 1e,f generalized to all brain-wide 
associations (Extended Data Fig. S2,S3) as well as behavior-behavior correlations (e.g. 
cognitive ability and psychopathology correlation range = 1.25 at N=25, Extended Data Fig. S4).  
 
Effect Sizes and Sampling Variability Replicate in Single Site Datasets  

Given the pediatric (9-10 yrs) and multi-site sample of the ABCD Study, we sought to 
replicate effect size estimates in a single site, single scanner, adult dataset (HCP: N=1,200; 
N=877 post-denoising; age-range: 22-35 years). In HCP data, we identified modestly larger 
correlations between RSFC and NIH Toolbox subscales (max. r=0.20) than those observed in 
the ABCD data (max. r=0.16, full denoised sample). However, subsampling ABCD data to 
match the HCP sample size (N=877) inflated the ABCD’s maximum correlation from 0.16 to 
0.20 and generated a nearly identical effect size distribution as for the HCP Study (Extended 
Data Fig. S5a), indicating that brain-wide associations in the 21-site pediatric ABCD study are 
equivalent in magnitude to those in the single site/scanner, adult HCP study. These results 
suggest that any effect sizes >r~0.16 in HCP data may still be inflated due to sampling 
variability. In fact, even across 100 bootstrapped split-half ABCD samples (N=1,964 in each 
half), the top 1% largest brain-behavioral phenotype correlations were inflated by r=0.043 
(r=0.027 in N=4,303 split halves, no exclusion for data quality), on average (Extended Data Fig 
S5b). Although measurable sampling variability remains, sample sizes of N⪆2,000 (post-
denoising) can provide more stable estimates of the associations between brain and behavioral 
measures.  

To ameliorate any concerns that sampling variability may be inflated by the multi-site 
nature of ABCD, we directly compared sampling variability between the HCP and ABCD 
datasets (Extended Data Fig. S6a), and between a single ABCD site (N=603) and the remaining 
sites (Extended Data Fig. S6b). In both cases, sampling variability was equivalent between 
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single site and multi site samples, providing evidence that sampling variability was robust to site 
effects. 
 
Statistical Errors Are Ubiquitous in Typically Sized Brain-Wide Association Studies 
(BWAS)  

In Fig. 2, we show that the combination of observed BWAS effect sizes and sampling 
variability generates statistical errors. Specifically, we plotted statistical error rates (false 
negative [type 2 error], false positive, [type 1 error], correlation magnitude inflation [type M], and 
sign errors [type S])28 as a function of sample size for all univariate brain-wide associations 
(Extended Data Fig. S7 displays each MRI measure separately). For typical BWAS samples 
(e.g., N≤200), the false negative rate was at least 76% at p<0.05 (Fig. 2a) with a concurrent 
false positive rate of 6.1% (Fig. 2b), meaning typically-sized samples mischaracterize a 
significant correlation as a non-significant correlation at least 76% of the time in an uncorrected, 
hypothesis-driven analysis. Thus, at p<0.05, N≤200 samples only achieved a maximum power 
of 24% (power= 1- false negative rate). Sample sizes of at least 2,200 subjects were required to 
be 80% powered to detect the largest 1% of univariate brain-wide associations (r=0.06) at 
p<0.05 (Extended Data Fig. S8a).  

 When correcting for multiple comparisons (Bonferroni), 9,500 subjects were required to 
be 80% powered to detect the largest 1% (r=0.06) of correlations (Extended Data Fig S8b). If an 
N≤200 sample correctly rejected the null hypothesis (at most 24% at p<0.05; 0.1% at p<10-7), 
there was a 50% chance that the magnitude of the correlation was inflated by at least 100% 
(Fig. 2c). Additionally, across all brain-wide associations, samples with an N≤200 had at least a 
40% chance of reporting correlations with the wrong sign (Fig. 2d), meaning that they reach the 
opposite conclusion 40% of the time.  

To further test the reproducibility of univariate brain-phenotype associations, we 
determined the out-of-sample replication of brain-wide associations using established discovery 
(N=1,964) and replication (N=1,964) ABCD sets, matched across a broad range of demographic 
factors29 (Extended data Fig. S9). In N≤200 samples, univariate models never replicated out-of-
sample (R2 range: -0.018 - 0.005). In the full replication sample (N=1,964), the top 0.5% 
strongest brain-wide associations achieved modest out-of-sample replication, explaining 1% of 
the variance in out-of-sample data (R2=0.01).  
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Fig 2. Statistical Errors in Brain-Wide Associations as a Function of Sample Size. (a) False negative rate in 
RSFC (edgewise) correlations with cognitive ability varying as a function of p-value. The most stringent p-value (10-7) 
is equivalent to a Bonferroni correction across all 77,421 RSFC pairs, whereas p<0.05 is equivalent to no multiple 
comparisons correction. (b) False positive rate in RSFC correlations with cognitive ability varying as a function of p-
value. (c) Inflation rate of the RSFC correlation with cognitive ability, depicting the probability of observing an inflated 
correlation as a function of sample size. Color gradient represents the magnitude of inflation. (d) Probability of 
observing the opposite sign of the correlation observed between RSFC and cognitive ability in the full sample 
(N=3,928) as a function of sample size. Color gradient represents the effect size of the correlation in the full sample.   
 
The “Underpowered Correlation Paradox”  

Paradoxically, at small sample sizes, the largest correlations are the most erroneous, yet 
the most likely to be significant, and therefore the most likely to be published. This correlation 
paradox occurs because typical BWAS samples (e.g., N=200) are only sufficiently powered to 
detect statistical significance for correlations that are larger than the largest correlation (r=0.16) 
observed in the full ABCD study sample. Thus, typically sized studies (e.g., N=200) that report 
significant brain-wide associations necessarily must have inflated effect sizes (r>0.16). This 
happens by chance, as sampling variability enables the detection of a significant (p<0.05) yet 
inflated correlation (Fig 1e,f). When attempting to replicate a significant inflated correlation - due 
to the central tendency of the effect size distribution across studies - the most likely outcome 
would be to observe a correlation of r~0.10 (value in full sample), thus failing to replicate the 
original inflated effect. Publication bias (only publishing significant effects) and reliance on null 
hypothesis-testing for inference would likely prevent the replication result from being published, 
perpetuating inflated effect sizes that form the basis for subsequent power- and meta-analyses.   
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Multivariate Associations Can Improve Reproducibility in Large Samples  
 Multivariate approaches (SVR [Support Vector Regression], CCA [Canonical Correlation 
Analysis]) are thought to be more powerful for discovering brain-wide associations (Fig. 3)30. 
SVR detects multivariate brain patterns (as opposed to single brain features in univariate 
approaches) that predict a single behavioral phenotype (e.g., cognitive ability), while CCA 
enables the discovery of weighted multivariate brain patterns that predict weighted combinations 
of multiple behavioral phenotypes (e.g., all NIH Toolbox subscales). To examine multivariate 
brain-wide associations as a function of sample size, we fit SVR and CCA models on 
subsamples of the discovery set (in-sample) and subsequently tested their out-of-sample 
replicability on the full replication set. Replicability was quantified as the correlation (r) between 
observed behavioral scores in the replication dataset and predicted behavioral scores from 
models fit on the discovery set. 

As shown in Fig 3a,b, multivariate models fit on cortical thickness data in typical BWAS 
samples only replicated when using SVR to predict cognitive ability (r=0.14, null r=0.09; see 
Extended Data Fig. S10, S11 for SVR feature and hyperparameter selection). Other cortical 
thickness multivariate models never replicated with typical BWAS samples (N=200), despite 
large brain-phenotype associations in the discovery sample (e.g., CCA range at N=200 for 
discovery r=0.37-0.81; Fig. 3b). However, as sample sizes approached consortium-levels (i.e., 
the full discovery sample N=1,814), SVR associations between cortical thickness and cognitive 
ability achieved significant replication (observed r=0.20, 99% confidence of the null r=0.09, 
p<0.01; Fig. 3a). This was the largest observed replication between cortical thickness and any 
behavioral phenotype. Using SVR, replication significance was not achieved for 
psychopathology (r=0.05, null r=0.08, p>0.01; Fig. 3a) or for cortical thickness associations with 
the NIH Toolbox or the CBCL (Fig. 3b).  

Consistent with the requirement for consortium-level sample sizes for reproducibility, 
multivariate models fit on RSFC data in typical BWAS samples mostly resulted in replication 
failures. For example, SVR models fit on RSFC data from N=200 subsamples of the discovery 
set (Fig. 3c) replicated with cognitive ability (RSFC/cognitive ability out-of-sample r=0.15, null 
r=0.08), but failed to replicate with psychopathology (RSFC with psychopathology r=0.05, null 
r=0.06; Fig. 3c). At N=200, CCA models never replicated (all out-of-sample r<0.07; Fig 3d), 
despite achieving high correlations in the discovery sample (RSFC with NIH Toolbox r=0.35-
0.66; RSFC with CBCL r=0.32-0.66; Fig. 3d). As sample sizes approached consortium-levels 
(N=1,964), significant replication between RSFC and cognitive ability with SVR was observed 
(r=0.34, null r=0.10; Fig. 3c). The SVR association between RSFC and cognitive ability was the 
largest replicated brain-wide effect across all measures and is consistent with other recent 
large-scale prediction efforts31,32. Similarly, CCA associations between RSFC and the NIH 
Toolbox fit on the full discovery sample achieved significant out-of-sample replication (r=0.22, 
null r=0.09, p<0.01; Fig. 3d), but not between RSFC and CBCL (r=0.06, null r=0.08 p>0.01; Fig. 
3d). 

Multivariate out-of-sample replication (max. r=0.34) was superior to univariate out-of-
sample replication at consortium-level sample sizes (N~2,000), but was still low-to-moderate for 
most behavioral phenotypes. Out-of-sample replication was generally maximized by using a 
relatively low-dimensional feature space (e.g., principal components accounting for 20-50% of 
cumulative variance; Extended Data Fig. S12, S13), reaffirming that brain-wide associations are 
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represented in widely-distributed circuitry33, consistent with the univariate results (Fig 1c,d). 
Moreover, multivariate replicability was robustly linked to univariate effect sizes, such that 
multivariate replicability and univariate effect sizes were strongly correlated (r=0.79, p<0.001, 
Extended Data Fig. S14). 
 

 
Fig 3. Multivariate Brain-Wide Associations. Discovery (in-sample) multivariate (SVR, CCA) correlations (y-axes) 
as a function of out-of-sample replication (x-axes) and sample size (dark-to-light color gradient) for (a) the multivariate 
(SVR) associations of cortical thickness with cognitive ability (green; left), psychopathology (purple; right). (b) The 
multivariate (CCA) association of cortical thickness with the NIH Toolbox (green; left), CBCL (purple; right). (c) The 
multivariate (SVR) relationship of RSFC with cognitive ability (green; left), psychopathology (purple; right). (d) The 
multivariate (CCA) relationship of RSFC and the NIH Toolbox (green; left), with CBCL (purple; right). Gray dotted line 
represents the threshold for significant replication (p<0.01), determined through permutation testing on the full sample 
for each brain-wide association. Circles indicate mean replication (r) across 100 bootstrap samples (with 
replacement) at an N=200 (red dot) and the full sample (black dot). Full sample sizes: cortical thickness N=1,814; 
RSFC N=1,964.  
 
Towards Reproducible Brain-Wide Association Studies through Large-Sample Consortia 

Human neuroscience’s goal of reproducibly linking the brain to behavioral phenotypes 
requires sample sizes only recently achieved by consortia (e.g., ABCD, N>10,000). Typical 
sample sizes collected by single investigators have been drastically underpowered for brain-
wide association studies (BWAS), thus largely failing to replicate.  

Similar to even larger genomics consortia, highly collaborative and strategic human 
neuroimaging studies such as the ABCD, HCP, The All of Us Research Program34, and the UK 
Biobank are empowering neuroscientists to identify robust and reproducible brain-wide 
associations between brain and behavioral measures (Fig. 4). As in other population-based 
disciplines, many of which have substantially smaller effect sizes (e.g., individual gene variants: 
<0.01% variance explained), consortium efforts are promoting reproducibility, methods 
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harmonization,35 and the collection of sample sizes with greater statistical power. For example, 
genomics researchers realized that a handful of well-characterized genes were likely false 
discoveries resulting from underpowered studies21. Large consortia efforts in genomics have led 
to sample sizes exceeding 1 million individuals36 with standardized methodological pipelines37. 
These large discovery sets are used to train whole-genome models that are subsequently used 
to answer more detailed questions in independent samples18. Currently, brain-wide association 
studies are trapped in the initial discovery phase. Larger samples will inevitably allow 
multivariate models, both those currently in use and future improvements currently being 
developed38–41, to be employed by individual research groups.  

 

 
Fig 4. Influence of Sample Size on the Robustness of Brain-Wide Associations (BWAS). Trajectories of 
sampling variability (99% confidence interval; orange), statistical error rates (cumulative sum of false negatives, false 
positives, effect size inflation, sign errors; yellow), and SVR out-of-sample replication (percentage of the magnitude of 
the full sample discovery [in-sample] correlation [% Pearson r]; dark red) as a function of sample size. Sample size 
(e.g 4,000) represents a full sample (discovery + replication datasets of 2,000 each).   
 

Smaller, investigator-initiated neuroimaging studies will continue to be just as important 
for human neuroscience as they were in the days when samples of N>10,000 for brainwide-
wide association studies (BWAS) were still an impossibility. Larger sample consortium studies 
of brain-wide associations were made possible by a myriad of independent studies that created 
the technological, analytical, and theoretical frameworks adopted by the ABCD consortium. 
Smaller neuroimaging studies have provided blueprints for reducing MRI artifacts42, increasing 
usable data43, and boosting reliability within individuals 44,45. Indeed, the amount of RSFC data 
collected per subject in ABCD was based on an N=1 study46. There is no one-size-fits-all 
sample size for neuroimaging studies47; instead the appropriate sample size must always be 
determined by the study goals. Just as one should not use a N>10,000 consortium to 
experiment with novel ideas, technologies, or methods, one should not conduct brain-wide 
association studies - BWAS - with anything but the very largest, currently available samples. 
Studying brain-wide associations in smaller samples requires well-controlled, hypothesis-driven 
experimental manipulations (e.g., interventions, lesions) to boost effect sizes48. Trailblazing 
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smaller studies should always seek replication in substantially larger sample sizes49, and 
contribute study data to repositories for future data aggregation. 

Ultimately, making brain imaging measures maximally relevant to human behavioral 
phenotypes requires ever larger population-based samples, as showcased by genomics18. By 
building large multi-site consortia on the wisdom gleaned from previous smaller studies, we are 
poised to take the long-awaited leap towards robustly and reproducibly linking the brain’s 
structure and function to the complex behavioral phenotypes that shape our lives. 

 
Methods 
Sample 

This project utilized the ABCD-BIDS processed dataset consisting of RSFC data from 
10,259 participants through the ABCD-BIDS Community Collection (ABCD collection 3165; 
https://github.com/ABCD-STUDY/nda-abcd-collection-3165) and demographic and behavioral 
data from 11,572 9-10 year old participants from the ABCD 2.0 release3. We also utilized the 
ABCD reproducible matched samples (ARMS), available in ABCD collection 3165, that divided  
individuals from the full behavioral sample (N=11,572) into discovery (N=5,786) and replication 
(N=5,786) sets, which were matched across 9 variables: site location, age, sex, ethnicity, grade, 
highest level of parental education, handedness, combined family income, and prior exposure to 
anesthesia. Family members (e.g., sibling pairs, twins, and triplets) were kept together in the 
same set and the two sets were matched to include equal numbers of single participants and 
family members. These split datasets were used for replicability analyses.   

Head motion can systematically bias neuroimaging studies50. However, these systematic 
biases can be addressed through rigorous head motion correction51. Therefore, we used strict 
inclusion criteria with regard to head motion. Specifically, inclusion criteria for the current project 
(see ref52 for broader ABCD inclusion criteria) consisted of at least 600 frames (8 minutes) of 
low-motion (filtered FD<0.08) RSFC data. Our final dataset consisted of RSFC data from a total 
of N=3,928 youth across the discovery (N=1,964) and replication (N=1,964) sets. The final 
discovery and replication sets did not differ in mean FD (∆M=0.002 , t=0.60, p=0.55) or total 
frames included (∆M=6.4, t =0.94, p=0.35). The subject lists for ARMS samples and our 
associated matrices will be released in the ABCD-BIDS Community Collection (ABCD collection 
3165) for community use. 
 
MRI acquisition  

Imaging was performed at one of 21 sites within the United States, harmonized across 
Siemens Prisma, Philips, and GE 3T scanners. Details on image acquisition can be found in52. 
Twenty minutes (4 x 5 minute runs) of eyes-open (passive crosshair viewing) resting state data 
were acquired to ensure at least 8 minutes of low-motion data. All resting state scans fMRI 
scans used a gradient-echo EPI sequence (TR = 800 ms, TE = 30 ms, flip angle = 90°, voxel 
size = 2.4 mm3, 60 slices). Head motion was monitored using Framewise Integrated Real-time 
MRI Monitor (FIRMM) software at many of the Siemens sites43. 
 
ABCD-BIDS (HCP-style CIFTI) processing overview 
 All processing was completed with the newly released and freely available ABCD-BIDS 
pipelines (https://github.com/DCAN-Labs/abcd-hcp-pipelines). The ABCD-BIDS pipelines are 
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modified from the original HCP pipelines53.  Briefly, this pipeline comprises six stages. 1) 
PreFreesurfer normalizes anatomical data. This normalization entails brain extraction, 
denoising, and then bias field correction on anatomical T1 and/or T2 weighted data. The ABCD-
HCP pipeline includes two additional modifications to improve output image quality. ANTs54 
DenoiseImage models scanner noise as a Rician distribution and attempts to remove such 
noise from the T1 and T2 anatomical images. Additionally, ANTs N4BiasFieldCorrection 
attempts to smooth relative image histograms in different parts of the brain and improves bias 
field correction. 2) FreeSurfer7 constructs cortical surfaces from the normalized anatomical data. 
This stage performs anatomical segmentation, white/grey and grey/CSF cortical surface 
construction, and surface registration to a standard surface template. Surfaces are refined using 
the T2 weighted anatomical data. Mid-thickness surfaces, which represent the average of 
white/grey and grey/CSF surfaces, are generated here. 3) PostFreesurfer converts prior outputs 
into an HCP-compatible format (i.e. CIFTIS) and transforms the volumes to a standard volume 
template space using ANTs nonlinear registration, and the surfaces to the standard surface 
space via spherical registration. 4) The “Vol” stage corrects for functional distortions via reverse-
phase encoding spin-echo images. All resting state runs underwent intensity normalization to a 
whole brain mode value of 1000, within run correction for head movement, and functional data 
registration to the standard template. Atlas transformation was computed by registering the 
mean intensity image from each BOLD session to the high resolution T1 image, and then 
applying the anatomical registration to the BOLD image. This atlas transformation, mean field 
distortion correction, and resampling to 3-mm isotropic atlas space were combined into a single 
interpolation using FSL’s55 applywarp tool56. 5) The “Surf” stage projects the normalized 
functional data onto the template surfaces which is described below. 6) We have added an fMRI 
and fcMRI preprocessing stage, “DCANBOLDproc” which is also described below. 7) Last, an 
Executive Summary is provided for easy subject level QC across all processed data.  
 
fMRI Surface (Surf) processing 

The BOLD fMRI volumetric data were sampled to each participant’s original mid-
thickness left and right-hemisphere surfaces constrained by the grey-matter ribbon as described 
in 53. Once sampled to the surface, time courses were deformed and resampled from the 
individual’s original surface to the 32k fs_LR surface in a single step. This resampling allows 
point-to-point comparison between each individual registered to this surface space. These 
surfaces were then combined with volumetric subcortical and cerebellar data into the CIFTI 
format using Connectome Workbench 57, creating full brain time courses excluding non-gray 
matter tissue. Finally, the resting-state time courses were smoothed with 2mm full-width-half-
maximum (FWHM) kernel applied to geodesic distances on surface data and euclidean 
distances on volumetric data. 
 
(DCANBOLDproc) preprocessing 

Additional BOLD preprocessing steps were executed to reduce spurious variance 
unlikely to reflect neuronal activity42. First, a respiratory filter was used to improve FD estimates 
calculated in the volume (“vol”) stage. Second, temporal masks were created to flag motion-
contaminated frames using the improved FD estimates50. Frames with a filtered FD>0.3mm 
were flagged as motion-contaminated for nuisance regression only. After computing the 
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temporal masks for high motion frame censoring, the data were processed with the following 
steps: (i) demeaning and detrending, (ii) interpolation across censored frames using least 
squares spectral estimation of the values at censored frames51 so that continuous data can be 
(iii) denoised via a GLM with whole brain, ventricular, and white matter signal regresssors, as 
well as their derivatives. Denoised data were then passed through (iv) a band-pass filter (0.008 
Hz<f<0.10 Hz) without re-introducing nuisance signals58 or contaminating frames near high 
motion frames. 
 
Generation of Resting State Functional Connectivity (RSFC) matrices 

For each subject, high motion frames (filtered FD>0.08) were censored. The timeseries 
of BOLD activity for each region of interest (333 cortical ROIs from Gordon et al.59; 61 
subcortical ROIs from Seitzman et al.60) was correlated to that of every other ROI, forming a 394 
x 394 correlation matrix, which was subsequently Fisher z-transformed. For network level 
analyses, correlations were averaged across previously defined canonical functional networks59. 
Inter-individual difference connectome-wide spatial components, which are not bound by 
network boundaries29,33, were computed by performing principal component analysis (PCA) on a 
matrix composed of all ROI x ROI pairs (edges) from each participant. 

 
Generation of Cortical Thickness Metrics  

For each subject, cortical thickness was extracted from 59,412 cortical vertices. For ROI 
level matrices, cortical thickness was averaged within each cortical parcel (N=333)59. For 
network level matrices, cortical thickness was averaged within each cortical network (N=13)59. 
Inter-individual spatial components were computed by performing principal component analysis 
on a matrix composed of all cortical vertices from each participant.    
 
Behavioral and Demographic Data 
 The ABCD study population is well-characterized with hundreds of demographic, 
physical, cognitive, and mental health variables61. The current project examined the 
associations between 41 of these variables (Extended Data Table S1) and brain structure 
(cortical thickness) and function (RSFC). Behavioral and demographic variables were selected 
to reflect the primary domains of interest, cognition (individual measure and composite scores 
from the NIH Toolbox) ) and mental health (syndrome scales and broad-band psychopathology 
factors from the CBCL), as well as demographic/physical variables relevant to development 
(e.g., age) and health (e.g., BMI). 
 
Behavioral and Demographic Covariates 
  The primary goal of this project was to study how the pairing of brain-behavioral 
phenotype effect sizes and sampling variability (random variation across samples, as opposed 
to systematic variation threatening causal inference62) can account for wide-spread replication 
failures. As a result, our results focus on simple bivariate associations (correlation) and 
canonical multivariate models linking brain structure and function to behavioral and 
demographic variables without covariate adjustment. However, we note that the ABCD 
subsamples (ARMS; see Above) we used for replication analyses are matched for salient 
demographic factors (site location, age, sex, ethnicity, grade, highest level of parental 
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education, handedness, combined family income, and prior exposure to anesthesia; see above). 
Also, where possible, ABCD-distributed age-corrected scores were used, given 1) well-
established age-related changes in these measures and 2) age-corrected scores improved 
normality for many measures (e.g., CBCL syndrome scales and broadband factors) symptom 
presentation).  
 
Capture of Behavioral and Demographic Data 

The ABCD Data Analysis and Informatics Center (DAIC) has released an online tool 
called DEAP (Data Exploration and Analysis Portal), which can be accessed at 
https://deap.nimhda.org/. In this manuscript, we introduce an additional tool called ABCDE, 
ABCD Boolean Capture Data Explorer, which we have used for preparation of the data herein. 
ABCDE complements DEAP by allowing for finer-grained control of data extraction on the 
researcher's own computer rather than through a web portal. The source code and 
documentation can be accessed at https://gitlab.com/DosenbachGreene/abcde. 
  
Univariate Brain-Behavioral Phenotype Correlations 
 For each brain measure at a given level of organization, we correlated the brain 
measures (structure: cortical thickness; function: RSFC) with each behavioral variable. 
Cognitive ability (total composite score on the NIH Toolbox) and psychopathology (total score 
on the Child Behavior Checklist [CBCL]) are presented in the main text; all others are in the 
supplemental material. Correlations between brain and behavior were generated for RSFC at 
the edge level (ROI-ROI pair [N=77,421]), network level (average of RSFC within/between each 
network [n=105]), and component level (principle component weights [N=100]). To extract 
individual-specific components, we vectorized each participant's RSFC matrix, concatenated the 
vectorized matrices, and submitted them to singular value decomposition (Matlab’s svd.m 
function). Correlations between brain and behavioral phenotypes were generated for cortical 
thickness at the vertex level (N=59,412), ROI level (N=333), and network level (N=13). Repeat 
analyses employing less rigorous motion censoring, and thus retaining a larger subset of the full 
ABCD sample (N=9,753), replicated the effect sizes (maximum r=0.16, 99th percentile [largest 
1%] of effect sizes: |r|>0.06). 
 
Resampling Procedures 

To examine the distribution of correlations for iteratively larger sample sizes, we 
randomly selected subjects with replacement from the full sample (N=3,928, post denoising) at 
logarithmically spaced sample sizes (16 intervals: N=25, 33, 50, 70, 100, 135, 200, 265, 375, 
525, 725, 1,000, 1,430, 2,000, 2,800, 3,928). For cortical thickness data, the full sample 
contained (N=3,604) in the same sampling bins, with the exception of the final bin (full sample), 
which contained 3,604 participants. At each sample size, we randomly sampled subjects 1,000 
times, resulting in 16,000 brain-behavioral phenotype resamplings for each brain-behavioral 
phenotype correlation. For multivariate approaches, 100 bootstrap samples were computed 
across the same logarithmically-spaced sample sizes. We note that the iterations were reduced 
for multivariate methods due to their high computational costs. In addition, the analyses are 
focused on mean estimates, not the full distribution. For highlighting the effects of sampling 
variability (Fig. 1e,f), we extracted the brain-behavioral phenotype correlation with the largest 
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effect size for each imaging measure (cortical thickness, RSFC) and exemplar behavioral 
phenotypes (cognitive ability, psychopathology). The sampling variability (range of possible 
correlations, 99% confidence interval and 95& confidence interval) at each sampling interval for 
correlations between RSFC and cortical thickness with cognitive ability and psychopathology 
are presented in the main text (Fig. 1e,f); correlations between brain measures and other 
behaviors can be found in the Extended Data (Fig. S2,S3).  
 
Empirical Quantification of Sampling Variability: Example Studies at N=25 

Using the outputs from the resampling procedures above, we used the 1,000 
resamplings with N=25 to examine the correlation between the default mode network (DMN) 
and cognitive ability (total composite score on the NIH Toolbox), as well as the default mode 
network (DMN) and psychopathology (total problem score on the CBCL), for both cortical 
thickness and RSFC. To demonstrate how sampling variability affects correlations, the 1,000 
resamples were ranked by effect size. Subsequently, two samples were chosen from the top 10 
studies (in terms of effect size); one with a significant positive association (Sample 1) and one 
with a significant negative association (Sample 2).  
 
Behavior-Behavior Correlations 
 To examine the range of sampling variability as a function of sample size between 41 
behavioral and demographic measures, we randomly selected subjects with replacement from 
the full behavioral sample (N=11,572) at logarithmically spaced sample sizes (9 intervals: N=25, 
50, 100, 200, 500, 1,000, 2,000, 4,000, 9,000). At each interval, we randomly sampled subjects 
1,000 times, resulting in 9,000 phenotype-phenotype correlation resamplings for each 
association. For each association, we quantified sampling variability at each sampling bin as the 
range of correlations observed through the resampling procedure.  
 
False Positives and False Negatives  

False negative (Fig. 2a) and false positive (Fig. 2b) rates were derived through a 
resampling procedure (see Resampling Procedures) for all edge-level brain-wide associations. 
For each sample size bin (16 total), we randomly sampled “N” individuals (1,000 subsamples) 
and computed the brain-behavioral phenotype correlation and associated p-value. A correlation 
was deemed “significant” if it survived a threshold of p<0.05, Bonferroni corrected (p<10-7; 
corrected across 77,421 ROI-ROI pairs) in the full sample (cortical thickness N=3,604, RSFC 
N=3,928). At each sample size, if a correlation in the full sample was not significant, we 
determined the percentage of studies that resulted in a “significant” correlation (false positive) 
across a broad range of p-values (10-7 to 0.05). Conversely, if a correlation in the full sample 
was significant (p<10-7), we determined the percentage of studies that resulted in a “non 
significant” correlation (false negative) across a broad range of p-values (10-7 to 0.05).  
 
Correlation Inflation 

For each univariate brain-wide association in the full sample (N=3,928) at the edge level, 
we determined whether or not a correlation was significant (p<10-7, Bonferonni corrected for 
multiple comparisons [p=0.05/77,421]). For each significant correlation, across the 1,000 
subsamples within a sampling bin, we extracted the percentage (out of 1,000) of significant 
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correlations (p<0.05) that were inflated across a range of inflation thresholds (20-200%, in steps 
of 1%).  
 
Correlation Sign Errors 
 Each brain-wide association was extracted from the full sample as a reference. Across 
the 1,000 subsamples within a sampling bin, we determined the percentage of correlations that 
had the opposite correlation sign as the correlation sign in the full sample.  
 
Human Connectome Project (HCP) Replication: Effect Sizes  

We used data from N=877 individuals from the Human Connectome Project (HCP) 1,200 
Subject Data Release (aged 22-35 years). A custom Siemens SKYRA 3.0T MRI scanner and a 
custom 32-channel Head Matrix Coil were used to obtain high-resolution T1-weighted (MP-
RAGE, 2.4 s TR, 0.7x0.7 × 0.7 mm voxels) and BOLD contrast sensitive (gradient-echo EPI, 
multiband factor 8, 0.72 s TR, 2x2x2mm voxels) images from each subject. The HCP used 
sequences with left-to-right (LR) and right-to-left (RL) phase encoding, with a single RL and LR 
run on each day for two consecutive days for a total of four runs63. MRI data were preprocessed 
as previously described60. All HCP data are available at https://db.humanconnectome.org/. 
Similar to the ABCD data, we extracted the timeseries from a total of 394 cortical and 
subcortical ROIs, correlated and Fisher z-transformed them. Behavioral data from the NIH 
Toolbox were correlated with each edge of the correlation matrix across subjects. Across all NIH 
Toolbox subscales, the tails of the distributions of the resulting brain-phenotype correlations 
were compared to 100 subsampled ABCD brain-behavioral phenotype correlations (N=877, 
matching HCP sample size). In Extended Data Fig. S5a, we show the distributions of brain-
behavioral phenotype correlations for ABCD and HCP data for each NIH Toolbox subscale.   
 
Human Connectome Project Replication: Sampling Variability 
 To quantify the degree of sampling variability in single site, single scanner HCP data 
compared to multi-site, multi-scanner ABCD data, we subsampled ABCD RSFC data to match 
HCP sample sizes (N=877). For each dataset, we ran the resampling procedure detailed in 
“Resampling Procedures” above (12 intervals: N=25, 33, 50, 70, 100, 135, 200, 265, 375, 525, 
725, 875) across all NIH Toolbox subscales. The range of correlations and 95% confidence 
interval observable in each sampling bin are shown in Extended Data Fig. S6a for both HCP 
and ABCD data.  
 
Single-site ABCD vs. Multi-site ABCD: Sampling Variability 
 We directly compared single site ABCD data (site 16; N=603) with multi-site ABCD data 
(N=3,325, 20 sites, site 16 was excluded) using the same resampling procedure (10 intervals: 
N=25,33, 50, 70, 100, 135, 200, 265, 375, 525) as before on the associations between RSFC 
and all NIH Toolbox subscale (Extended Data Fig. S6b). The range of correlations and 95% 
confidence intervals in each resampling bin is shown in Extended Data Fig. S6b for single-site 
and multi-site ABCD data.  
 
Replication of Univariate Associations 
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 Univariate replication was performed across primary analysis variables (RSFC/cognitive 
ability, RSFC/psychopathology, cortical thickness/cognitive ability, cortical 
thickness/psychopathology). For each imaging modality and each behavioral phenotype, we 
selected the 99th percentile (largest 1%) of brain-wide associations in the full discovery set 
(Extended Data Fig. S9). To explore how these estimates varied as a function of sample size, 
models were trained on subsamples of the discovery dataset at logarithmically spaced sample 
sizes (RSFC: N=25,33,45, 60, 80, 100, 145, 200, 256, 350, 460, 615, 825, 1,100, 1,475, 1,964 ; 
cortical thickness: N=25,33,45, 60, 80, 100, 145, 200, 256, 350, 460, 615, 825, 1,100, 1,475, 
1,814) and tested on the full replication set (N=1,790). In order to model sampling variability as 
a function of sample size, 100 bootstrap (sampling with replacement) samples were generated 
for each sample size. To generate an out-of-sample replication coefficient (R2), we first 
determined the out-of-sample (replication set) sum of squares from the behavioral data (mean 
squared subtracted from sum). Next, a regression model linking the subsample of the discovery 
set brain and behavioral data (e.g., cognitive ability) was fit. The resulting best fit regression 
model (slope and intercept), were applied to replication brain data and subtracted from the out-
of-sample behavior to obtain the residuals. We then determined the sum-of-squares of the 
residuals by subtracting the mean squared from the sum, dividing these sum-of-squared 
residuals by the original sum-of-squares, and subtracting them from 1 to obtain the out-of-
sample replication coefficient (R2).   
 
Multivariate Replication: Support Vector Regression (SVR)  

Support vector regression (SVR) with a linear kernel was performed using the e1071 
package in the R environment (version 3.5.2) to predict primary behaviors (psychopathology, 
cognitive ability) and other demographics and behavioral phenotypes (Extended Data Fig. S14) 
from individual differences in either RSFC or cortical thickness. One hundred bootstrap samples 
(sampling with replacement) were generated for each sample size. Hyperparameter tuning was 
examined in 1) split halves of the full discovery sample for multiple cognitive (NIH Toolbox) and 
psychopathology (CBCL) behaviors and 2) 10-fold cross-validation within the full discovery 
sample for primary behaviors (psychopathology, cognitive ability; Extended Data Fig. S10 and 
S11), but did not appreciably change out-of-sample prediction estimates to the replication 
sample (e.g., average out-of-sample correlation difference between tuned and non-tuned 
models : RSFC = -0.006, Cortical Thickness = 0.014; Extended Data Fig. S10,S11). Figure 3a,c 
use default hyperparameters and PCA dimensionality reduction (with a threshold of 50% 
variance explained in the discovery set, for each sample size) prior to SVR, given that this 
procedure balanced out-of-sample prediction and model complexity for nearly all model types 
(Extended Data Fig. S10,11). Replication set data were not used to estimate principal 
components, but rather replication set data were projected into component space via 
independently estimated loading matrices for each subsample of the discovery set to prevent 
bias. An alternative strategy of univariate feature ranking was also examined, where SVR 
models were trained on the 5,000, 10,000, or 15,000 vertices (cortical thickness) or edges 
(RSFC) with the highest correlation to the variable of interest in the training dataset, but this 
approach resulted in lower out-of-sample prediction (Extended Data Fig. S10 and S11). 
Significance thresholds for out-of-sample replication were estimated via permutation testing 
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(1,000 iterations) with models trained on the full discovery set (RSFC: N=1964; cortical 
thickness: N=1,814) and tested on the full replication set.  

 
Multivariate Replication: Canonical Correlation Analysis (CCA)  

Canonical correlation analysis (CCA) was performed using Matlab’s (2019A) 
cannoncor.m function to predict the NIH Toolbox and CBCL from individual differences in either 
RSFC or cortical thickness. Equivalent bootstrapping and subsampling of the discovery set were 
tested and applied to the replication set, as in the SVR analyses. In order to model sampling 
variability across sample sizes, 100 bootstrap (sampling with replacement) samples were 
generated for each sample size. As with SVR, Figure 3b,d used principal-component analysis 
(PCA) dimensionality reduction (threshold of 20% variance explained in the discovery set, for 
each sample size) prior to CCA given that this maximized out-of-sample prediction (Extended 
Data Fig. S12,S13). CCA models were fit on iteratively larger subsamples of the discovery (in-
sample) data set. The first canonical vector was extracted and applied to the full replication (out-
of-sample) brain data to predict replication set (out-of-sample) behavior. Prediction accuracy 
was quantified using Pearson r, expressing the correlation between the matrix products of the 
first canonical vector (from the discovery set) and replication brain and behavioral data. 
Significance thresholds for out-of-sample replication were estimated via permutation testing 
(1,000 iterations) with models trained on the full discovery set (RSFC: N=1964; cortical 
thickness: N=1,814) and tested on the full replication set.   
 
Towards A New Era of Brain-Wide Association Studies (BWAS) 
In Fig. 4, sampling variability, statistical errors (false positives, false negatives, inflation, sign 
errors), and out-of-sample replication were plotted on a common scale as a function of sample 
size (y-axis: 0-1 for sampling variability [r], 0-100% for statistical errors [cumulative sum across 
all four error types], 0-100% for out-of-sample replication [r]). Out-of-sample replication (r) was 
normalized by the maximum in-sample (discovery) correlation by dividing the mean replicated 
coefficient (r) across subsamples by the maximum in-sample (discovery) correlation. All three 
curves (sampling variability, statistical errors, and out-of-sample replication) were based on the 
largest univariate and multivariate brain-wide association (RSFC and cognitive ability). 
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Extended Data Tables 
Table S1. Lookup table showing the original ABCD variable names with the corresponding 
descriptive labels used in the manuscript. More details on the demographic and behavioral 
measures can be found in the ABCD data dictionary.  

Description ABCD field 

Age interview_age 

Height anthro_height_calc 

Weight anthro_weight_calc 

BMI 703*weight/(height2) 

Sleep prescan_state_sleepy_1 

Income-to-needs Demo_comb_income_v2b/de
mo_roster_p 

Vocabulary nihtbx_picvocab_agecorrected 

Attention nihtbx_flanker_agecorrected 

Working memory nihtbx_list_agecorrected 

Executive function nihtbx_cardsort_agecorrected 

Processing speed nihtbx_pattern_agecorrected 

Episodic memory nihtbx_picture_agecorrected 

Reading nihtbx_reading_agecorrected 

Fluid intelligence nihtbx_fluidcomp_agecorrecte
d 

Crystallized intelligence nihtbx_cryst_agecorrected 

cognitive ability nihtbx_totalcomp_agecorrecte
d 

Matrix reasoning pea_wiscv_tss 

N-back RT tfmri_nback_all_beh_correct.to
tal_mean_rt 
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SST RT tfmri_sst_all_beh_correct.go.m
ean.rt 

Anxious depressed cbcl_scr_syn_anxdep_t 

Withdrawn depressed cbcl_scr_syn_withdep_t 

Somatic complaints cbcl_scr_syn_somatic_t 

Social problems cbcl_scr_syn_social_t 

Thought problems cbcl_scr_syn_thought_t 

Attention problems cbcl_scr_syn_attention_t 

Rule-breaking behavior cbcl_scr_syn_rulebreak_t 

Aggressive behavior cbcl_scr_syn_aggressive_t 

Internalizing  cbcl_scr_syn_internal_t 

Externalizing  cbcl_scr_syn_external_t 

psychopathology  cbcl_scr_syn_totalprob_t 

Psychosis symptoms pps_y_ss_number 

Psychosis severity pps_y_ss_severity_score 

Behavioral inhibition bis_y_ss_bis_sum 

Reward responsiveness bis_y_ss_bas_rr 

Drive bis_y_ss_bas_drive 

Fun seeking bis_y_ss_bas_fs 

Negative urgency upps_y_ss_negative_urgency 

Positive urgency upps_y_ss_positive_urgency 

Lack of planning upps_y_ss_lack_of_planning 

Lack of perseverance upps_y_lack_of_perseverance 

Sensation seeking upps_y_ss_sensation_seeking 
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Extended Data Figures 
 

 
Extended Data Fig S1. Histograms of all (a) cortical thickness association with demographics 
and behavioral phenotypes and (b) RSFC associations with demographics and behavioral 
phenotypes. For each demographic and behavioral (cognition, mental health) measure (N=41). 
Correlations with brain measures were generated across multiple levels of scale (cortical 
thickness: vertices, ROIs, networks; RSFC: ROI-ROI pairs (edges), principal components, 
networks). The ordering of subgraphs follows the ordering of measures in the legend (e.g., the 
most top-left panel shows sampling variability between Age and every other demographic and 
behavioral measure). 
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Extended Data Fig. S2. Sampling variability of the correlation between cortical thickness and 
each demographic, cognitive and mental health measure (N=41). For each brain-wide 
association, 16,000 resampled studies (1,000 subsamples for each sample size) were 
generated. Across sample sizes, sampling variability of the largest brain-wide association is 
depicted as the range of observable correlations (shaded area), as well as the 99% confidence 
interval (dark gray) and 95% confidence interval (light gray). For each sampling bin, the dark 
colored line represents the mean brain-wide association across the 1,000 resamples. The 
ordering of subgraphs follows the ordering of measures in the legend (e.g., the most top-left 
panel shows sampling variability between Age and every other demographic and behavioral 
measure). 
 
 
 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 22, 2020. ; https://doi.org/10.1101/2020.08.21.257758doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.21.257758


 
Extended Data Fig. S3. Sampling variability of the correlation between RSFC and each 
demographic, cognitive and mental health measure (N=41). For each brain-wide association, 
16,000 resampled studies (1,000 subsamples for each sample size) were generated. Across 
sample sizes, sampling variability of the largest brain-wide association is depicted as the range 
of observable correlations (shaded area), as well as the 99% confidence interval (dark gray) and 
95% confidence interval (light gray). For each sampling bin, the dark colored line represents the 
mean brain-wide association across the 1,000 resamples. The ordering of subgraphs follows the 
ordering of measures in the legend (e.g., the most top-left panel shows sampling variability 
between Age and every other demographic and behavioral measure). 
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Extended Data Fig. S4. Sampling variability of associations between demographic and 
behavioral measures. (a) Sampling variability (range in observable correlations) as a function of 
sample size. Each line represents the average sampling variability for the correlation between a 
measure (demographic, cognition, mental health) and all other measures. Error bars denote one 
standard deviation across all measures. Note that sampling variability ranges from 0-2 for 
Pearson correlations, given observables correlations range from -1 to 1. (b) Each subgraph 
depicts sampling variability as a function of sample size for a given demographic or behavioral 
measure (N=41) to every other demographic/behavioral measure. The ordering of subgraphs 
follows the ordering of measures in the legend (e.g., the most top-left panel shows sampling 
variability between Age and every other demographic and behavioral measure). Each curve is 
colored corresponding to the measures in the figure legend.   
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Extended Data Fig. S5. (a) Effect sizes observed in subsamples of ABCD (N=877) replicate full 
sample brain-phenotype correlations from HCP (N=877). ABCD data were subsampled to 
match the sample size of HCP (N=877). Data were subsampled 100 times. For each NIH 
Toolbox subscale the correlation between every ROI pair and behavior was generated for HCP 
data and each of the 100 resamples of ABCD data. Each histogram (ABCD: red; HCP: gray) 
was generated from these ROI-ROI pair brain-behavioral phenotype associations. (b) Difference 
in replication correlations (replication set - discovery set). The top 1% largest effect sizes were 
determined for each demographic/behavioral phenotype across 100 resampled discovery data 
sets (N=1,964 in each) and compared (subtracted) to a replication set (N-1,964). On average, 
replicated correlations were smaller (r=0.043) than the in-sample discovery set, indicating that, 
on average, correlations with ~2,000 individuals are inflated.  
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Extended Data Fig S6. (a) Sampling variability RSFC associations with the NIH Toolbox in 
equally sized samples (N=877) from HCP (gray) and ABCD (red). (b) Sampling variability of 
RSFC association with the NIH Toolbox in a single-site ABCD sample (site 16; N=603; blue) 
and every other ABCD site (N=3,325; red). 
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Extended Data Fig S7. Statistical errors for univariate associations between cortical thickness 
and all 41 demographic and behavioral measures. (a) False negative rate in RSFC (edgewise) 
correlations with demographics and behavioral phenotypes varying as a function of p-value. The 
most stringent p-value (10-7) is equivalent to a p<0.05 Bonferroni corrected across all ROI-ROI 
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pairs, whereas p<0.05 is equivalent to no multiple comparisons correction. (b) False positive 
rate in RSFC correlations with behavioral phenotypes varying as a function of p-value. (c) 
Inflation rate of the cortical thickness correlation with behavioral phenotypes, depicting the 
probability of observing an inflated correlation as a function of sample size. Color gradient 
represents the magnitude of inflation. (d) Probability of observing the opposite sign of the 
correlation observed between cortical thickness and behavioral phenotypes in the full sample 
(N=3,928) as a function of sample size. Color gradient represents the effect size of the 
correlation in the full sample. For each panel, darker lines represent the mean across the 41 
behavioral phenotypes and shaded error bars represent one standard deviation from the mean. 
(e-h) RSFC associations with demographics and behavioral phenotypes for each statistical 
error.  
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Extended Data Fig S8. Analytic requisite sample sizes to detect 99th percentile (largest 1%; 
r=0.06) univariate brain-wide associations at (a) p<0.05 (uncorrected) and (b) p<10-7 (p<0.05 
Bonferroni corrected).  
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Extended Data Fig. S9. Univariate out-of-sample replication (R2) for (a) cortical thickness and 
(b) RSFC relationships with cognitive ability and psychopathology across sample sizes.  
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Extended Data Fig. S10. Out-of-sample correlation (r) for cortical thickness associations with 
behavior trained on the full discovery set (N=1,964) and tested on the full replication set 
(N=1,790) using support vector regression (SVR) across (a) feature selection procedure 
(principal components left, univariate feature ranking right) and (b) hyperparameter tuning. 
Note, point range in (a) shows variability across tuned and non-tuned models from (b); (b) 
displays tuned and non-tuned models using PCA with 50% of the variance retained.  
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Extended Data Fig. S11. Out-of-sample correlation (r) for RSFC associations with behavior 
trained on the full discovery set (N=1,964) and tested on the full replication set (N=1,790) using 
support vector regression across (a) feature selection procedure (principal components left, 
univariate feature ranking right) and (b) hyperparameter tuning. Note, point range in (a) shows 
variability across tuned and non-tuned models from (b); (b) displays tuned and non-tuned 
models using PCA with 50% of the variance retained.  
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Extended Data Fig. S12. Out-of-sample replication (r) as a function of the number of principal 
components included in the RSFC CCA models. Across three distinct sample sizes (N=300, 
N=1,000, and N=1,964; 100 iterations of each), ~20% of the cumulative principal component 
variance maximized the out-of-sample correlation.  
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Extended Data Fig. S13. Out-of-sample replication (r) as a function of the number of principal 
components included in the cortical thickness CCA models. Similar to RSFC, across three 
distinct sample sizes (N=300, N=1,000, and N=1,964; 100 iterations of each), ~20% of the 
cumulative principal component variance maximized the out-of-sample correlation.  
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Extended Data Fig. S14. Multivariate (SVR) out-of-sample replication (r) as a function of the 
univariate RSFC-phenotype correlations (99% confidence interval) across the 41 behavioral 
phenotypes. Multivariate out-of-sample replication was positively correlated with univariate 
effect sizes (r=0.79, p<0.001).  
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