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Abstract 

    High-throughput technologies, such as magnetic resonance imaging (MRI) and DNA/RNA 

sequencing (DNA-seq/RNA-seq), have been increasingly used in large-scale association studies. 

With these technologies, important biomedical research findings have been generated. 

The reproducibility of these findings, especially from structural MRI (sMRI) and functional MRI 

(fMRI) association studies, has recently been questioned. There is an urgent demand for a reliable 

overall reproducibility assessment for large-scale high-throughput association studies. It is also 

desirable to understand the relationship between study reproducibility and sample size in an 

experimental design. In this study, we developed a novel approach: the mixture model reproducibility 

index (M2RI) for assessing study reproducibility of large-scale association studies. With M2RI, we 

performed study reproducibility analysis for several recent large sMRI/fMRI data sets. The 

advantages of our approach were clearly demonstrated, and the sample size requirements for different 

phenotypes were also clearly demonstrated, especially when compared to the Dice coefficient (DC). 

We applied M2RI to compare two MRI or RNA sequencing data sets. The reproducibility assessment 

results were consistent with our expectations. In summary, M2RI is a novel and useful approach for 

assessing study reproducibility, calculating sample sizes and evaluating the similarity between two 

closely related studies. 
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Introduction 

With the rapid development of technologies in biological research, investigators often face 

staggering quantities of spatiotemporal data. Association studies have been widely conducted in many 

biomedical research fields, examples include the well-known genome-wide association study 

(GWAS) approach in genetics and the brain-wide association study (BWAS) approach in 

neuroimaging (1-4). However, due to the intrinsic complexity of the problems studied, the data are 

generally noisy, and the correlations among variables are usually weak. As a result, many, if not the 

majority, of the reported findings in the literature are inevitably false, which has provoked intense 

debates in the literature. For example, criticisms have been raised to the phenomena that some fMRI 

findings are only modestly reproducible and that some results could be interpreted as inflated or 

spurious (5-7). Similarly, the gene lists obtained for the same clinical types of patients by different 

research groups differed widely and shared very few genes in common (8). Despite all the 

aforementioned observations, it seems that one of the long-standing key issues is the lack of efficient 

methodologies for accessing the reproducibility of a given experiment, which should help establish a 

standard to use when the reproducibility is under debate. 

The Dice coefficient (DC) is one of the widely used measurements of reproducibility in string 

matching (9), image segmentation (10), and other areas. It has been recently applied to measure the 

reproducibility of some large-scale fMRI association studies, including resting-state and task-based 

designs (11, 12). DC calculates the proportion of consistent features: thresholds are first selected to 

find significant results, and then the proportion of consistently significant results is calculated 

(see Figure 1A).  

In this study, we have demonstrated that DC is not an efficient reproducibility measure. It 

requires a threshold selection that is not flexible for measurement errors or statistical summaries. This 

limitation is especially clear when we focus on the overall reproducibility assessment of a study 

(termed study reproducibility). To overcome this limitation, we have developed a mixture model 

based approach, along with a similar idea that has been proposed to test the reproducibility of surface-

enhanced laser desorption/ionization–mass spectrometry (SELDI-MS), microarray data analysis and 

gene set enrichment analysis (13-16). In this model, each mixture component possesses a clear 

interpretation in practice (see Figure 1B).  
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We have developed a new reproducibility assessment index based on our proposed mixture 

model. This index is termed the mixture model reproducibility index (M2RI). To evaluate M2RI, we 

present the analysis results from simulations based on sMRI data in the UK Biobank (17, 18). Then, 

we present a comprehensive reproducibility assessment analysis of gray-matter-related human 

behaviors, brain task state activation and connectivity-behavior analysis in which the reproducibility 

rates are known. With a desirable reproducibility rate, we then present the related minimal sample 

size calculation in various large-scale association analysis scenarios based on the structure and 

resting-state MRI data from the UK Biobank project (17, 18) and the task activation data from the 

IMAGEN project (19, 20). In summary, M2RI has demonstrated a clear robustness and efficiency in 

the assessment of study reproducibility. Unlike DC, it does not require a threshold selection for 

declaring significant findings. The minimum sample size related to a desirable reproducibility rate 

should provide a gold standard to use in the planning of a large-scale association study. 
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Materials and Methods 
 

Data Summary 

We used MRI images and phenotypic data from four data sources: the UK Biobank (17, 18), Human 

Connectome Project (HCP) (21), IMAGEN (the first multicenter genetic-neuroimaging study) (19, 

20) and Parkinson's Progression Markers Initiative (PPMI) cohorts (22). All the image data were 

preprocessed by a standard pipeline. Moreover, we also analyzed RNA sequencing (RNA-seq) data 

collected by The Cancer Genome Atlas (TCGA) project (23) (see Supplementary 1 for details).  

 

Functional Connectivity Association Study 

Based on the automated anatomical labeling (AAL2) atlas, there are 120 brain regions. Each resting-

state functional magnetic resonance image (rs-fMRI) included 54,885 voxels (24). For each pair of 

brain regions, the time series were extracted, and the Pearson correlation was calculated for each 

subject to provide the measure of functional connectivity (FC), followed by Fisher's z-transformation. 

The general linear model was used to test the association between the region-wise FC links and a 

human phenotype or behaviors. The effects of age, sex and head motion (mean frame-wise 

displacement, or FD) were regressed out. 

 

Voxel-wise Association Study 

We used the general linear model to define the association between a specific human phenotype or 

behavior and each intracerebral voxel's gray matter volume, which was included in the automated 

anatomical labeling (AAL2) atlas (total 54,885 voxels). The effects of age, sex and total intracerebral 

volume (TIV) were regressed out. 

 

Task fMRI Activation 

At the first level of analysis, changes in the BOLD response for each subject were assessed by linear 

combinations at the individual subject level for each experimental condition, and each trial was 

convolved with the hemodynamic response function to form regressors that account for potential 

noise variance (e.g., head movement) associated with the processing of a specific task. Estimated 

movement parameters were added to the design matrix in the form of 18 additional columns (three 
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translations, three rotations, three quadratic and three cubic translations, and three translations each 

with a shift of ±1 repetition time). To identify brain activation specific to the task, we contrasted the 

brain activation patterns between the task status and the control status.  

 

The Cancer Genome Atlas (TCGA) Gene Expression Data 

We downloaded RNA sequencing (RNA-seq) expression data from TCGA data portal (23). Many 

different cancer types have been studied in TCGA project. For a cancer study, RNA-seq expression 

data for normal and tumor subjects were collected for 20,531 genes. For each gene, we used the 

Wilcoxon rank-sum test to compare the RNA-seq expression between the normal and tumor subjects. 

 

Normal Distribution Quantile-based Transformation 

z-scores from a normal distribution quantile transformation were used for the analysis (13). First, 

based on an appropriate association analysis (functional connectivity association study, voxel-wise 

association study, task fMRI activation or differential expression), we acquired a list of one-sided P-

values. For each P-value P, the corresponding z-score z can be calculated as follows: 

𝑧 = 𝜙$%(1 − 𝑃) 

where 𝜙$%(⋅) is the inverse function of the standard normal cumulative distribution function. 

 

Dice Coefficient 

The Dice coefficient (DC) is calculated as: 

𝐷𝐶 =
2×(𝑉12345678 + 𝑉1234567$ )

𝑉% + 𝑉:
 

where 𝑉% and 𝑉: represent the numbers of supra-threshold significant results from large-scale test 

1 and 2, respectively, and 𝑉12345678  and 𝑉1234567$ 	represent the numbers of supra-threshold positive 

or negative results in both tests.  

 

Mixture Model Reproducibility Index (M2RI)  

Motivated by the Dice coefficient that divides z-scores into three parts, we consider three categories 

for the underlying/unobserved association analysis related true status: positive change/correlation, 

no-change/correlation and negative change/correlation. Instead of thresholding, we consider a three-
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component normal-mixture model for the joint distribution of paired z-scores [𝑧(%), 𝑧(:)] (see above 

for z-score calculation). 

𝑓 𝑧 % , 𝑧 : = 𝜋?@

:

@AB

:

?AB

𝜙CD,EDF 𝑧
% 𝜙GH,IHF 𝑧

:  

where 𝜙C,EF is the normal probability distribution function with mean 𝜇 and variance 𝜎:. We use 

the first component (index 0) to represent the null (no change/correlation) feature component. Then, 

𝜇B =	𝜈B = 0 and 𝜎B: = 𝜏B: = 1. The second and third components (indices 1 and 2) are used to 

represent negative changes/correlations and positive changes/correlations. Their corresponding 

parameters (means and variances) will be estimated from the paired z-scores with the following 

constraints: 𝜇%, 𝜈% ≤ 0  and 𝜇:, 𝜈: ≥ 0 . 𝜋?@  is the proportion for component 𝑖  in the first 

association study and component 𝑗 in the second association study, and 𝜋?@?@ = 1. 

    This model was termed partial concordance/discordance (PCD) model (13). Then, we define the 

mixture model reproducibility index (M2RI) as (see Supplementary 1 for details): 

𝑀:𝑅𝐼 = 	
𝜋%% + 𝜋::
1 − 𝜋BB

 

 

Confidence Intervals 

The confidence intervals (CIs) of M2RI and DC can be obtained by bootstrapping paired z-scores (25, 

26). For our newly proposed reproducibility index M2RI, a theoretical confidence interval will also 

be useful in practice. Therefore, we have derived the asymptotic theoretical CIs for M2RI based on 

our proposed mixture model (see Supplementary 2 for details). 

 
Results 
 
M2RI Recovers the True Reproducibility Index More Accurately than the Dice coefficient in 
the Simulation Study 

    We conducted a comprehensive simulation study to compare the performance of our newly 

proposed M2RI vs. the widely used Dice coefficient (DC). Our simulations were designed based on 

the gray matter volume (GMV) data in the UK Biobank. Two-sample comparison is a general 

association analysis scenario in practice, and the reproducibility of a large-scale two-sample study is 

important. Therefore, we partitioned the data randomly into four subsets (referred to as Data 1A, Data 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.18.253740doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.253740


9	
	

1B, Data 2A and Data 2B). Before the analysis, as a widely considered practical approach, we checked 

that sex, age, total intracerebral volume (TIV) and total GMV were statistically similar between Data 

1A vs. 2A as well as Data 1B vs. 2B. Otherwise, we repeated the random data partition until one 

passed this similarity requirement. The reproducibility was 100% from the random data partition. For 

each feature, there was statistically no change in distribution between Data 1A vs. 2A nor Data 1B 

vs. 2B. Then, to generate upward or downward changes, a specified proportion of 0.0285-0.0855 

standard deviations of brain-wise GMV (corresponding to approximately 1-3 effect sizes in z-scores) 

were randomly added to (or subtracted from) the GMV voxels of each subject in Data 1A and Data 

1B. This procedure was repeated 1,000 times. For each repetition, we obtained two lists of z-scores: 

one by voxel-wisely comparing Data 1A vs. Data 2A and the other Data 1B vs. Data 2B. z-Scores 

were calculated based on the traditional two-sample t-test. A pair of z-scores were obtained for each 

voxel. The overall reproducibility between two lists of z-scores was assessed by M2RI vs. DC. The 

following three simulation scenarios were considered. 

(a) This setting represents complete reproducibility with a moderate proportion of changes. According 

to our random data partition, there were statistically no differences between Data 1A vs. 2A nor Data 

1B vs. 2B. We modified the 100% of null (no change) to 80% null, 10% upward changes and 10% 

downward changes as follows. We randomly selected two clusters of voxels, each with 10% of the 

total voxels. To simulate 10% upward changes, for each voxel in the first cluster of voxels, we 

randomly added to each subject's GMV a value equivalent to 1-3 effect sizes in z-scores in Data 1A 

and repeated this in Data 1B so that there were 10% reproducible upward changes. For each voxel in 

the second cluster of voxels, we randomly subtracted from each subject's GMV a value equivalent to 

1-3 effect sizes in z-score in Data 1A and repeated this in Data 1B so that there were 10% reproducible 

downward changes. 

(b) This setting represents partial reproducibility. We randomly selected four clusters of voxels. There 

were 15% of the total voxels in each of the first two clusters, and the upward changes and downward 

changes were simulated according to the description in (a). There were 5% of the total voxels in each 

of the next two clusters. For each voxel in the third cluster, we randomly added to each subject's 

GMV a value equivalent to 1-3 effect sizes in z-scores in Data 1A (but not in Data 1B). Then, we had 

5% discordant changes (up vs. null). For each voxel in the fourth cluster, we similarly subtracted from 
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each subject's GMV in Data 1A (but not in Data 1B) so that we had 5% discordant changes (down vs. 

null). 

(c) This setting represents complete reproducibility with a high proportion of changes. We randomly 

selected two clusters of voxels, each with 20% of the total voxels. The reproducible upward changes 

(the first cluster) and downward changes (the second cluster) were simulated similarly according to 

the description in (a). 

The comparison results are summarized in Table S1 and Figure 2. Based on the scenario (a) as 

complete reproducibility with a moderate proportion of changes, the median DC was only 0.44, 0.38 

or 0.13 when the threshold value was 1, 2 or 3 for z-score respectively. Furthermore, all the related 

ranges of interquartile (Q1-Q3) were low. However, the median M2RI was 0.915 with a range of 

interquartile (Q1-Q3) 0.738-0.995. (It was reasonable to conclude that the assessed reproducibility 

could be up to 100%.) Based on the scenario (b) as a partial reproducibility (75%), the median DC 

was 0.52, 0.38 or 0.12 when the threshold value was 1, 2 or 3 for z-scores, respectively, and all the 

related ranges of interquartile (Q1-Q3) were low. The median M2RI was 0.77, with a true value of 

75% in the middle of the range of interquartile (Q1-Q3) 0.6850-0.8488. Based on the scenario (c) as 

complete reproducibility with a high proportion of changes, the median DC was still not satisfactory 

(0.60, 0.44 and 0.14 when the threshold value was 1, 2 or 3 for z-scores, respectively). However, the 

median M2RI reached 0.96 with a range of interquartile (Q1-Q3) 0.8731-0.9986. (It was again 

reasonable to conclude that the assessed reproducibility could be up to 100%.). Overall, M2RI is a 

clearly preferred choice for evaluating the reproducibility of large-scale association analysis. 
 
Reproducibility of Large-scale MRI Association Studies 

To investigate the reproducibility of large-scale MRI association analysis in the data collected 

for studying human phenotypes/behaviors and task state activations, as well as the brain structure and 

function, we split each study cohort into two subsets (referred to as Data 1 and Data 2 based on the 

order of subject number) with (approximately) the same sample sizes. For the resting-state functional 

connectivity (RSFC) data, the sample sizes of the two subsets were 4,136 and 4,137 for analyzing sex 

as phenotype vs. RSFC; the sample sizes of the two subsets were 4131 and 4131 for analyzing body 

mass index (BMI) as phenotype vs. RSFC (as there were missing BMI observations). A general linear 

model was constructed with sex phenotype as the response in each subset, with age and mean FD 
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adjusted as covariates (hereafter referred to as Sex as phenotype vs. RSFC and BMI as phenotype vs. 

RSFC; see Figure S1c and Figure S1d for the paired z-scores). For the GMV data, the sample sizes 

of the two subsets were 4,925 and 4,925. A general linear model was also constructed with sex 

phenotype as the response in each subset, with age and TIV adjusted as covariates (hereafter referred 

to as Sex as phenotype vs. GMV; see Figure S1a for the paired z-scores). For the task-related 

activation data, the sample sizes of the two subsets were 772 and 772. Student's t-test was used to 

evaluate the activation of the monetary incentive delay (MID) task, one of the most common tasks in 

fMRI studies (this activity is hereafter referred to as Activation in the MID task; see Figure S1b for 

the paired z-scores). For each paired z-scores, an overall diagonal pattern can be clearly observed. 

Different paired z-scores variation patterns can also be observed for different analysis scenarios, 

which implies different mixtures of no-change related (null) z-scores and upward/downward-change 

related (non-null) z-scores. 

Both M2RI and the DC were used to evaluate the reproducibility based on the paired z-scores in 

Figure S1. The results are shown in Table S1. We bootstrapped the paired z-score to construct the 

related 95% confidence intervals (CIs) and we also calculated the asymptotic theoretical 95% CIs for 

M2RI. Clear differences can be observed from the comparisons between the M2RI and DC. For Sex 

as phenotype vs. RSFC, based on three α-levels for declaring significance 0.05, 0.01 or 0.001 for P-

value, the DC was 0.89, 0.87 or 0.85, respectively, and all the related 95% CIs were below 0.90. 

However, M2RI was nearly one, which suggested an ideal reproducibility. Its asymptotic theoretical 

95% CI was above 0.98. For BMI as phenotype vs. RSFC. DC was only 0.66, 0.63 or 0.59 at α-level 

0.05, 0.01 or 0.001, respectively, and all the related 95% CIs were below 0.70. However, M2RI was 

still nearly one, and its asymptotic theoretical 95% CI was above 0.97. For Sex as phenotype vs. 

GMV, DC was 0.93, 0.92 or 0.92 at α-level 0.05, 0.01 or 0.001, respectively, and all the related 95% 

CIs were below 0.94. However, M2RI was again nearly one and both 95% CIs were nearly ideal. For 

activation in the MID task, DC was 0.97, 0.96 or 0.96 at α-level 0.05, 0.01 or 0.001, respectively, and 

all the related 95% CIs were below 0.97. However, M2RI was still nearly one and both 95% CIs were 

again nearly ideal. The above comparison results clearly suggest that it is important to use an 

appropriate measure/metric for evaluating the reproducibility of large-scale MRI association analysis. 
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Sample Size Calculation based on a Desirable M2RI 

    Sample size calculation is crucial in experimental designs. When designing a large-scale 

association analysis, one may ask what minimum sample size is required to achieve a desirable 

reproducibility rate. For a comprehensive understanding of sample size requirements in different 

large-scale association analysis scenarios, we conducted a large resampling-based simulation study. 

For a study cohort presented in Table S1, we selected a phenotype available in the study as response. 

Then, we randomly selected subjects from the cohort to construct two subsets with a given sample 

size for each subset. M2RI (DC) was calculated accordingly. For each given sample size, we repeated 

the resampling and M2RI (DC) calculation 1,000 times. 

We evaluated Pr(M2RI > 0.8) empirically for each given sample size. Then, we could obtain the 

minimum sample size to achieve Pr(M2RI > 0.8) > 0.8 in each analysis scenario. (In addition to 0.8, 

other values could be certainly considered, and it is not necessary to always set both values to 0.8.) 

The results for different analysis scenarios are summarized in Figure 3 and Table 1. We firstly 

assessed the minimum sample size for M2RI. For different response phenotypes in the task-related 

functional MRI data, the minimum sample size was only approximately 20 to 30. For the GMV data, 

a sample size of approximately 120 was required when the response was sex phenotype; a sample 

size of 70 was required when the response was age phenotype and a sample size of 300 was required 

when the response was BMI phenotype. However, for different response phenotypes in the RSFC 

data, the results were clearly different. Approximately 200 or 300 were required when the response 

was age or sex phenotype, respectively. When the response was BMI, the minimum sample size 

increased to a very large value (2,300). 

As a comparison, we also calculated the minimum sample size for DC to achieve Pr(DC > 0.8). 

The results are included in Table 1 as well. As a threshold setting is required for the calculation of 

DC and the z-scores are transformed from the related P-values. We considered different significance 

levels (α=0.05, 0.01, 0.001) for the related P-values. At each threshold setting and for each analysis 

scenario, the minimum sample size for DC was always clearly larger, even for task fMRI studies. 

When the response was BMI in the RSFC data, the original cohort was not large enough for our 

sample size calculation. (At most one half of the original cohort sample size could be available for 

this resampling based sample size calculation.) Table 1 can be a useful guideline for a future 
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experimental design of a large-scale association analysis. These results are essential and helpful for 

us to further understand the reproducibility evaluation in different analysis scenarios. 

 

Application 1: Reproducibility Evaluation of GMV Change for Two Independent Data Sets 

As an application of M2RI, we considered two MRI data sets: PPMI and UK Biobank cohorts. 

For the PPMI data set, there were 136 normal subjects with age from 45 to 79. As the UK Biobank 

cohort is much larger, we performed a sample matching based on age and sex for this analysis. Seven 

age groups of 45-49, 50-54, etc. (5-year intervals) were considered. For each age group, from the UK 

Biobank cohort, we randomly selected the same number of female/male subjects as that in the PPMI 

cohort. A total of 136 subjects were randomly selected from the UK Biobank cohort. Then, for both 

data sets, we calculated the z-scores for age phenotype as response vs. GMV based on a general linear 

model with the adjustments for sex and TIV. This was repeated 1,000 times and we obtained 1,000 

lists of paired z-scores.  

As another application of M2RI, we considered HCP and UK Biobank cohorts. For the HCP data 

set, there were 413 subjects with age from 22 to 36. Then, it was not feasible to match the 

corresponding age ranges in the UK Biobank data because this age range was not available in the UK 

Biobank. We still performed a sample matching based on sex. From the UK Biobank cohort, we 

randomly selected the same of number of female/male subjects as that in the HCP cohort. A total of 

413 subjects were randomly selected from the UK Biobank cohort. Then, for both data sets, we 

calculated the z-scores for sex phenotype as response vs. GMV based on a general linear model with 

the adjustments of age and TIV. This was repeated 1,000 times and we obtained 1,000 lists of paired 

z-scores. 

For each list of paired z-scores, we applied M2RI to assess the related reproducibility (see Table 

S2 for results). For PPMI and UK Biobank data sets, the median reproducibility was 0.99993 with 

the range of interquartile (Q1-Q3) 0.99964-0.99998. It was reasonable to conclude that both data sets 

were ideally reproducible in term of large-scale association analysis with age as phenotype. For HCP 

and UK Biobank data sets, the median reproducibility was only 0.6378, with the range of interquartile 

(Q1-Q3) 0.5747-0.7032. As the age ranges for both data sets were clearly different, it was also 

reasonable to observe a relatively low reproducibility for this analysis. As a comparison, we also 
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calculated the related DC. We considered different significance levels (α=0.05, 0.01, 0.001) for the 

P-values related to z-scores for the DC threshold setting. At each threshold setting and for each 

analysis scenario, the calculated DC was clearly lower. 

 

Application 2: Reproducibility Evaluation of Differential Expression based on RNA-seq Data 

For further applications of M2RI, we also considered RNA sequencing gene expression data 

collected by TCGA. We selected the data for studying colon adenocarcinoma (COAD) and stomach 

adenocarcinoma (STAD). COAD and STAD are both gastrointestinal (GI) carcinoid tumors. We 

expect a relatively high reproducibility when comparing these two data sets. As a contrast, we also 

selected the data for studying head and neck squamous cell carcinoma (HNSC) and liver 

hepatocellular carcinoma (LIHC). 

    At the time of our study, for COAD cohort, the numbers of normal and tumor samples were 41 

and 287, respectively; for STAD cohort, the numbers of normal and tumor samples were 35 and 415, 

respectively. We randomly selected 287 tumor subjects from COAD cohort and 35 normal subjects 

from STAD cohort to match the number of normal/tumor subjects in both data sets. Similarly, for 

HNSC cohort, the numbers of normal and tumor samples were 44 and 522, respectively; for LIHC 

cohort, the numbers of normal and tumor samples were 50 and 373, respectively. We randomly 

selected 373 tumor subjects from LIHC cohort and 44 normal subjects from HNSC cohort to match 

the number of normal/tumor subjects in both data sets. The random subject selection for matching 

was repeated 1,000 times. For each gene, we used the Wilcoxon rank-sum test to compare the 

expression difference between the normal and tumor subjects. Then, we obtained 1,000 lists of paired 

z-scores for COAD vs. STAD and 1,000 lists of paired z-scores for HNSC vs. LIHC. 

    For each list of paired z-scores, we applied M2RI to assess the related reproducibility (see Table 

S2 for results). For COAD and STAD, the median reproducibility was 0.9439 with the range of 

interquartile (Q1-Q3) 0.9403-0.9468. For HNSC and LIHC, the median reproducibility was only 

0.8036 with the range of interquartile (Q1-Q3) 0.7970-0.8100. As COAD and STAD are both 

gastrointestinal (GI) carcinoid tumors, but the organisms related to HNSC and LIHC are clearly 

separated, these results are consistent with our expectations. As a comparison, we also calculated the 

related DC. We considered different significance levels (α=0.05, 0.01, 0.001) for the P-values related 
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to z-scores for the DC threshold setting. At each threshold setting and for each analysis scenario, the 

calculated DC was clearly lower. 

 
Discussion 

    Reproducibility in the study of large data sets has received significant attention in recent years, 

but there are still few practical approaches to tackle it (5, 7, 27, 28). To address the demand for a 

reliable overall reproducibility assessment for large-scale high-throughput association studies, we 

developed a novel approach termed M2RI. Through a comprehensive simulation study, we 

demonstrated the advantages of M2RI, especially when it was compared to the widely used Dice 

coefficient (DC). The model robustness of M2RI was considered in our simulation study. We 

confirmed that M2RI was an informative approach for the study reproducibility assessment of large-

scale association analysis with a relatively large sample size. Through the applications of M2RI to 

several large MRI/fMRI data sets, we further demonstrated the advantages of M2RI (also compared 

with DC). M2RI can also be useful in evaluating the overall similarity between two large-scale 

association studies. We used it to compare two MRI data sets as well as two TCGA RNA-seq data 

sets. As data pooling or meta-analysis is frequently considered in practice, the evaluation of overall 

similarity between two closely related studies is crucial. Such an analysis allows us to understand the 

biological differences and similarities between the two studies. It also allows us to address 

the generalizability of a large-scale association analysis. If there are more than two data sets, we can 

use M2RI to evaluate the overall similarity for each pair of data sets. 

    M2RI was developed for assessing the overall reproducibility of a large-scale high-throughput 

association study (or the overall similarity between two large-scale studies). This is different from 

the reproducibility assessment of discoveries from a large-scale association study (or the evaluation 

of consistency of discoveries from two large-scale studies), which is actually the analytical purpose 

of DC. Furthermore, we have developed a bootstrap-based procedure and a theoretical formula for 

the calculation of CIs for M2RI. These also allow us to achieve the sample size calculation, which is 

always essential in a design of experiment. 

    We conducted a comprehensive sample size calculation for several recent large sMRI/fMRI data 

sets. According to our results, an adequate sample size is necessary to report a reliable reproducibility 

assessment. Additionally, the sample size requirement is closely related to the strength of associations, 
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which depends largely on the signal-to-noise ratio of response outcome (e.g., phenotypes) and 

predictors (e.g., MRI signal or gene expression). Therefore, the impact of different phenotypes, 

predictor data types, and technology platforms should all be considered in the study reproducibility 

assessment. These results are well illustrated in our results. To achieve the desirable reproducibility, 

the required sample size for a task fMRI study is clearly lower than that for a GMV study, which is 

clearly lower than that for an RSFC study. For a GMV study, the required sample size for age 

phenotype as response is clearly lower than that for sex phenotype as response. For an RSFC study, 

the required sample size for BMI phenotype as response is much larger. These results are consistent 

with our expectations. The data signal-to-noise ratios from a task fMRI study are usually clearly large, 

and the data signal-to-noise ratios from a GMV study are usually comparably larger than those from 

an RSFC study. The phenotype signal-to-noise ratio of BMI is clearly smaller than that of sex or age 

phenotype. Therefore, our results are highly illustrative and informative for planning the sample size 

for a large-sale high-throughput association study. 

    We have demonstrated that M2RI is useful for the reproducibility assessment of large data sets. 

It is still necessary to further develop novel and useful tools for data with relatively small sample 

sizes. Statistically, when the sample size is relatively small, it is difficult to fit the z-scores with a 

simple model. As our future research endeavor, we will investigate other approaches so that the study 

reproducibility assessment can be achieved for data with a relatively small sample size. We believe 

that these efforts will also help improve the current approach for data with a relatively large sample 

size. We have illustrated the applications of M2RI to MRI/fMRI and RNA-seq gene expression data. 

M2RI can also be applied to GWAS and other types of large-scale high-throughput association study 

data (e.g., BWAS). We point out that the study reproducibility assessment of a GWAS data set can 

be computationally time consuming. The number of features (SNPs) is significantly large. As the 

dependence among GWAS data is usually strong, we will direct our future research endeavors toward 

how to conduct such an analysis more effectively and efficiently. 
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Figures and Tables 
 

 
Figure 1: Dice coefficient vs. M²RI (A) An illustration of Dice coefficient. 𝑉%$, 𝑉%8,	𝑉:$ and 𝑉:8  
represent the numbers of supra-threshold significant results in data set 1 and data set 2, respectively, 
and 𝑉12345678  and 𝑉1234567$ 	 represent the numbers of supra-threshold (threshold c) positive or 
negative results in both data set. (B) An illustration of M²RI. 𝜙?,@  is the normal probability 
distribution function and 𝜋?@ is the proportion of features consistent with component 𝑖 in the first 
association analysis and component 𝑗 in the second association analysis. 
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Figure 2: Reproducibility assessed by M²RI and Dice coefficient (DC) in three simulation 
scenarios. A bar chat represents the median of 1,000 simulation repetitions with the upper quartile as 
the error bar. (A) Simulation results based on 80% null, 10% upward change and 10% downward 
change (100% reproducibility). (B) Simulation results based on 60% null, 15% upward change, 15% 
downward change and 10% discordant (75% reproducibility). (C) Simulation results based on 60% 
null, 20% upward change and 20% downward change (100% reproducibility). 
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Figure 3: Sample size calculations for three association analysis scenarios in UK Biobank or 
IMAGEN data. In each plot, "20% lower-bound" means (100-20)-percentile of calculated M²RI 
values (1,000 resampled repetitions). The vertical dashed line indicates the minimum sample size for 
Pr (M2RI > 0.8) > 0.8. (A) Sex as phenotype vs. GMV in UK Biobank data. (B) MID task activation 
in IMAGEN data. (C) Sex as phenotype vs. RSFC in UK Biobank data. 
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Table 1: M2RI based sample size calculations in different MRI association analysis scenarios.  
The minimum sample size to achieve Pr(M2RI > 0.8) > 0.8 is presented for each large-scale 
association analysis scenario. For the RSFC data, sex, age or BMI was considered as phenotype. For 
the GMV data, sex, age or BMI was considered as phenotype. For the fMRI data in task activation, 
MID, SST or EFT task was considered. For a comparison purpose, the minimum sample size to 
achieve Pr(DC > 0.8) > 0.8 is also presented at different threshold settings. DC: Dice coefficient. (For 
more details, please see section M2RI Discovers the Relationships of Reproducibility and Sample 
Sizes.) 
 

MRI Study Minimum Sample Size 
RSFC M2RI DC (P<0.05) DC (P<0.01) DC (P<0.001) 

Sex 300 2600 3200 3900 
Age 200 1600 2100 2800 
BMI 2300 >4131 >4131 >4131 
GMV M2RI DC (P<0.05) DC (P<0.01) DC (P<0.001) 
Sex 
Age 
BMI 

120 
70 
300 

1300 
500 
1800 

1500 
600 
2200 

1900 
700 
2700 

Task fMRI M2RI DC (P<0.05) DC (P<0.01) DC (P<0.001) 
MID 30 60 80 90 
SST 
EFT 

20 
30 

70 
210 

80 
230 

90 
250 
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