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Abstract

In  games  of  incomplete  information  individual  players  make  decisions  facing  a  combination  of

structural uncertainty about the underlying parameters of the environment,  and strategic uncertainty

about the actions undertaken by their partners. How well are human actors able to cope with these

uncertainties, and what models best describe their learning in such environments? We use a double

auction  task  with  different  competitive  and  informational  environments  to  characterize  learning

abilities of the single human participants (buyers) in a range of adaptive learning models covering

reinforcement learning, directional learning and belief learning.  Results show that real behaviour is

best described using simple models of directional learning type with minimal knowledge assumptions

about information efficiency of prices. This behavior is consistent with bounded rationality and risk

aversion: human subjects try to  maximize their chance for transaction, and do so using the simplest

learning rule. 
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1. Introduction

How do people integrate past information to assign value to goods which are subject to changing

strategic  player  interactions?  Learning about  how people  play  interactive  play  games  has  been an

important topic in economics for quite some time (Roth and Erev, 1995; Fudenberg and Levine, 1998;

2016).  nNumerous  learning  models,  such   as  fictitious  play  or  reinforcement  learning  have  been

proposed  and  successfully  applied  in  a  variety  of  contexts  (Erev  and  Roth,  1998;  Binmore  and

Samuelson, 1998; Weibull,  1995; Forster and Vohra, 1997; Hart and MasColell,  2000, Abbink and

Cox, 2005). Yet in other cases, these same models have not been very accurate descriptively, especially

if  players  face  uncertainty  about  the  expected  outcome or  underlying  parameters  of  the  game,  or

incentives, preferences, beliefs or reasoning procedure used by their opponents. All these factors may

be attributable to two potential sources (Harsanyi and Selten, 1988; Brandenburger, 1996; Andersson et

al., 2012): structural uncertainty about the characteristics of the environment, and strategic uncertainty

about preferences, beliefs and behavioral strategies of the other players. If either of these characteristics

are not commonly known, human players have to form their own representation of the problem, and

react according to it.  

In  our  paper  we  study  human  behaviour  in  face  of  structural  and  strategic  uncertainty,  and  a

combination of these, which is typical in many real market interactions. As a prototype game, we take

the double auction games with exogenously varying number of buyers and sellers. These games are

very well explored in the literature on bargaining and experimental markets, and are shown to result in

remarkably robust behaviour,  which is well-aligned with theoretical  predictions.  In these canonical

market environments, we vary information about the true market type to study the impact of structural

uncertainty, and information about other players’ decisions to study strategic one. In a nutshell, our

results show that human subjects respond to these uncertainties by lowering their bids to increase the

probability of a profitable deal, at  a cost of decreased expected profit.  Finally,  we fit  the observed

strategies  to  the  various  learning  models,  and  explore  comparative  predictive  power  of  learning

strategies  in  these  market  environments.  Estimates  of  these  models  favour  the  simplest  possible

learning rule – Directional learning. This fact may be viewed as evidence of ‘economic’ response to the

complexity  of  decision  task  whenever  the  cost  of  using  more  involved learning  strategies  fails  to

overweight their expected benefits.

Our  variation of the market environments induces natural variation in decisions. For instance, if a
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buyer repeatedly competes with another buyer over a good offered by a single seller, she will soon

realize that in order to avoid the loss of a profitable deal, she need to increase her offer. This situation

contrasts  with the opposite case,  in which of two or more sellers compete the demand of a single

monopsonist.  In  our  paper  we  consider  three  market  games:  buyer’s  competition  (BC)  of  two

symmetric buyers facing a single seller; sellers’ competition (SC), with two symmetric sellers facing

one buyer, and neutral competition (NC), which is simple bilateral bargaining of a single buyer with a

single  seller.  Experimental  evidence  (Huck  et  al.,  1999,  2000;  Duwfenberg  and  Gneezy,  2000;

Offerman et al., 2002), including the one reported below, suggests that under full information, human

players  are  relatively  quick  learners  of  optimal  behavior  in  each  of  these  market  types,  which

eventually converges to Bertrand Nash equilibrium. A third market type is bilateral bargaining of a

single buyer against a single seller, or neutral competition (NC). Unlike the previous case, this situation

is a coordination game, akin to Nash (1953) demand game, and yields multiple equilibria laying on the

main diagonal. Existing literature (see Ochs, 1995 or Crawford, 1990) suggests that human subjects in

this context will coordinate on focal solutions, in case of uncertainty giving greater share to the player

who is best informed (Andersson et al., 2018). Comparison of the behavior in games with single and

multiple  equilibria  allows  us  to  control  for  the  effect  of  strategic  complexity  on  the  speed  and

efficiency of learning.

To obtain a clean picture, throughout the paper we concentrate on the behavior of a single player –

the buyer. To ensure constancy of experimental conditions, human buyers were playing against pre-

recorded opponents (buyer and seller(s), depending on the actual market type). To capture strategic and

structural uncertainty, we use  three exogenously varying information conditions. In our  benchmark

treatment (T1) the information about the market type is correct and truly communicated to the buyer,

who observes only own outcome, but receives no feedback about what other players did in the previous

periods. This situation corresponds to no structural uncertainty with strategic uncertainty in place. In

another  “scrambled”  treatment (T2), we exogenously distort this information about market type by

scrambling the market labels: instead of the true market type, subjects were presented with randomly

assigned market type labels (e.g., SC when the actual market type is BC). Here the buyer still observes

the outcome, but not necessarily the true market type, thus creating structural uncertainty. Under these

conditions, naive buyers who react only to a  signal  about the market type may continue playing the

strategy corresponding to each pre-announced type, while rational players should respond to factual
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outcomes,  and  adjust  their  behavior  to  the  extent  of  their  learning  abilities.  Finally,  in  the  full

information  treatment (T3),  all  market  types  are  correctly  announced,  and all  opponents’  bids  are

revealed  to the subject  (buyer).  This treatment  entails  the situation  of lowest  strategic  uncertainty,

limited  to  occasional  irregularities  in  the  behavior  of  pre-recorded  partners.  This  environmemt  is

expected to result in most efficient learning. 

Each subject  participated  in  all  three treatments,  presented  to  participants  in  random order.  All

treatments consist of 24 replications, which number is reasonably short to prevent subject from being

exhausted, but sufficiently large to learn in each market type. Comparing buyers’ behavior under the

various information conditions  in each of the three market types,  we can disentangle the effect  of

strategic uncertainty (baseline vs full information treatment) from that of structural uncertainty (full

information vs. scrambled treatment).  

Our  specification  of  strategic  and  structural  uncertainty  has  several  real-life  (ecological)

motivations. With some notable exceptions (e.g. financial markets), full information about the behavior

of  one’s  competitors  is  often  not  available  and/or  prohibitively  costly.  Markets  with  scrambled

information are also more typical in reality than it might appear.  Online auctions such as eBay, feature

several buyers bargaining for a single unit, without knowing the number of other contestants for the

same good. Since all competition is online, the illegal, but still present practice of shill bidding from

artificial accounts serves to artificially intensify competition and push the price up. In the government

procurement auctions, the auctioneer who organizes a tender bid has to set the highest reservation price

for the contact, without knowing ex ante how many competitors will come. Hence, a single potential

bidder has strategic incentives to pretend he will be the sole competitor. In fact, this may well not be

true, but this impression could persuade the auctioneer to increase the reservation price in order not to

lose the supplier.  In such cases,  scrambled information  about  market  structure may be part  of  the

bargaining  strategy  of  one  of  the  sides  of  the  transaction.   Our  experimental  design  mimic  such

situations, allowing us to compare the efficiency of coping strategies of real players in such adverse

information conditions.

These  strategies  are  crucially  related  to  learning  in  various  strategic  environments  (Erev  and

Haruvy, 2015).  Standard economic reasoning suggests that people will  respond to incentives,  and

converge to equilibria in the respective games, although at a different rate, depending on the accuracy

of information available in our various treatments.  The BC and SC market environments the unique
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predictions are in favour of the parties with more bargaining power, i.e prices equal to the upper bound

of the range (buyers’ valuation) in the SC and to the lower bound (seller’s costs) in the BC. In the non-

cooperative NC game, there is a continuum of possible equilibria, but invoking the symmetry axiom,

we would predict convergence to the Nash bargaining solution and equal division of the joint surplus.

See  Appendix  C  for  the  details).These  predictions  receive  empirical  confirmation  in  our  data.  In

particular, subjects learn in the predicted directions, and do so most efficiently in the full-information

treatment.  In  the  non-scrambled  treatment,  buyers’  strategies  also  follow  the  predicted  patterns,

converging to the  Bertrand Nash equilibrium in BC and SC,  and the Nash bargaining solution in the

NC  market  type,  respectively.  In  T2  (scrambled  treatment),  we  find  that  the  buyers’  bids  are

systematically biased upwards in all market types. This finding can be explained by risk aversion of the

buyer who is afraid of not making a deal (see Appendix C for the theoretical argument). 

Finally,  we  compare  the  explanatory  power  of  several  alternative  learning  models  in  all  three

markets and all informational treatments, including 

directional learning, belief learning and reinforcement learning. After fitting the model parameters

by  maximum  likelihood,  we  find  that  the  best  is  the  simplest  one  –  directional  learning model.

Altogether, these findings are in line with bounded rationality theory: players in an uncertain strategic

situation strive to maximize their chance for transaction, and do so using the simplest learning rule.

The  rest  of  the  paper  is  organized  as  follows.  Section  2  puts  our  experimental  design  into

perspective with respect to the relevant literature.  Section 3 explains the setup of our experimental

game. Section 4 presents the six learning rules that have been applied to our experimental data, and

section 5 presents the results. Section 6 discusses the relevance and importance of our findings. Section

7 concludes.

2 Related literature

Studies of learning dynamics in games are not new to  literature in economics and computer science,

including the settings of auction games. The mainstream literature focuses on learning how to play

Nash equilibrium (or a specified subset of these, if there is more than one). The primary justification

for  Nash  equilibrium  is  evolutionary  (Nash,  1951;  Weibull,  1995).  Indeed,  much  of  the  existing

experimental  evidence  suggests  that  strategies  of  real  subjects  may  start  quite  away  from  Nash

equilibrium, but gradually converge to it (Cheung and Friedman, 1997; Binmore and Samuelson, 1997;
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Fudenberg and Levine, 1998). In the simplest case of normal-form game, subjects observe only the

payoffs collected in the previous stage, and adjust own strategies given the experience with the others.

This yields learning dynamics of best reply type, such as fictitious play (Brown, 1951) and stochastic

fictitious  play (Fudenberg and Kreps,  1993).  These models  assume that  real  subjects  believe  their

opponents play some fixed but unknown mixed strategy, augmented in stochastic version with random

payoff  shocks,  and  play  best  reply  against  an  empirical  sequence  of  opponents’  plays,  where

probabilities  of  each  expected  play  is  updated  in  accordance  with the Bayes  rule.  This  scheme is

arguably  very  rigid:  in  particular,  it  may  result  in  strategy  cycles,  which  are  not  always  easy  to

accommodate (Aoyiagi, 1996), and is unable to incorporate some forms of strategic experimentation

(e.g. playing best replies to strategies with zero posterior probability - Fudenberg and Levine, 2009).

These facts have called for a broader perspective of learning. In particular, players may be Bayesians

when re-weighting the upcoming evidence about types of the others, but their priors about these types

need not necessarily correspond to the ones, which lead to Nash equilibrium. However, any particular

prior coupled with Bayesian updating and based on calibrated forecasts leads to correlated equlibria

(Foster and Vohra, 1997). This finding suggests to look at bounded rational leading strategies based on

simple clues:  Hart and Mas-Colell  (2000) argue that learning inertia and regret (of not playing the

action which proved to be good) almost surely converges to a correlated equilibrium, but not to a Nash

equilibrium. Hart and Mas-Collel (2003) show that this last property holds for all uncoupled dynamics,

which  are  generic  to  boundedly  rational  rules  in  the  sense  that  learning  players  may observe  the

strategies, but not payoffs to the others, as in our benchmark treatment T1. This goes in contrast with

the classical learning rules, such as replicator dynamics (Taylor and Jonker, 1979), stochastic fictitious

play (Fudenberg and Levine, 2009) and quantal response (McKelvey and Palfrey, 1995). These models,

under  various  conditions,  all  asymptotically  converge  to  Nash,  although the speed of  convergence

remains a separаte, and largely underexplored issue (Fudenberg and Levine, 2016). te, and largely underexplored issue (Fudenberg and Levine, 2016). 

Decisions under strategic uncertainty has been studied both experimentally (Abbink and Brands,

2008; Feltowich and Swierzbinski, 2011; Andersson et al., 2018) and theoretically (Andersson et al.,

2014, Yamashita, 2015). Some works, including Abbink and Brandts (2005) studied the behavior under

structural uncertainty, although most of the literature focused on pure effects of the varying market

structures (Plott, 1995, Camerer, 2003 and Huck et al. 2004 survey the relevant literature). 
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A separate branch of literature explores convergence in the specific settings of bargaining. Rapoport,

Daniel and Seale (1998a; 1998b; 2000, 2001), in a series of experiments explored the predictive power

of the standard double auction game with incomplete information (Chatterjee and Samuelson, 1983;

Radner and Schotter, 1989; Myerson and Satterthwaite, 1989; Linhart et al., 1992), and found that the

theoretical prediction of symmetric linear Bayesian Nash equilibrium works reasonably well for under

various valuation, information and treatment conditions, especially for the sellers, and less so for the

buyers. However, these authors did not explore bargaining behavior under changing market structures.

Furthermore,  Croson  et  al.  (2003)  have  shown  that  subject  strategies  in  incomplete  information

bargaining  games  with  cheap  talk  can  be  quite  complicated,  and  involve  strategic  misleading.

Extensive  experiments  in  auction  games  (Kagel,  1995),  while  confirming  consistency  of  the  lab

evidence with the theory, reveals that learning is sometimes slow, especially in low-information, sealed

bid  treatments  (Kagel  et  al.,  1987;  Ariely  et  al.,  2005).  Extensive  experimental  studies  of  various

market structures (see Plott, 1989 for a classical survey), confirm the ultimate effect of market power

on outcomes,  but  do not  offer  a  concise  story  of  convergence  to  market  equilibria.  For  example,

Kutschinski et al. (2003) in a field study based on electronic auctions demonstrate that joint learning of

several adaptive agents may lead to fuzzy dynamics that is both unforeseen and increasingly volatile. 

This literature suggests that the logic of Nash equilibrium, while remaining a strong attractor in

some  contexts,  may  fail  descriptively  for  a  range  of  behavior  which  may  nevertheless  be  quite

rationalizable on alternative grounds. One way to relax the assumptions of Nash is to forego belief

modeling (which are typically unobservable anyway), and concentrate on immediate impulses from

experienced  utilities  (payoffs).  This  approach  of  reinforcement  learning  had  emerged  in  natural

sciences, and has been introduced in economics by Roth and Erev (1995; 1999), and further developed

in  the  experience  weighted  attraction  (EWA) model  (Camerer  and  Ho,  2000).  It  is  worth  notice,

however, that this approach is by no means exclusive nor universal to all contexts. In fact, most models

fall short of explaining the underlying generating process by which human players learn in economic

decision tasks (Salmon, 2001). Selten, Chmura and Goerg (2011) compare descriptive performance of

several models of learning against an empirical dataset based on more than 800 subjects playing for

200 rounds. They find that simple heuristic strategies, such as impulse balance equilibrium (a concept

coined by Selten in 1998, based on aspiration levels of the players) as well  as payoff and action-

sampling equilibrium (Osborne and Rubinstein 1998) outperform equilibrium models, such as quantal

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.22.262469doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.22.262469
http://creativecommons.org/licenses/by/4.0/


9

response  equilibrium  (McKelvey  and  Palfrey,  1998)  and  Nash  equilibrium.  Simple  rules  also

outperform  more  fundamental  learning  rules,  such  as  linear  and  logarithmic  tracing  procedures

(Harsanyi,  1974;  Harsanyi  and Selten  1988).  These latter  are  widely used to  find the set  of Nash

equilibria in an arbitrary finite game in strategic form (see von Stengel, 2002 for a review). despite

logical correctness and formal attractiveness, actual behavior no more corresponds to these rules than

does their behavior converge to Nash equilibria. 

To sum up, the literature suggests that even in simple games with perfect ex ante information but

uncertain  environment  and/or  preferences  of  the  other  players,  Nash  equilibrium  and  its  direct

generalizations, such as quantal response or fictitious play, are not among the best predictors to actual

behavior.  By contrast,  simpler,  boundedly  rational  learning  rules  better  perform descriptively,  and

correspond  better  to  the  set  of  rationalizable  decisions  in  ecologically  relevant  conditions.  These

include  unobservable  priors  about  opponents’  types,  correlated  equilibria,  and  covering  strategic

manipulation of information about the institutional environment upon which one has to act. Analysis of

behavior in such settings calls for a controlled experimental study, to which we proceed now.

3. Materials and Methods

3.1 Experimental paradigm

Our market  (double  auction)  experimental  game was  framed as  the  problem of  a  single  trader

(restaurant owner) who aims at buying a fixed-size commodity (fish) to be sold to his or her customers

at a fixed price, and follows the design of a previous study (Martinez-Saito et al., 2019). The trader in

each period comes to the market,  where he faces one of the three possible market types: SC (two

sellers, each having and willing to sell him one unit of good), NC (single seller with one unit of good),

or BC (single seller but another buyer, competing with the trader for the same unit of good). Only the

trader is actual participant of the experiment; other agents are dummy players whose decisions are pre-

recorded and displayed automatically. In a computerized game, the trader plays the role of a buyer

facing market types presented sequentially in random order. At the beginning of each trading period,

each buyer has a fixed endowment to buy fish (at the cheapest price possible). 
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The following parameters have been used for the experimental game. Buyer valuation always equals

10 monetary units  (MU), and seller’s  valuation (cost)  is always normalized to 0. The active buyer

(player) b1 decides his bid; opponents’ decisions of all other players (single seller s1 in NC, two sellers

s1 and s2 in SC and seller and other buyer b2 in BC) were drawn from the previous experimental data

(Muller, 2013) by random-opponent matching (see Figure 2 for the presentation of this result). 

Each trial  consisted of three stages. In the first  stage,  which lasted for 5 seconds,  the player is

informed about the market type (s)he will face in the current trial (see below). In the second, the player

had up to 15 seconds to make their bids b by placing a bar at a proper point on a scale from 0 to 10. At

the final stage, player’s decision is matched with that of the other agents, and outcome of the trial is

displayed for 6 seconds on the computer screen. The feedback screen contained information about the

transaction outcome (accepted or rejected), the payoff earned by the subject, as well as the bid of the

second buyer in the BC condition. Figure 1 shows the sample sequence of screen stages, programmed

using Presentation software (version 18.0, Neurobehavioral Systems, USA, www.neurobs.com). 

Instructions for the game given to the subjects (English version) are contained in Appendix B.

 

Figure 1 |  Task flow. Each trial consisted of three stages: market type announcement, bid selection,

and game outcome feedback. During the market announcement stage, the subject is informed of the

market type of the current trial. Next a scale from 0 to 10 is displayed, and the subject has to choose her

bid by sliding a vertical bar. Finally, at the transaction outcome stage, trade outcome and payoffs to the

player is announced, along with an information as to whether the bid was accepted or rejected.
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3.2 Treatments

Our study consisted of 3 treatments (see Table 2 below for a summary). The baseline  benchmark

treatment (T1) has been conducted exactly as described above, with subjects knowing only their own

performance.  To  explore  the  role  of  information,  we  add  two  more  treatments.  Additionally,  we

conducted two control treatments (T2 and T3) defined a follows.  In T2, the market type announcement

at the beginning of each trial was random instead of the actual one. That is, we uniformly randomized

the three labels (SC, NC, BC markets types), so that the signal was scrambled, and subjects played in

the  announced  market  type  only  1/3  of  trials.  To ensure  parallelism  of  the  treatments,  no  further

information has been ever conveyed to the subjects in all information treatments.

Finally, as a control treatment needed to assess the impact of full feedback on subjects’ behavior, we

use T3, where the information about market type was not only correct (as in T1), but also full, i.e.

supplemented by all buyer’s bids  in every trial. 

 As robustness checks to these treatment effects, we endow our design with several new features.

First, to focus attention on buyers’ bidding strategy, and mitigate potential perceptive errors on the part

of the subjects, in the BC markets we set the price of successful transaction at buyers’ bid instead of the

usual  Nash  bargaining  price  equal  to  midway  between  buyer  and  seller’s  proposals.  Second,  as

additional  robustness  check  for  reaction  to  strategic  uncertainty,  we  augment  the  design  with   a

parameter that is orthogonal to market structures. Namely, in the SC market, when both sellers can

make a deal, the one who will actually transact has been determined not by the best (lowest) bid but at

random. In the T3 treatment, buyers know both winning and losing bids, hence can form a clearer idea

about the strategies of the sellers, which is impossible to do in the non-perfect information treatments

(T1 and T2). 

Experimental sessions were conducted in March-June 2015. Participants were students, mostly from

psychology department in Moscow, recruited via internal recruitment system. Altogether, 54 subjects

played 24 blocks of each treatment  (T1,  T2 and T3),  alternating  among market  types  in the same

randomly predetermined order throughout the session. Although the alternation order was fixed within

each experimental session, it was randomly varied across subjects. 

All  experiments  were conducted separately for each experimental  subject  who was alone in the

room with the computer. After arriving to the classroom and signing the consent form, each participant

read the instruction (see Appendix D), and had an opportunity to ask any questions.  Subjects were
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explicitly informed that in all simulated markets, their opponents were prerecorded humans playing in

concomitant trials (i. e., the actions of their opponents were matched according to the trial order of each

market  type),  and  in  the  same  format  (that  is,  repeated  random  matching)  against  other  human

opponents, and hence in no way different from real humans except that this prevented using strategies

to influence opponents’ play (Camerer et al., 2002).   

Prerecorded data (Figure 2) were obtained from a pilot study (Muller, 2013). The design of the pilot

study task was identical, to the main experiment with the following exceptions: 16 subjects played in

anonymous groups; on desktop computers with conventional keyboards were used, and subjects played

against each other, simultaneously, within the same room, but uninformed of who their opponents were

on a given trial. Subject roles were randomly assigned to buyer or seller throughout the duration of the

experiment. Both seller and buyer had to set their respective ask prices and bids beforehand. The total

number of trials amounted to 11520 (3 sessions, one per market type, each consisting of 40 periods

with 6 rounds per period). Bids/ask prices statistics in BC were 7.67+-1.12 for buyers and 3.84+-2.63

for sellers: in NC, 3.27+-2.19 for sellers; and in SC,  2.49+-1.70 for sellers (+- stands for standard error

of the mean).

Figure  2  | Opponents’  (buyers  and sellers)  prerecorded  behavior  in  each  market  type.  When  the
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notches of two plots do not overlap this is strong evidence that the two medians differ (see Chambers et

al. 1983; R Core Team, 2016).

The experimental session itself lasted for about 30 minutes, amounting to 45 minutes together with

instructions and payments. After the task, subjects were rewarded according to the following reward

scheme: a fixed compensation of 50RUB on account of participation, and in addition a bonus equal to

the sum of the profit (in the task monetary units, MU) earned in three random trials multiplied by 5

RUB/MU. Therefore the reward was a number of RUB bounded between 50 and 200.  Mean reward

was 114 RUB (about 2 USD at the time of the experiment, when adjusted to PPP  it was about 5$,

which is roughly sufficient to cover the cost two lunches in the student canteen).

4. Learning models

Learning models in economic games have emerged from the study of empirical play in repeated

games as a tool to study convergence to non-cooperative equilibria (Mookherjee & Sopher, 1994; Erev

and Roth, 1998; 2014;  Camerer & Ho, 1999; Feltovich, 2000; Sarin and Vahid, 1999, 2004; Sato et al.,

2002; Grosskopf, 2003; Iwasaki et al., 2007). Perhaps the most popular of these is the “reinforcement

learning model, in which players pay attention only to their own payoffs, and tend to repeat actions that

have led to good payoffs in the past.” (Erev and Roth, 2014, p.10819). This approach emerged in

natural  sciences,  but  gained much popularity  in  economics  literature  because  of  its  flexibility  and

descriptive capacities (Chen and Chen, 2009). Other adaptive learning models include deterministic

(Brown, 1951) and stochastic fictitious play (Fudenberg and Kreps, 1993; Monderer et al., 1997), belief

learning (Ioannou and Romero, 2014), along with their more involved alternatives and generalizations,

such  as  experience  weighted  attractions (EWA  –  Camerer  and  Ho,  1999;  Camerer  et  al.,  2002).

Although no model seems to be of one-size-fits-all type (Salmon, 2001; Mohlin, 2014; Fudenberg and

Levine, 2016), reinforcement learning is the most popular in a range of applications, especially dealing

with ‘passive’ learning in standard environments.

Following  this  approach,  we  contrast  learning  algorithms  of  reinforcement  learning  (RL)  type,

furnished with a function which estimates values of actions and states, and directional learning (DL)

algorithms, lacking such function. These models impose rather mild requirements on human rationality:
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agents  should  not  be  able  to  observe  strategies,  but  choices;  learning  should  be  based  on  a

parsimonious algorithm; and unobservable parameters for the opponents are not considered.

Reinforcement  learning  (RL)  is  a  strategy  for  maximizing  the  profit  of  an  agent  placed  in  an

uncertain environment by means of the storage and updating of a value function which encompasses all

necessary information to act in an optimal manner (Sutton & Barto, 1998). In the simplest, model-free

form, when the environment can be modeled as a Markov decision process, the optimal strategy can be

found by value iteration of the Bellman equation, which involves systematically sweeping the whole

state space. However, this is unfeasible or unpractical for most situations, so most applications of the

RL algorithm use the dynamic action-value updating equation of the RL model whose generic form can

be written as 

Qt+1 (b|m )=Qt (b|m )+α (r − Qt (b|m ) ) (1)

With the interpretations for our case, Q(m | b) is the action-value function with a value for each bid

b from the set of possible bids B, conditional upon market type m at trial  t, and α is the learning rate

regulating the speed of action value updating.  For comparison, (1-α) corresponds to Roth & Erev’s

(1995)  parameter  ε  or  “persistent  local  experimentation”  (“gradual  forgetting”  φ and  “cutoff”  μ

parameters are both null constants here).  Action values were learned independently for each of the

three market types. 

The policy  for  selecting  a  bid  in  each trial  for  the  most  successful  model  is  a  logit  (softmax)

function:

P (b|m )=
eβQQ ( b|m )

∑
i∈B

eβQQ (i|m)  (2) 

where P(b | m) is the probability of choosing bid b in market type m, and βQ is the elasticity parameter

which captures the importance of the reinforcement signal,  B is the space of actions (bids), which in

this study contains 101 elements. Roth & Erev (1995) normalized  Q(b|m) values simply dividing by

their sum because their Q(b|m) values were defined to be always positive.

Many adaptive models emerge from this simple scheme, corresponding to alternative learning rules.

In our case the problem is greatly simplified because there is essentially only one state (per market
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type), hence our problem lies exclusively in choosing a single-dimensional value – the preferred action

(bid) (Lee et al., 2004). However, unlike most RL problems in natural sciences, in our game-theoretic

context  players  could  adopt  learning  strategies  based  on  “rational”  pre-game  analysis  or  on  the

behavior of the other players (Lee et al., 2005). In order to address these possibilities, we consider a

broader state and strategies space, and learning models which account for the relevant prior information

about the structure of the decision problem. 

4.1 Model-based RL with counterfactual action-values updates

A first step in application of the general RL model is to take advantage of the fact that action values

are ordered. One option is the similarity-based ‘‘spillover’’ of payoffs from a chosen bid to neighboring

bids explored by Sarin and Vahid (2004). A more informed strategy would be to control the spillover

by using information about foregone payoffs through counterfactual learning. This strategy is carried

into effect explicitly in those model-based RL models which asymmetrically update with every choice

bid, conditional on both the bid value and the feedback. Counterfactual learning is also carried into

effect,  although  indirectly,  in  DL algorithms,  which  incorporate  knowledge  about  the  structure  of

auction games by adopting the apparently simplistic but informed strategy of 'nudging' up or down the

preferred bid value in congruence with the feedback direction.

Counterfactual  learning  is  an  extension  of  model-free  RL where  the  value  function  is  updated

contingent not only on the currently chosen action feedback, but also on non-chosen actions based on a

model  about  the contingent  rewards of  foregone actions.  In  such cases,  value updating occurs  for

actions which were not chosen, but which are nevertheless updated based on the assumption that they

would  have  been  updated  had  they  have  been  chosen.  Counterfactual  learning  is  implemented

according to the following rule: for every bid b selected, if it is accepted (rejected), increase (decrease)

the value of the action-value  function  for  all  a>b.  An open question is  how much to decrease  or

increase  the  value,  and for  which  actions.  One  possibility  is  to  update  values  conditioned  on the

outcome of the current transaction, and do it asymmetrically respect to the current bid (action). This

yields four possible combinations of accepted/reject bid and bid values higher/lower than the currently

bid: 

If  accept: 

For all i < b:              Qt+1 (i|b ,m ) ←Qt ( i|b ,m )  (3)
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For all i ≥ b:              Qt+1 (i|b ,m )=Q t (i|b ,m )+α al (r −Qt (i|b ,m ) )  (4)

If  reject:

For all i ≤ b:               Qt+1 (i|b ,m )=Q t (i|b ,m )+α rl (0 −Qt (i|b , m ) )  (5)

For all i > b:               Qt+1 (i|b ,m )=Q t (i|b ,m )  (6)

where α is the learning rate, and ri is the counterfactual reward, that is, the reward the player would

have received had she selected the bid  i. For the current trial bid  b,  ri  =  rb  =  r, the reward actually

obtained.

4.2 Directional learning

DL is a more simplified adaptive strategy which, crucially, assumes that the available actions are

ordered under some consistent relation, as in the case of a well-ordered set of available bids. The term

DL was coined by Reinhard Selten (Selten and Buchta, 1994) to describe a “learning direction theory”

applicable  to  tasks involving the uncertain  dynamic evolution  of a  one-dimensional  quantities.  An

agent acting in accordance with DL will exhibit a simple Markovian dependence on the immediately

previous feedback, and dispense with any kind of value function, unlike RL. Adaptations of RL using

this idea have been proposed by Gullapalli (1990) and van Hasselt & Wiering (2007). DL is suited to

model the typical round-to-round behavior in bargaining tasks where proposers tend to increase their

offers following a rejection and reduce it after being rejected (Mitzkewitz and Nagel, 1993), although

this has been contested (Roth and Erev, 1995). Research analyzing the relationship between DL and RL

exists also in a bargaining task where a combination of both RL and DL is endorsed by Grosskopf

(2003).

DL is effectively a policy (a rule for selecting actions) which operates without the need of action

value functions, in contrast with RL policies, which hinge on the distribution of value functions to yield

probabilities  for  choosing  actions.  Nonetheless,  DL  posits  some  degree  of  model-based  adaptive

learning by making use of an error signal. However, unlike the scalar reward prediction error of RL,

this “directional signature” is binary, because its only purpose is inducing a sign in a one-dimensional

span of choices.

DL has been found to describe accurately a large body of experimental data (Mookherjee & Sopher,

1997; Erev & Rapoport, 1998; Erev & Roth,  1998a; Slonim & Roth,  1998; Camerer & Ho, 1999,
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Martinez-Saito et al., 2019), but it does not furnish testable quantitative predictions: the magnitude of

this adjustment remains unspecified. This indeterminacy has hindered the development of theories of

behavior in the spirit of DL, in search for parsimonious models that do not require the incorporation of

ad hoc parameters . 

We implemented DL algorithms by, in every trial t of market type m, picking a bid from a unimodal

probability distribution P(b|m) centered in the preferred current bid (PB), which we denote by A. If the

selected bid is accepted (rejected), then the PB is increased (decreased), determining the PB for the

next trial according to the equation:

At+1 (m )=At (m )+k , (7)

where  At(m) is  PB for trial  t  in  market  type  m,  k is  the gain,  i.e.  the PB adjustment,  typically

conditioned on the specific algorithm used, as detailed below in each agent model type.

As in the previous case (model-based RL with counterfactual updating), this leaves unspecified how

much  to  decrease  or  increase  the  PB.  DL has  been  found to  describe  accurately  a  large  body of

experimental data, but it does not furnish testable quantitative predictions, since it does not prescribe

how to adjust actions upon miss other than the direction in which the actions should be adjusted. In this

study,  we  have  created  and  fitted  several  adaptive  learning  models  based  on  DL.  The  numerous

schemes we tried on the dataset are succinctly described next:  

Naive DL. This is the basic model, which we did not implemented in practice,  but it is the basis of

all other DL models used in the current study. It consists in simply 'nudging' the bid up and down by a

fixed amount n, contingent on the outcome of the transaction:

The naive learning model stipulates adjustment from the previous trial is a function of success or

failure only, and is being made at a constant rate:

If the current bid is rejected: At+1 (m )=At (m ) −n (8)

If the current bid is accepted: At+1 (m )=At (m )+n,  (9)

where n is a constant to be estimated. The policy is defined by simply picking PB in the next trial.

Naive  DL with  Gaussian  noise. It  behaves  like  Naive  DL,  with  the  difference  that  the  policy
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accounts for noisy decision making with a Gaussian distribution function of bids around the PB:

P (b|m )=
1

√2σ2 π
e

− (b− A (m ))
2

2σ 2  (10)

where σ is the standard deviation and A(m), which is equal to the PB for market type m, is the mean.

A (m )t+1=A (m )t+δnn+ε , ε=N (0, σ2 ) (11)

This model is identical to random walk with drift driven by acceptance or rejection of the previous

bids. In this model we estimate parameters n and σ.

Naive DL with asymmetric leptokurtic (Laplacian) noise. Its bid distribution of bids is asymmetric

and non-gaussian, specifically with fatter tails and thinner peak (more kurtotic, or leptokurtic) than the

Gaussian distribution (Figure S1, Figure 1C). Thus, in order to improve the fit, we used an asymmetric

leptokurtic distribution to accommodate this behavioral trait. 

For b > A(m) after previous trial rejection

 P (b|m )=
1

2σr

e
−|b− A (m )|

σr  (12)

for b < A(m) after previous trial acceptance

 P (b|m )=
1

2σa

e
−|b− A ( m)|

σ a (13)

 and for the rest of (rare) cases,

 P (b|m )=
1

2σ0

e
−|b − A ( m)|

σ 0  (14)

where P(b|m) is the Laplace distribution of bids b for market type m, and σr, σa , σ0 are parameters

proportional to the standard deviation of the Laplace distribution. This captures that intuition that the

tail above PB after rejections is fatter than the tail below PB after acceptances.

At+1 (m )=At (m )+δnn+η ,η=L (0,σ i
2) ,i=m, l ,0 (15)

This model is identical to random walk with drift driven by acceptance-rejection of previous bids
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and leptokurtic noise. Here we estimate n and σr, σa , σ0.

DL delta  rule  with  Gaussian  noise. Another  possibility  is  to  update  values  conditioned  on the

outcome of the current transaction, and do it asymmetrically respect to the two sides of PB. This can be

done either fixing different gains for increasing or rejecting PB, or by conditioning the gain on the

value of the current PB and the reward received. This model incorporates reward prediction, as in RL,

the difference being that it is conditional not upon updated action values, but upon updated PB: 

At+1 (m )=At (m )+α (r − At (m ) )+ε , ε=N (0, σ 2) (16)

where α is the effect of gain, akin to the learning rate in RL, referred as to delta rule in this context.

The policy for bid selection is again a Gaussian distribution centered on PB. Here (r is reward of the

previous period), and we estimate the learning rate α and σ2 .

DL  delta  rule  with  asymmetric  leptokurtic  noise. This  model  combines  both  the  asymmetric

leptokurtic policy distribution and the delta rule-based updating of PB:

At+1 (m )=At (m )+α ( r − At (m ) )+η ,η=L ( 0, σ2 ) (17)

This model turned out to be the most successful empirically (see Section 5). In order to estimate the

exploration-exploitation trade-off, we introduced an additional parameter (ρ) for the proportion of trials

with explorative (risky) versus exploitative (safe) bids. The best fitting model had 5 parameters (α =

0.59, σa = 0.45,  σr = 0.60, σ0 = 0.43, ρ = 0.36).

4.3 Belief learning of opponent choices 

Finally, we modeled learning with an algorithm which estimates opponent’s behavior with Gaussian

kernel  density  estimators,  the  bid  density  estimator  learner  (BDEL).  The  term  “belief  learning”

originally  refers to a interactive play strategy where players’ actions are based on the selection of

choices corresponding to the weights assigned and updated according to the past behavior of other

players (Goeree and Holt, 1999).  Such beliefs are typically formed according to weighted fictitious

play and used to calculate attractions values to each strategy, including those which have not been

chosen in that period (Camerer and Ho, 1999; Gigerenzer and Selten, 2002; Lee et al., 2005). This

density  is  estimated  with a  Gaussian kernel  fed with the feedback from past  trials.  In T1 and T2
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treatments, belief learning plays a main role only in BC market because of limited feedback, hence in

these models we assume that the opponent’s choice was uniformly distributed in the support of the bid

line congruent with the feedback (i.e., if in NC market the player bid was 6 and it was rejected, the

player assumed that the opponent seller chose an ask price with uniform probability in the segment

[6.1, 10], etc.). In T3 treatment, beliefs about both sellers and competitor buyers can be updated every

trial.

On every trial,  the player  is  assumed to calculate  the utility  function (U) of choosing a bid by

weighing, for every bid value, the probability that the opponents chose their respective bids and/or ask

prices based on the density estimated from the Gaussian kernel density estimators, thereby estimating

the probability  that the bid was accepted,  and finally multiplying this probability by the profit  (10

minus their bid) endowed in case the bid was accepted.    

Opponents’ choice densities were estimated independently for each market type. As for RL models,

the policy for selecting a bid in each trial for the most successful model was a conventional logistic

function:

P (b |m )=
eβQU ( b |m )

∑
i∈ B

eβQU (i |m )  (18)

where P(b|m) is the probability of choosing bid b in market type m, and βQ is the elasticity parameter

with respect to estimated utilities of the opponents in the space of actions B.

The above models were estimated  for each market type, with the simplified state space. Natural

action space consists of 101 actions, to wit,  the sequence from 0 to 10 in steps of 1/10. Note that

although the support  of  this  space  support  is  discrete,  neural  mechanisms  based on continuous  or

coarser representations are also plausible. For the purpose of scouring for the best fitting model, we

consider also a coarser action space of just 11 points (from 0 to 10 in steps of 1). This choice was made

for technical reasons: convergence of RL models is remarkably difficult for games where there is a

large number of states or actions. Therefore, we either simplified the initial action-values using a three-

parameter (as opposed to 101) beta distribution, or simply used the first round bids as initial conditions,

saving all 101 parameters for the actually meaningful parameters, i.e. learning rate and elasticity.

4.4. Hypotheses
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In the light of the above discussion, our first hypothesis (H1) is that behaviour in full information

(T3) shall result in more efficient learning than in partial information (T1) and scrambled information

(T2) treatments. Further, we expect (H2) that structural uncertainty in treatment T2 exposes subjects to

true uncertainty, and shall result in larger efficientcy losses than strategic uncertainty in treatment T1

relatively  to  full  information  treatment  T3.  Finally,  (H3),  inasmuch  as  information  acquisition  is

difficult  and  challenging,  we  expect  that  subjects  will  use  simpler  learning  rules  in  most  loaded

environments, such as T2 relatively to T3. 

5. Results

5.1 General 

First, we compare the bids of the first trial of each treatment. This decision provides an estimate of a

combination of subjects’ beliefs about opponents’ player types and a pre-game analysis of each market

type. Except for SC and NC market types in T1 treatment, first trial bids were significantly different

among market types, which is especially obvious in the full information, T3 treatment  (Figure 3). This

confirms that subjects understood and factored in the structural uncertainty, even in case of incomplete

information (T2 treatment), although to a lesser extent in this last case. 

Figure 3 | First  bids across treatments  (experiments)  and market types.  In all  treatments,  one-way

ANOVA rejected  the  null  hypothesis  that  first  bids  were indistinguishable  different  across  market
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types: T1 (p < 10e-5), T2 (p < 10e-3), and T3 (p < 10e-5).  

We now turn to overall results. General statistics of trades is provided in Table 2 and illustrated

further on Figures 4 and 5. 

Overall,  71.8%  (2714/3888)  of  transactions  were  successful.  Breakdown  table  of  successful

transactions by market type and experimental treatments T1, T2, and T3, ratios varied significantly,

with typically lower success rates in T2 treatment, except for BC market type (Table 2). Differences

between success rates in this and the other two treatments are all highly statistically significant, which

speaks in favour of our H2, confirming the expectation that structural uncertainty will result in larger

efficiency losses than strategic one.

Treatments \ Market

types (per treatment)

SC (over 432) NC (over 432) BC (over 432) Total (over 1296)

T1 383 (88.7%) 323 (74.8%) 224 (51.9%) 930 (71.8%) 

T2 264 (61.1%) 277 (64.1%) 313 (72.5%) 854 (65.9%)

T3 387 (89.6%) 324 (75.0%) 219 (50.7%) 930 (71.8%)

Table 2 | Number and shares (in parentheses) of successful transaction by experimental treatment and

market type. In all treatments and market types, N=432, total number of observations per market type is

N=1296. 

5.2 Evolution of bids

The dynamics of learning in all markets can be characterized by means of linear regression against

an intercept and number of bids (Figure 4) and local quadratic polynomial regression curves fit across

the 24 blocks  (Figure 5).  Several things are worth notice. First, the evolution of bids in T1 reveals

gradual but less than full convergence to the Bertrand-Nash equilibria in BC, and a downward trend for

SC, again corresponding to the equilibrium component of the Bertrand type, but to a lesser extent

(Figure 4). Convergence in these market types is not complete, which  may be attributable to short

learning series. Bids under NC are indistinguishable from equal split strategy, consistent with the Nash

bargaining solution in case of equal bargaining power. 

Second, in T1 and T3 treatments learning is steady, but not complete in the predicted directions in

both BC and SC market types, with all slopes being  significantly different from zero. By contrast, bids
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in T2 treatment exhibited an upward evolution for all market types, with the difference between the

learning slope being insignificant across treatments, but higher intercept in SC in comparison to BC

and NC market types. This can be explained by risk aversion in the scrambled treatment: subjects are

afraid of not meeting the bid of the (relevant) seller, and raise their own in order not to miss the chance

to make a positive, albeit smaller, profit. Appendix C provides a simple theoretical argument for this

conjecture.

Finally, it is worth notice that learning in SC is less steep than in BC, and closer to the equal split

prediction of NC than to the Bertrand prediction. This can be attributable to risk attitudes: as described

above, transaction partners were determined by random matching, hence the corresponding higher risk

of thwarting the deal also affecting the direction of bid adjustments.

Figure 4 | Bid evolution across treatments. Left (T1 treatment): Slope coefficients of the regression line

are: -0.06 for SC (p < 10e-10); -0.04 for NC (p < 10e-5); and 0.06 for BC (p < 10e-15). Middle (T2

treatment): Slope coefficients are: 0.08 for SC (p < 10e-15); 0.05 for NC (p < 10e-11); and 0.06 for BC

(p < 10e-15).  Right (T3 treatment): Slope coefficients are: -0.05 for SC (p < 10e-9); -0.02 for NC (p =

0.02); and 0.09 for BC (p < 10e-15). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.22.262469doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.22.262469
http://creativecommons.org/licenses/by/4.0/


24

Figure  5  | Bid  evolution  trends  for  all  treatments  and  market  types.  Local  quadratic  polynomial

regression curves with 95% confidence intervals plotted.

These findings can be summarized as follows:

Result 1. Convergence of bids in the direction of Bertrand Nash equilibria takes place for both BC

and SC, and the effect is stronger in BC than in SC market types.

Result  2. Bids  in  T2  treatment  are  systematically  increasing,  which  can  be  explained  by  risk

aversion of the bidders who are more likely to fail the deal in the scrambled market. 

 Our primary explanation for the difference across markets in Result 1 is risk attitudes. Subjects who

know that they may be misled by the signal compare the expected loss from making higher offer and

chances of not making the transaction. Since there are at most two players, the probability that the

transaction will fail looms larger, which forces them to increase their bid in all cases. Appendix C

makes the point more precise.

Two further tests can bolster the argument of Result 2. Figure 6 shows the mean differences of bids

between SC and NC (SC-NC),  and BC and NC market  types  (BC-NC) separately  for  T1 and T2

treatments. In T2, SC and NC  bids become indistinguishable, while BC bids are higher than NC bids

by a constant offset of about 1 unit, with rather small variance (see Figure 6, right). By contrast, in T1

(figure 6, left), the variance of BC-NC is much larger, with the offset increasing on average to 2.8. 
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Figure 6 | Between subjects stage-wise mean bids of SC and BC respect to NC for T1 (left) and T2

(right). Box hinges are the first and third quartiles. Whiskers extend to the most extreme data point

which is no more than 1.5 times the interquartile range from the box.

As another robustness check, we look at homogeneity in subject’s bidding patterns. In order to rule

out the possibility that (across subjects) performance was determined by players’ heterogeneity,  we

explored the successful transaction rates by averaging rates across subjects (Figure 7). The distribution

of acceptance rates is unimodal for all three treatments, which implies that individual variations about

the mean are not systematically affected by the treatments. 

Figure 7 | Density estimates of percentage of accepted transactions across subjects. A Gaussian kernel

was used for smoothing (density function in R package  stats with default parameters, R Core Team,
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2016). The bandwidth of a Gaussian kernel density estimator is 0.9 times the minimum of the standard

deviation and the interquartile range divided by 1.34 times the sample size to the negative one-fifth

power. 

5.3 Between-treatment differences

Let us now examine the influence of the treatments  on the average profit  earned. As expected,

subjects earned significantly more in T3 than in T1 treatment, and in T1 than in T2 treatment (Figure

8). So, across experiments, T2 trials profit was qualitatively different and lower than the profit of T1

and T3 (uncorrected one-sided Mann-Whitney U tests for between-subjects mean profits across the

three treatments: T1-T2: W = 304, p-value = 3.777e-06; T3-T2: W = 324, p-value = 1.611e-07; T3-T1:

W =  172,  p-value  =  0.3819).  This  confirms  our  hypothesis  H2:  in  a  given  market  environment,

structural uncertainty has more dramatic consequeces than strategic one.

Result 3. Profit under T2 treatment is systematically lower than under T1 and T3 treatments, while

the last two are not systematically different.

Figure 8 | Profit statistics. Earned average profit in each treatment (experiment) across all trials. 

5.4 Trial-by-trial dynamics

Now we turn to examine the trial-by-trial  dynamics of bidding behavior.  The most conspicuous

pattern of consecutive bid adjustments within each market type is that their distribution is leptokurtic
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(with a central peak more pointy and longer tails than those of a Gaussian distribution) and skewed

(asymmetric).  This  pattern  recurred  in  all  sessions.  Current  bid  distributions  conditioned  on  an

acceptance in the previous trial of the same market type were skewed towards the left (towards lower

bids), whereas when conditioned on rejection the skewness sign was opposite (towards higher bids).

Moreover, distribution variances were consistently larger in case of previous trial rejection (Figure 9,

Table 3). This allows us to formulate our next result:

Result  4. Bids  following  successful  transactions  are  typically  lower,  and  bids  following  rejected

transaction – typically higher than in the previous period.

              Treatment

 Statistics 

T1 T2 T3 Total aggregated

Acc Median -0.1 0 0 0

Acc Mean -0.15 -0.13 -0.18 -0.16

Acc Standard deviation 0.79 0.86 0.75 0.80

Acc Skewness -0.97 -0.36 -2.08 -1.04

Acc Excess Kurtosis 11.48 4.20 12.37 8.84

Rej Median 0.3 0.3 0.4 0.3

Rej Mean 0.42 0.41 0.53 0.45

Rej Standard deviation 0.92 1.01 1.11 1.02

Rej Skewness 1.40 0.28 0.88 0.80

Rej Excess Kurtosis 8.89 3.94 9.97 7.83

Table 3 | Statistics  of bid adjustments  between trials  of the same market  type.  Excess kurtosis  is

defined as kurtosis minus 3.
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Figure 9 | Bid choice shifts conditioned on the previous outcome across treatments.

5.5 Learning models

Finally, let us come to estimations of the learning models, which are summarized in Table 4. Model

fits, as indicated by BIC scores, allowed to discriminate plainly between Null (benchmark model with

only 1 parameter fitting the mean), RL, BDEL, and DL strategies (Figure 10), and indicates that DL as

a clear champion, confirming our hypothesis H3. Uniform BIC scores across treatments suggests that

subjects used in essence the same strategy for all T1, T2 and T3 treatments, plausibly a DL algorithm.

Aggregated BIC scores for 1296 trials were 1037.2, 1234.8, and 1071.2 for T1, T2, and T3 treatment

respectively.  Corresponding negative log-likelihood in nats per trial  were 0.39, 0.46, and 0.41.  RL

algorithms fit was not only poor, but also lacked generative sufficiency (Figure 11), in agreement with

Roth  & Erev  (1995).  DL  algorithms  exhibited  generative  sufficiency  in  the  sense  that  simulated
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artificial bidders pit against the same pre-recorded dataset as humans generated behavior resembling

that  of human subjects:  the simulated learning curves of agents enacted by DL algorithms playing

against the prerecorded dataset were qualitatively in close agreement to human behavioral  learning

curves (Figure 11). By contrast, learning curves of agents enacted by RL algorithms hardly exhibited

any learning (not shown).  

Figure 10 | BIC scores of Null, RL, DL, and BDEL models and averaged across subjects. As described

in section 4, we fit the parameters of each model yoked across subjects because the number of trials per

subject (72) was comparatively small given the number of subjects. Error bars indicate 95% confidence

intervals. 

Rank by

BIC

Agent name Task

Random effects (RFX)* Fixed effects (FFX)

Number of

parameters

Negative log-

likelihood per

subject

BIC per

subject 

Fitted parameters Negative log-

likelihood per

subject

BIC per

subject

Fitted parameters

1 Leptokurtic DL with

delta rule 

T1 35.5 ± 7.3 81.0 ± 24.6 a =  0.63 ± 0.07

σa = 0.45 ± 0.06

σr = 0.60 ± 0.06

σ0 = 0.39 ± 0.06

ρ = 0.34 ± 0.02

46.6 ± 6.4 95.6 ± 14.8 a = 0.59

σa = 0.45

σr = 0.60

σ0 = 0.43

ρ =  0.36

5

T2 40.1 ± 8.9 101.6 ±

39.1

a = 0.58 ± 0.07

σa = 0.49 ± 0.07

σr = 0.62 ± 0.07

58.2 ± 7.2 107.8 ± 16.6 a  = 0.51

σa = 0.55

σr = 0.72
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σ0 = 0.43 ± 0.07

ρ = 0.34 ± 0.03

σ0 = 0.47

ρ = 0.42

T3 36.2 ± 7.5 82.4 ± 25.0 a = 0.64 ± 0.07

σa = 0.44 ± 0.06

σr = 0.65 ± 0.07

σ0 = 0.42 ± 0.06

ρ = 0.35 ± 0.02

47.6 ± 5.6 97.2 ± 13.2 a = 0.65

σa = 0.51

σr = 0.71

σ0 = 0.35

ρ = 0.39

2 Gaussian DL with

delta rule

T1 49.2 ± 6.1 102.4 ±

16.2

a = 0.54 ± 0.06

s = 0.69 ± 0.08

61.7 ± 4.8 124.1 ± 10.4 a = 0.47

s =  0.81

2

T2 52.1 ± 5.9 112.7 ±

20.4

a = 0.56 ± 0.06

s = 0.70 ± 0.07

63.2 ± 4.7 129.7 ± 10.5 a = 0.39

s = 0.81

T3 49.8 ± 6.1 103.6 ±

16.2

a = 0.54 ± 0.06

s =  0.70 ± 0.09

62.8 ± 5.7 126.4 ± 12.2 a = 0.47

s = 0.81

3 Leptokurtic naive DL T1 69.3 ± 5.7 146.6 ±

19.4

nu = 0.19 ± 0.04

nd = 0.08 ± 0.02

σa = 0.74 ± 0.08

σr = 0.83 ± 0.09

90.9 ± 4.5 182.6 ± 10.6 nu = 0.09

nd = 0.05

σa= 1.03

σr = 1.13

4

T2 78.1 ± 5.7 173.3 ±

28.5

nu = 0.21 ± 0.05

nd = 0.08 ± 0.02

σa = 0.84 ± 0.08

σr = 0.99 ± 0.13

91.0 ± 3.7 182.9 ± 8.2 nu = 0.12

nd = 0.00

σa = 1.03

σr = 1.01

T3 67.0 ± 6.6 142.0 ±

21.2

nu = 0.18 ± 0.03

nd = 0.04 ± 0.01

σa = 0.73 ± 0.09

σr  = 0.84 ± 0.09

91.1 ± 5.0 183.0 ± 10.8 nu = 0.14

nd = 0.03

σa = 1.02

σr = 1.28

4 Model-based

counterfactual RL

T1 192.3 ± 6.6 388.6 ±

17.2

a = 0.14 ± 0.04

b = 1.41 ± 0.26

201.6 ± 4.6 403.9 ± 10.1 a = 0.08

b = 1.03

2

T2 194.9 ± 6.2 398.3 ±

20.9

a = 0.32 ± 0.06

b = 1.51 ± 0.11

201.2 ± 3.0 405.3 ± 6.9 a = 0.37

b = 1.15

T3 196.2 ± 3.7 396.4 ±

11.4 

a = 0.18 ± 0.04

b = 1.39 ± 0.18

194.6 ± 3.8 390.1 ± 8.5 a = 0.28 

b = 1.18

5 Model-free RL T1 205.8 ± 3.5 415.6 ±

11.0

a = 0.001 ± 0.001

b = 1.15 ± 0.17

209.2 ± 3.0 419.2 ± 6.8 a = 0.01

b = 0.88

2

T2 207.4 ± 2.6 428.8 ±

17.6

a = 0.01 ± 0.01

b = 1.13 ± 0.46

209.6 ± 2.6 420.1 ± 6.1 a = 0.00

b = 0.97

T3 196.9 ± 3.8 397.8 ±

11.6

a = 0.002 ±  0.001

b = 1.77 ±  0.266

201.0 ± 3.8 402.9 ± 8.4 a = 0.01

b = 1.27

6 Belief learning with

BDEL

T1 202.4 ± 3.5 406.8 ± 9.0 b = 1.80 ± 0.23 212.1 ± 2.8 424.6 ± 6.0 b = 1.13 1

T2 212.4 ± 3.7 429.1 ± 9.4 b = 1.37 ± 0.16 219.1 ± 4.8 439.1 ± 10.1 b = 0.99

T3 190.8 ± 5.3 383.6 ±

12.6

b = 2.83 ± 0.35 202.0 ± 5.8 404.4 ± 11.9 b = 1.86

7 Null model any 200.4 402.8 - 200.4 400.9 - 1
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Table 4  | Ranks and BIC scores for all fitted algorithms. The sign ± denotes standard error of the mean

(in FFX, individual BICs can vary across subjects even with yoked parameters). 

*Many instances of the random effects log-likelihood optimization did not converge. a: learning rate; b:

inverse temperature; σa, σr ,σ0 : variance of Laplace distributions; ρ: proportion of trials with explorative

(risky) versus exploitative (safe) bids; up, down: fixed nudge size in the naive nudger algorithm. 

Figure 11 | Learning curves of DL algorithms simulating artificial bidding agents pitted against the

same  prerecorded  dataset  subjects  played  against.  Qualitative  patterns  of  human  subjects  are

reproduced (cf. Figure 5). 
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Figure 12. Distribution of buyers’ bids depending on the treatments. 

Finally,  our  empirical  results  convincingly  show that  individual  buyers  reveal  risk  aversion  when

facing potentially scrambled signals. Figure 12 shows the distributions of buyers’ bids in the three

information  conditions.  Intuitively,  it  seems  obvious  that  partial  (T1)  and  full  (T3)  information

conditions  result  in quite  similar  bidding patterns,  which are not significantly different (Wilcoxon-

Mann-Whitney p-value <0.1067). By contrast, bids under scrambled information are much larger than

those under partial and full information (WMW p<2.2e-16 in both conditions). This evidence

clearly suggests that buyers’ reaction to larger  ambiguity about the true structural uncertainty exerts

major influence on individual strategies, which are of larger importance than the strategic ones. 
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6. Discussion

In line with the main goals of the paper, we find that human subjects are reasonably good at coping

with the various sources of uncertainty.  As expected, full information treatment results in the most

efficient  learning,  and  clear  convergence  to  equilibrium predictions.  Partial  information  (baseline)

treatment leads to less efficiency, implying that players’ response to strategic uncertainty results in

lower learning efficiency, and also at more conservative decisions in the SC treatment: buyers who do

not know what will be the offer of their partners tend to make higher bids in order to mitigate the

possibility of failing to transact. We also find that scrambled information treatment results in uniform

increase of bids, in response to structural uncertainty.  All in all,  these findings reflect the fact that

individual  reaction  to  uncertainty  results  in  behavior  consistent  with  risk  aversion,  although  the

response to structural uncertainty appears to be sharper than that to strategic one, at least in our context.

In terms of learning efficiency, the efficiency of responses to uncertainty is also in line with its

scale. In the BC behavior converges to Nash equilibrium, and the rate of convergence increases with

the availability and accuracy of information. In NC and SC, average behavior is closer to the Nash

bargaining solution. This is especially explicit in the scrambled treatment (T2), where buyers learn both

less efficiently, and in a more conservative way, making increasingly larger bids in all three market

types. This is consistent with risk aversion, suggesting that subjects are ready to sacrifise increasingly

larger part of their expected profits in order to increase the chances of making the deal in the worst-case
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scenario of BC market. This behavior can also be rationalized by richer behavioral models, such as

prospect theory, but the principle of Occam’s razor suggests to limit attention to the simplest scenario.

With the limited feedback provided in T1, we cannot test belief learning and other strategies based on

counterfactual  updating.  However,  providing  full  feedback  in  T3  showed  that  subjects  converged

quicker towards the Nash equlibrium when they are informed of the sellers’ ask prices each trial. And

even in T2, behavior was still best explained with only the outcome of the transaction. All in all, the

fact that efficiency of learning increases with information implies that human bidders generally copy

with structural uncertainty in a rational way.

Finally,  learning  strategy  adopted  by  human subjects  was  primarily  driven by the  immediately

previous feedback, and consistent with the simplest, DL rule, which was more effective than the RL

algorithms. Subjects whose behavior followed more closely DL earned a higher profit at the end of the

experiment. Examining the results of T2, we can conclude that this higher performance was driven

more  by  their  reaction  to  the  trial-by-trial  feedback  than  by  game-theoretic  preconceptions  about

optimal behavior. DL algorithms are simple: they don’t use any value function whatsoever, but simply

choose between  ordered actions. From that viewpoint, the applicability of DL is restricted to tasks

where actions are structured according to an order relationship, e.g. market and auction decisions in

which prices or quantities are the strategic variables. This inflexibility stands in contrast to model-free

RL algorithms,  which  in  general  is  always  applicable,  but  does  so  at  a  cost  of  more  demanding

requirements  imposed  on  information  processing.  Because  DL algorithms  parsimoniously  explain

bargaining decisions in which one-dimensional prices are the reference variables, whereas RL is geared

to  learn  general  values  of  actions  or  states,  DL algorithms could take  advantage  of  this  informed

specialization to outperform RL algorithms.

Comparison of results between T1 and T2 confirmed that although subjects factor in the degree of

competition in each market type, most of their behavior can be explained by a DL algorithm, that is,

regardless of the strategies specific to each market type. 

6. Conclusions

In this  study, we investigated  an efficient  heuristic  used to  optimize  bargaining behavior  under

different types of social competition. We used a bargaining task based on a Double Auction paradigm,

and an informed bargaining model which predicted behavior grounded on plausible decision-making
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variables which has been used to scour the brain for regions involved in learning and social aspects of

bargaining behavior.

Our analysis suggests three sorts of conclusions. First, in line with our prior hypotheses, strategic

uncertainty has proven to be more costly than structural one in a given market environment. At the

same time, individuals are generally responsive to structural uncertainty in a rational manner: the more

information about market types they possess, the more efficient is their learning, and the higher is the

profit they eventually make. On the other hand, the process clearly takes time: even in T3, 24 periods

were not sufficient to ensure that subjects, on average, play the Nash equilibrium. This relatively low

convergence speed may be partly attributed to relatively low monetary incentives – however, even

under them, individual players are able to cope with structural uncertainty efficiently.

The story of strategic uncertainty is somewhat different. In our experiment, we in most cases were

unable  to  distinguish  empirically  the  differences  between  partial  (T1)  and  full  (T3)  experimental

treatments, especially in comparing NC and SC markets. In the BC market, some difference exists in

favour of T3 condition, which speaks in favour of the argument that subjects learn more efficiently

when information about their direct competitor (another buyer) is available.

Our final result refer to learning rules. Models estimated on our data clearly speak in favour of the

simplest, boundedly rational learning rules. 

The  DL  heuristic  we  employ  in  this  study  is  not  a  conventional  RL  rule,  but  a  mixture  of

counterfactual  (belief  learning)  and  adaptive  learning  (Grosskopf,  2003),  which  incorporates

knowledge of the structure of the task to make decisions. DL algorithms fared best in all bargaining

tasks  and  markets.  Despite  its  simplicity,  implementation  of  DL  presupposes  a  crucial  piece  of

knowledge: the available bids constitutes a well-ordered set under the relation of “probability of being

accepted”.  DL algorithms  using  a  simple  binary  learning  signal  rather  than  reward-based learning

signals fit better human behavior all the experiments.  Subjects whose behavior followed more closely

DL also  earned a  higher  profit  at  the  end of  the  experiment.  As  opposed to  model-free  RL,  DL

postulates  the  existence  of  a  prior  knowledge  about  the  structure  of  the  bargaining  task,  namely

understanding that the action values are mutually dependent through an order relationship. Finally, we

showed  also  that  constructing  a  utility  function  based  on  kernel  density  estimation  of  opponents

behavior also didn’t fit subjects behavior satisfactorily. We reckon the reasons for this are that kernel

density estimation and utility function construction are very expensive computationally, and require of
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a lot of data to be of practical use in uncertain and changing environments, and that their underlying

assumption that opponents behave as nature precludes the consideration that mutual feedback might

influence player’s behavior. On the other hand, DL makes no assumptions on the behavior of opponent

players other than a minimal degree of trial-by-trial consistency and is much cheaper computationally.
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Appendix A. Data collection 

The visual stimuli sequence were created and delivered, and presentation timings and button responses

were  logged  by  means  of  the  software  application  Presentation  (version  18.0,  Neurobehavioral

Systems, USA, www.neurobs.com). Responses were collected though three response buttons to which

actions were mapped as follows: right arrow shifted cursor to right, left arrow shifted cursor to left, and

spacebar  confirmed  bid value.  Data  were read in  from raw files,  formatted,  explored,  plotted  and

analyzed with R version 3.3.1 (R project, GNU license; R Development Core Team, 2016).

 

Appendix B. Data analysis

Data were extracted, cast into data frames, reshaped, estimated, simulated, and plotted using Python

and its scientific computing  packages Numpy, Scipy, Matplotlib, and Pandas. All model parameters

were fit  employing maximum likelihood estimation.  Purpose specific  source code was written that

created a data frame pulled from a data file, defined the functions used for estimating parameters for all

the tested models, and plotted the simulated behavior of agents representing each model. Kernel density

estimation was performed with a Gaussian kernel smoother (scipy.stats.gaussian_kde) with optimized

kernel bandwidth. The numerical optimizer employed was a bound constrained version of the Broyden-

Fletcher-Goldfarb-Shannon  algorithm  (L-BFGS-B).  This  algorithm  is  an  implementation  of  a

constrained  optimizer  of  multivariate  scalar  functions  belonging  to  the  Python  package  Scipy

(scipy.optimize.minimize).  This  optimizer  was  combined  with  a  basin-hopping  heuristic

(scipy.optimize.basinhopping)  with  at  least  ten  'hops'  to  offset  the  probability  that  the  optimizer

converged into a local minimum due to the jagged geometry of the log-likelihood function.

Plotting computations for Figure 5 were performed using the plotting engine ggplot2 (Wickham, 2008)

with default parameters in the R package stats for the loess function (R Core Team, 2016).

We implemented, fitted, tested, and simulated six adaptive learning models (see Section 4) ranging

from naive RL consisting in one action value for each of the possible 101 bids with two parameters, to

wit, learning rate and inverse temperature; to 5-parameter DL models. The dataset consisted on the

sequence of trials of all games played by the 54 subjects with the same prerecorded opponents (up to
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the randomization due to random-opponent matching). The same learning algorithms were fitted to the

same dataset  modified  to  comply  with a coarser  bid space  of  only 11 bins  for  model  comparison

purposes,  but  no substantial  differences  were found. Following the usual  approach in  this  kind of

estimation problems (Daw et al., 2006), first parameters were yoked (fixed) across all market types and

subjects and optimized in a global objective likelihood function encompassing all subjects (Table 4,

FFX column):

lμ (θ yoked|D )=∑
s∈ S

∑
n∈N

∑
m∈M

log (Pμ ( bsn|θyoked , f sn ,m )), (B.1)

where lμ is the log-likelihood function for model μ, θyoked is the parameters vector of model μ (for

example,  for naive RL θyoked=(α,β)), P)),  Pμ is  the likelihood of model  μ choosing a specific  bid given

parameters θ and feedback fsn, s is the index ranging over the subjects, n is the index of the block, and

m is the index for market competition type.

This reduces parameter estimator variances at the cost of losing the ability to make between-subject

parameters comparisons by conflating between-subject with within-subject variance. Given the scarcity

of  within-subject  samples  and the jagged geometry  of  the  resulting  objective  functions,  it  has  the

advantage of having less variance at the expense of some bias. The alternative of running individually

the  numerical  optimizer  for  each  subject  leads  to  poor  optimization  convergence  and  trapping  in

suboptimal local minima for some subjects (see Table 4 legend). Nevertheless, in order to confirm that

the fitted parameters were reasonable, an additional fitting routine was accomplished individually for

each subject, and between-subject standard errors of the mean parameter values and BIC scores were

calculated too for each subject s (Table 4, RFX column):

lμ , s (θs|D s )=∑
n∈N

∑
m∈M

log (Pμ (bsn|θ s , f sn ,m )) (B.2)

Code implementing artificial  bidders, model fits,  and simulation results is available under the MIT

license  on  the  hosting  service  GitHub  (https://github.com/mmartinezsaito/adaptive-learning-in-

auctions). 

Appendix C. Theoretical backgroupd

C.1 Equilibrium predictions
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Because all valuations in our experiment are common knowledge, players in each market type face a

normal form game of complete information. In NC, single buyers and sellers play a coordination game.

Price  p for NC is determined as follows: if  s1≤b1 then  p=b1, while if  s1>b1,  then no trade occurs (the

seller asks more than the buyer bids). Payoffs are 10-b1 and  b1 to buyer and seller, respectively, if b1

≥s1, and 0 otherwise. Hence, the set of equilibria consists of all pairs of strategies s1=b1, s.t. s1+b1=10.

See Table 1 for a simplified payoff matrix1. 

In BC, transaction takes place with the buyer who made the largest bid, so p=max(b1,b2) if p>s1 (in

particular, it is possible that p=b1>s1>b2). Payoff to the higher-bidding buyer is 10-p, to the seller p, and

to the lowest-bidding buyer 0. The buyer who made the strictly smallest bid gained nothing. The basic

prediction for BC is that of Bertrand competition: buyers shall drive the price up to the maximum, with

expected payoff of 0, while the single seller will gain 10.

Finally, in SC, price p=b1, i.e. equals buyer’s bid, provided b1>min(s1,s2). If only one seller offers a

good for sale at a price s1<b1, while the other asks s2>b1, transaction takes place with the former seller;

if both s1 and s2<b1, the seller who transact with the buyer is chosen at random (reasons for that setup

shall be explained shortly). No seller has incentives to increase its bid, while decreasing it results in

Bertrand competition with equilibrium p=0: payoffs to both sellers is  0, while that of the buyer,  10-

p=10.

Table 1. Simplified payoff matrix and equilibria in the NC market type with 5 bids / ask prices (0, 1, 2,

3, 4) instead of the 10 of the actual task. Payoffs in Nash Equilibrium profiles are highlighted in bold.

Buyer \

Seller

0 1 2 3 4

0 4,0 0,0 0,0 0,0 0,0

1 3,1 3,1 0,0 0,0 0,0

2 2,2 2,2 2,2 0,0 0,0

3 1,3 1,3 1,3 1,3 0,0

4 0,4 0,4 0,4 0,4 0,4

1 . This game also has an isolated 
corner equilibrium with minimum bid for the buyer and maximum for the seller. Unlike the others, this equilibrium is not 
perfect, so in the future we do not consider it.
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C.2 Treatments effects

Proposition 1. A risk averse individual should increase bids in the T2 treatment (T2) in comparison to

T1 and T3 treatments.

Proof:  Denote the probability  of market  types B,C,S in  T2 as  qB,  qN,  qS,  resp.  Utility  of getting a

transaction from bid b in equilibrium is 

qN∫
0

10

u (10−b ) (1 − F (b ) ) db+qB ⋅0+qC ⋅u (10 ) (C.1)

In case of risk neutrality, this expression amounts to 

qN∫
0

10

(10−b ) (1− F (b ) ) db+10 qC (C.2)

Since a linear combination of two concave functions is concave, the certainty equivalent of (1) is less

than that of (2). Accordingly, the maximand of (1), or optimal value of b under risk neutrality should be

higher than that under (2).

Proposition 2. Risk averse individual should make larger bid in SC than risk neutral invidudal.

Proof: The expected utility of getting the transaction at any given bid b is given by

qN∫
0

b

u (10−t )2 (1− F (b ) ) F (b ) f (b )dt  (C.3)

where the probability density function comes from the second-order statistic (Krishna, 2010, p.282).

Any risk-averse individual  has convex utility  function,  resulting in lower certainty equivalent,  and

hence should make lower bid than the risk-neutral counterpart.

Krishna, V. (2010) Auction Theory. 2nd edition, Academic Press.

Appendix D. Task instructions translated to English

Dear participant,

During this experiment you will be asked to make decisions in a economic game. Each decision will lead to a particular

financial result.  

You are the owner of a fish restaurant, who goes to the market to buy some fish. Each trial you are given 10 monetary units

on credit without charge for interest. You may spend any amount of your money on fish. You always buy the same amount

of fish (in kilograms). Then you sell the fish in your restaurant for 10 monetary units. The less money you spend on fish, the
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more income you get by selling it in the restaurant.

You get your income as a cash bonus (see below). If you refuse to buy fish in a single trial, the borrowed money will be 

automatically returned without interest. This means that you will neither earn nor lose money in this trial. You will face

three typical market situations. 

Market situations:

Market situations will vary depending on the quantity of sellers and buyers on the market. First of all, there may be either

one or two sellers on the market. Secondly, you may be the only buyer on the market or there may be another one. During

each trial (one financial operation) you will be informed about the quantity of buyers and sellers. The sellers and buyers

have participated in previous sessions of the experiment (see section “players”). Each trial players are selected randomly

from the database consisting of 16 sellers and 16 buyers (participants in previous experimental sessions). 

You will not recognize the participants you will be playing with.

At the end of the game the participants who played with you will get extra cash bonus which depends on the results of the

financial operations during the game (see more in section “payment”).

Remember, that you are going to play with real participants and that the experiment meets the standards of the HSE ethics

committee.

Three possible market situations:

There is only one seller on the market and you are the only buyer. 

               Seller 1                           You

There are two sellers on the market and you are the only buyer.

      Seller 1                       Seller 2                         You

There is only one seller on the market and another buyer. 
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      Seller 1                       Seller 2                         You

Keep in mind that the transaction may occur only between two people (the buyer and the seller).

If both sellers accept your offer, one seller is selected randomly and the other one doesn’t sell fish and doesn’t

make a profit. 

If both you and the other buyer make acceptable offers, the seller makes a deal with the one who offers a higher

price. In other words, the buyer who suggested lower price doesn’t buy fish in this trial and doesn’t make a profit.

If both buyers make the same offer, one of them is selected randomly.

Each trial consists of three stages: firstly, you are informed about the market situation. At the second stage you

make a financial proposal to a seller or two sellers. At the third stage you find out the results of the deal. 

Stage 1 Market situation

Stage 2 Proposal

After you are aware of the market situation, you are about to make a proposal to one or two sellers. You may spend any

amount of money from 0 M.U. to 10 (as you only have 10 M.U.), this means that your proposal may also be: 0, 0.1, 0.2,

0.3, … 9.7, 9.8, 9.9, 10 M.U.

Each trial sellers establish the floor price for fish while you make your decision. No one, except for the sellers, knows

the floor price. The floor price is the lowest acceptable one, so if you propose a higher or equal price, one of the sellers

will accept the proposal. Thus, you will buy fish at your price. If neither seller accepts your proposal you are not going

to buy fish and make a profit during the trial.

Stage 3 Acceptance of proposal

If a seller accepts your proposal and you buy the fish, you are to sell it in your restaurant for 10 monetary units. Still
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you have to give back the 10 M.U. that you have lent. Remember, that the money left after the fish purchase is your

profit during the trial (10 – fish price = profit).  The seller’s profit is the money you’ve paid for the fish.

Examples:

You’ve lent 10 monetary units and bought the fish for 4.3 M.U. and so you have 5.7 M.U. left (10 – 4.3 = 5.7). You sell

the fish in your restaurant for 10 M.U. and repay 10 M.U. This means that the money left after the fish purchase is your

profit (5.7 M.U. in this example).

If you buy fish for 8 M.U. your profit is 2 M.U. (10 - 8 = 2).

If you buy fish for 2.5 M.U. your profit is 7.5 M.U. (10 – 2.5 = 7.5).

Rejection of proposal:

If your proposal is lower than the floor price and neither seller accepts it, you just give 10 M.U. back and don’t make a

profit during the trial. If another buyer proposes a higher price, the seller will accept it and reject your proposal. In this

case you will not get profit. Sellers don’t make a loss during the experiment, so if a seller rejects both offers they will

not get a profit.

Experiment demo

The pictures below illustrate 3 types of slides you will see during the experiment.

Stage 1: market situation

Seller:

You will see if there is only one or there are two sellers on the market. If there is a “+” sign, then this seller is present;

in case of “–” sign, the seller is absent. The situation with two sellers and one buyer (you) is illustrated in the picture. 

Buyer:

If there is “+” sign, then this buyer is present. According to this picture you are the only buyer.
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Stage 2: proposal

Here you can establish your price for the fish. Press button 1 to move the cursor (red line) to the left and button 2 to

move it to the right. The chosen value is shown in a bar above the scale (in this example the value is 4.3).  To confirm

the choice, please, press button 3. You are to make a decision in less than 5 seconds. 

Stage 3: feedback

Acceptance/rejection:

Shows whether your proposal was accepted or not. 

Your proposal:

Shows your proposal to the seller.

Your income:

Shows your profit on the operation. In this case it is – 5.7 M.U. as the proposed and accepted price was 4.3 M.U. If

your proposal is rejected, the income is 0.

Transaction:

Displays whether the transaction was committed or not. If your proposal was accepted, you will see that the transaction

was committed. This information is especially important if there is another buyer on the market and your proposal was

rejected. In this case the sign informs that the transaction was committed by the other buyer.

Accepted proposal:

Shows the price accepted by the seller. This information might be helpful in case there is another buyer and your

proposal was rejected. 

Please, notice  that in this example your proposal was rejected and the seller accepted another proposal of 5.1 M.U.

because it was larger than yours.  

Payment for participation in the research

You will be payed 50 rubles for participation and an extra bonus depending on your decisions. The bonus depends on the

results of your deals during the experiment. One trial among each market situation will be selected (this may be the case

when  you  didn’t  go  to  the  market  and  received  0  income).  The  income  of  three  selected  trials  and  the  bonus  are

summarized: 1 M.U. equals 5 rubles. Thus, you can get from 0 to 150 rubles in cash bonus which in sum with the initial

payment (50 rur) gives from 50 to 200 rur. 

Duration of the experiment:

There will be 72 trials in the experiment which will take you about 30 minutes. 
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If you have any questions, please, ask the researcher now.

You will have a training session in the beginning of the experiment.

Thank you for your participation! 
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