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ABSTRACT

While absolute quantification is challenging in high-
throughput measurements, changes of features
between conditions can often be determined with
high precision. Therefore, analysis of fold changes
is the standard method, but often, a doubly
differential analysis of changes of changes is
required. Differential alternative splicing is an
example of a doubly differential analysis, i.e. fold
changes between conditions for different isoforms
of a gene. EmpiRe is a quantitative approach for
various kinds of omics data based on fold changes
for appropriate features of biological objects.
Empirical error distributions for these fold changes
are estimated from Replicate measurements and
used to quantify feature fold changes and their
directions. We assess the performance of EmpiRe
to detect differentially expressed genes applied to
RNA-Seq using simulated data. It achieved higher
precision than established tools at nearly the same
recall level. Furthermore, we assess the detection
of alternatively Spliced genes via changes of
isoform fold changes (EmpiReS) on distribution-free
simulations and experimentally validated splicing
events. EmpiReS achieves the best precision-recall
values for simulations based on different biological
datasets. We propose EmpiRe(S) as a general,
quantitative and fast approach with high reliability
and an excellent trade-off between sensitivity and
precision in (doubly) differential analyses.

INTRODUCTION

Alternative splicing is an important regulatory mechanism
that contributes to the complexity of the transcriptomic
landscape in higher eukaryotes. More than 85% of the
human protein coding genes (GRCh38.95) can generate two
or more transcripts. The 3D-structure of a protein can be
heavily altered by alternative splicing (1) which may have
major effects on the function and phenotype (2). Alternative
splicing can also act as an additional regulatory element by
producing defunctional transcripts which are degraded prior

to translation. Different transcripts of the same gene are often
expressed at the same time, possibly at different abundance,
yielding a defined mixture of isoforms. Changes to this
composition are further referred to as differential alternative
splicing (DAS). Various diseases can be linked to DAS
events (3). Most hallmarks of cancer like tumor progression
and immune escape (4, 5) can be attributed to changes in
the transcript composition (6). DAS plays a prominent role
in various types of muscular dystrophy (MD) (7), splicing
intervention by targeted exon removal is a therapeutic option
in Duchenne MD (8). This renders DAS a potential target
for novel drug therapies. Alternative isoform regulations (9)
also play a crucial role for evolutionary differences between
species as analyzed for a range of vertebrate tissues and organs
10, 11).

The current method of choice to investigate DAS as well
as changes to total gene expression is mRNA sequencing
(RNA-seq). Improvements of sequencing instruments and new
techniques have facilitated sequencing depths and qualities
that allow to identify differences in the expression on the
transcript level on a genome-wide scale. Fortunately, it has
also become common to sequence many replicates of the
same condition or phenotype, which allows to account for
biological variance, bias and measurement noise, a step which
is necessary to draw biologically meaningful conclusions.
Absolute quantification of transcripts from raw RNA-seq data
is still challenging. Many reads map to multiple transcripts.
Different transcripts are subject to different biases like length
or GC content. Tools like Kallisto (12) or StringTie (13, 14)
assign reads to their transcript of origin and try to resolve
such ambiguities using expectation-maximization methods.
Other tools like Sleuth (15) and Ballgown (16) try to
detect transcripts which are expressed differentially between
groups of samples. They partially correct for this mapping
uncertainty. However, they only allow differential tests, i.e.
whether the expression of a transcript changes between two
groups of samples. They do not allow to check whether
two transcripts change to a different extent or in different
directions (doubly differential test), which is necessary to
detect DAS. Other tools which explicitly test DAS use these
estimated counts and do not account for their uncertainty
(DRIMSeq (17) or SUPPA2 (18)). Count based methods for
DAS such as DEXSeq (19) or tMATS (20) perform their
test on smaller sub-units like exon bins or certain splice
junctions which can be directly observed in the data. Typically,
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reads that overlap with more than one unit are counfed
multiple times. Furthermore, it is not straightforward to draw
conclusions on the transcript level using exon bins.
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With MS-EmpiRe (21) we introduced a new approach that
does not assume a given distribution for the detection of
differentially expressed proteins in mass spectrometry data.
Differences between expression on both gene and transcript
level are usually estimated in terms of fold changes. For
properly defined fold changes, e.g. fold changes for the same
objects between different samples, biases which complicate
absolute quantification usually cancel out. In that work, we
proposed to use empirical and intensity-dependent fold change
error distributions. MS-EmpiRe outperformed state-of-the-art
tools, yielding highly sensitive results while still properly
controlling the number of false discoveries. Here, we extend
this approach to EmpiRe to take condition-dependent error
distributions into account and show that it is applicable to
count-based RNA-seq data and can compete with other tools.
Furthermore, we propose EmpiReS which extends this model
such that it can be applied to detect “changes of changes” as
is necessary for DAS.

To benchmark EmpiReS we use extensive simulated data
based on real measurements. In contrast to other benchmark
approaches, we do not assume that the counts follow a given
statistical distribution, but directly use the counts observed in
an experiment. The simulated data represents many features
of real data and, thus, will provide a standardized test set to
assess a number of methods compared here, but it is also made
available to be used for future studies. A similar benchmark is
also provided to assess the performance of EmpiRe for the
quantification of differential gene expression.

MATERIALS AND METHODS
The EmpiReS approach and method

EmpiRe applied to RNA-seq data MS-EmpiRe (21) is based on an Empirical
and Replicate-based, approach, further called EmpiRe, which does not
assume a given statistical distribution to detect differential proteins between
groups of samples in mass spectrometry proteomics data. These groups
can be defined by the user and usually represent replicates for different
phenotypes or other experimental conditions. Noise in the measurements and
biological variability have to be accounted for to detect objects that vary more
than expected by chance. EmpiRe does so based on empirical (logs) error
distributions (EEDs) of signals between replicate measurements. For each
biological object e.g. a gene, transcript or protein, we compute the fold change
between all pairs of replicates (see Figure 1 C). It is crucial that only signals
for the same object are compared such that eventual biases cancel out as much
as possible. After an appropriate normalization (22, 23) that resolves library
size differences by estimating per-sample scaling factors (similar to Zien et
al. (24), described in more detail in Ammar et al. (21)), the expected value
of the distribution of these errors is zero. How strong fold changes of objects
deviate from this expected value is determined by their underlying variance.
For mass spectrometry as well as sequencing data, it has been observed that
this variance depends on the strength of the signal intensity or read count. To
express this correlation, EmpiRe computes many error sub-distributions, each
of which is based on a subset of objects that share similar overall expression
strength. However, we observed that even within an experiment the amount
of noise can differ between conditions. We thus modified EmpiRe to use a
specific empirical error distribution for each condition consisting of a group
of samples.

The EEDs are used to assess the significance of an observed fold change
for an object between two samples from different conditions c¢1 and ca. For
this, we derive the differential empirical error distribution (DEED), which
is simply EED“1-EED“2, as we can assume that observations from EED“!
and EED“2 are independent as they come from different measurements (see
Supplement section 3 for further details). The significance of an observed fold

change can directly be expressed as an empirical p-value which estimates
the probability to observe a fold change of this strength only due to errors.
These empirical p-values however do not directly include information about
consistency among replicate data or the direction of change. Does a gene
change in all comparisons between the conditions and if so, is this change
of similar strength and, in particular, in the same direction? To combine p-
values over multiple comparisons as well as sub-measurements, e.g. peptides,
EmpiRe applies an approach similar to Stouffer’s method (25). First, the
empirical p-values for all replicate comparisons are transformed into signed
Z-scores (Figure 1 E) that express the same cumulative probability. This is
done by using the inverse cumulative distribution function of the standard
normal distribution. To keep the direction of the fold change, we assign its
sign to the Z-score. In order to aggregate these Z-scores into one score
per object, EmpiRe sums them up to compute an aggregated value, Zsym,.
Since the Z-scores are signed, only objects that show multiple deviations
in the same direction become significant. Since each random variable of the
individual Z-scores follows a normal distribution with mean 0 and variance
1 (N (0,1)), we can also compute the distribution of Zsym. The resulting
distribution is normal with mean zero. The variance is equal to the sum over
the covariance matrix of the Z-scores. The original Stouffer test is applicable
to independent random variables which means that this variance is equal to the
number of p-values combined. We have to account for the fact that two fold
changes (and therefore the corresponding Z-scores) that share either the first
or second signal for the fold change computation are not independent. For all
other Z-score pairs, the covariance is zero. The derivation of the covariance
of two dependent Z-scores can be done analytically and the total variance of
Zsum depends only on the number of dependent replicate comparisons and
the variances of EED“! and EED“2 (see Supplement section 6).

EmpiRe makes no data specific assumptions besides that noise of the
measurement can be estimated by signal changes between replicate data.
The error distributions are derived empirically for the dataset at hand. In
Ammar et al. (21) we showed that EmpiRe is applicable to a wide range of
mass spectrometry proteomics setups. Here, we demonstrate that the approach
incorporating condition-dependent EEDs is also applicable to RNA-seq count
data. Furthermore, we show that the approach can be generalized such that it
can be applied to doubly differential cases like DAS.

Object definition and transcript level counts In DE analyses, signal
measurements (feature values) such as microarray probe set levels, read
counts or peptide intensities are often aggregated to obtain an object value, i.e.
feature values for genes or proteins. Due to the vastly differing ranges of the
raw signals this summarization step and, thus, also the resulting object fold
changes are very unreliable. Summarizing raw signal values can be robust
when the respective values are quite similar or when very many values are
summarized, in general signal summarization should be avoided.

Therefore, Erhard and Zimmer (26) proposed to use local fold changes of
measured features (probe sets, read regions, or peptides) between conditions
and summarize these local fold changes to obtain respective object fold
changes. To analyze differential alternative splicing the summarization
problem is aggrevated as the non-overlapping regions between the transcripts
can be small and, thus, only few signals are available to estimate the difference
between the object (i.e. transcript) feature values. Thus, we propose to directly
estimate the fold change between the transcripts from the local signal fold
changes and avoid estimating transcript levels altogether.

Available tools can be divided in two major groups depending on how
they obtain and use transcript level counts or similar proxies (27): they either
directly estimate abundances on the transcript level (Cufflinks (28)) or rely
on counts of smaller objects like exon bins (DEXSeq (19)), individual splice
junctions (rMATS (20)) or equivalence classes (BANDITS (29)). The first
group of models tries to assign each read to its transcript of origin. If a certain
splice junction or exon is part of only one transcript and is covered by a read,
this assignment is trivial. Reads that could have been generated by different
transcripts are assigned by using statistical methods like the Expectation-
Maximization algorithm. In contrast, count based models either completely
ignore ambiguous reads or assign them to multiple objects.

Probabilistic read assignment as well as multi-assignment may result in
errors which are then propagated to the differential analysis. On the other
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Figure 1. EmpiReS in a differential splicing analysis to quantify transcript expression changes. A) Given the annotation and mapped reads, equivalence classes
(EC:s) are derived by determining the set of transcripts that are in agreement with a read. For each EC the reads are counted for all replicates for both conditions.
B) To test differential alternative splicing (DAS) between two transcripts, we compare the ECs that are either unique for one of the two transcripts or that are a
mixture of both transcripts. If any of the three comparisons is significant we classify this as a DAS event. C) For each condition we calculate all within condition
fold changes between replicates to derive empirical error distributions (EEDs) for different intensity bins. D) For a given EC and pair of replicates from the two
conditions, we select the corresponding EEDs and derive the differential empirical error distribution (DEED) by subtracting the EEDs and assuming independence.
E) Similarly, for two ECs we can calculate the error distribution of the change of changes between the ECs, i.e. the doubly differential error distribution (DDEED)
by subtracting the corresponding DEEDs. The observed change of changes for the pair of ECs and the pair of replicates can be transformed into a Z-score using
the modified Stouffer’s method used in MS-EmpiRe. F) The Z-scores for all combinations of replicates and ECs of the corresponding DAS test are calculated and
summed up. The resulting sum follows a A/ (0,3 corr) distribution as each individual Z-score is from N (0,1)

hand, information is lost by neglecting ambiguous reads. Therefore, we
decided to use equivalence classes (EC), similar to BANDITS, for EmpiReS:
An equivalence class is a set of transcripts with which a set of reads is
compatible and they are, thus, constructed by deriving for each read the set
of transcripts that are compatible with it (see Figure 1 (A)). However, for
genes with many annotated transcripts this can lead to a large number of ECs
that may each only contain a small number of reads, even though only few
of the annotated transcripts are really expressed. In this case we propose
to reduce the number of ECs by a heuristic clustering of the transcripts
(see Supplement section 4). Pairs of transcripts with only few reads that
discriminate between the two transcripts are merged until a given number of
transcript clusters is reached. Then, the ECs are determined using the clustered
transcript definitions, which will yield an equal or lower number of ECs for
which counts are derived.

As EmpiReS works at the level of ECs we can use a mapper that uses the
transcript annotation and the concept of ECs to speed up the mapping and
remove ambiguities. A simple modification of contextmap (30) which works
at the level of ECs is used as the default mapper for EmpiReS (see Supplement
section 5 on method details).

Extension to doubly differential setups The problem of detecting DAS can
be generalized: the goal is to detect whether changes of changes of objects
differ significantly. In case of DAS, the objects are transcripts or smaller sub-
units like exon bins or equivalence classes which do not overlap between
transcripts. Instead of looking at the expression change of one object (e.g.
gene) we want to know whether the expression of two objects (transcripts of

the same gene) changes differently. To allow EmpiReS to be applied to cases
like this, we propose the following extensions:

For any possible (clustered) transcript pair (¢1,t2) of some gene, EmpiReS
compares three sets of ECs (see Figure 1 (B)): ECs that are unique for ¢1 and
to (unique(t1) and unique(t2), respectively) and ECs that are a mixture of
t1 and t2 (mix(t1, t2)). For each pair of these sets we determine whether
the corresponding changes of changes are significant using the extended
model of EmpiReS, and call the two transcripts changing if any of the three
comparisons is significant.

Analogously to the approach for differential expression in RNA-seq data
we first define the empirical error distribution (EED) for each condition. For
a pair of replicates from the two conditions respectively, we select for each
EC the EEDs according to the intensity levels of the EC in the two replicates
and derive the differential empirical error distribution (DEED) (see Figure 1
(C) and (D)). Similarly, we can derive the doubly differential empirical error
distribution (DDEED) by combining the DEEDs of two ECs that we want to
compare (see Figure 1 (E)). The DDEED is the empirical error distribution
of a change of changes between two ECs (i.e. features of different isoforms)
between two replicates of different conditions. It can thus be used to determine
an empirical p-value for the observed fold change of fold changes for this
combination of ECs and replicates. This p-value indicates how likely it is to
observe a value that is at least as extreme only due to biases. The p-value is
again transformed into a signed Z-score.

The Z-scores of all combinations of replicates and ECs are computed this
way and summed up. As each individual Z-score follows a normal distribution
(WNV(0,1)), the sum also follows a normal distribution with mean 0 and the sum
of the full covariance matrix of the individual Z-scores as variance. As some


https://doi.org/10.1101/2020.08.23.234237
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.110Q1/2020.08.2 ;
(which was not certified by peer review) i aumrmm

has

is versi
,.

post ust 24,

ea'biecfh%l?a icens

0. The copyright holder for this preprint
display the preprint in perpetuity. It is

& &

made available under aCC-BY-NC-ND 4.0 International license.

of the individual Z-scores share a replicate or EC, they are not independent
and the corresponding entry of the covariance matrix will not be zero. See the
Supplement section 7 for a detailed description of how the covariance matrix
of the individual Z-scores is calculated.

We repeat this step for all pairs of EC sets shown in Figure 1 (B).
Finally, p-values are computed as the probability that the observed Zsym
value is expected under the null hypotheses of no differences among replicate
measurements. To obtain a single gene level score, we select the highest p-
value of the different EC set combinations since a difference between any of
these is an indicator for differential splicing.

Simulation and Benchmark

To simulate reads for the evaluation of differential expression and alternative
splicing often a statistical distribution is parameterized and random counts
are sampled from this distribution and random (uniform) read positions
are derived for these counts. As the different established methods use
different types of statistical distributions in their model this way to simulate
a benchmark dataset intrinsically favors the methods that use the same
distribution. Therefore, we use a simulation approach that directly uses the
distribution of counts and read positions from real experiments. Especially
for the simulation of DAS events, there are three difficulties that have to be
addressed: (i) the splicing event has to be detectable, i.e. there have to be
enough reads from the affected region (ii) replicate measurements have to
be generated in a way that accurately reflects the variation of replicates in
real measurements and (iii) the position-wise distribution of the reads over a
transcript has to reflect the biases observed in real data.

To address the detectability of simulated splicing events we select pairs
of transcripts inducing DAS-events with long enough differences (i.e. many
base pairs differ between transcripts). As our selected source of simulation
(human Ensembl, GRCh37.75) has a rather complex transcript annotation we
choose to simulate clear simple cases: two transcripts implying at least one
exon skipping event. For this we derive all exon-skipping events from the
input annotation and select the transcript pair from the corresponding genes
where the implied number of skipped bases is maximal.

Replicate measurements are usually simulated by parameterizing a
distribution (e.g. a negative binominal distribution) and drawing counts from
it. Fold changes are usually produced by applying a multiplicative factor to
the sampled counts or sampling with a different parameter. Such simulations,
thus, need to make assumptions about the underlying distribution and change
the library sizes by scaling simulated counts.

Here, we propose an approach that directly uses real measurements and
does not affect library sizes. To simulate a benchmark dataset for differential
expression we use gene-level counts of a real experiment with a large number
of replicates and divide the replicates of one condition into two groups
(the simulated conditions). This way we have for both simulated conditions
replicates that differ only by technical and biological biases. To introduce
changing genes between the simulated conditions we first select genes from
the whole signal strength spectrum by selecting genes from regularly spaced
ranks of the sorted list. For each selected gene we sample a target fold
change (fciarget ~0.4+|N(0.8,0.16)|) and then select the target gene whose
mean signal is closest to the signal that the target fold change implies. The
parameters for the target fold change were selected such that the minimal
observable change will be 0.4 and 97% of the changes will be less than 4-
fold. Finally, we swap the counts of the selected and target genes in one of the
simulated conditions to generate target fold changes for the selected genes and
the reciprocal fold changes for the target genes without changing the library
size.

A popular way to simulate DAS is to distribute gene level counts among a
subset of transcripts (31, 32). DAS signals can then be simulated by changing
the proportions of this assignment between conditions. While we also re-
distribute gene level counts, we use a similar swapping procedure as for
the simulation of differential genes to simulate DAS events. In this case we
need two genes for both transcripts (major and minor isoform) each that are
swapped to simulate a fold change both between the conditions for both
isoforms and a fold change between the two isoforms. See the Supplement
section 8 for a detailed description of how the swapping partners are selected,

in short we first sample a base fold change for the major isoform, that can also
be zero, and select the swapping partner of the major isoform. Then another
fold change is sampled for the minor isoform and the swapping partner of
the minor isoform is selected by searching for a transcript with a mean signal
closest to the signal that corresponds to the sum of the two fold changes.

So far we have simulated counts of transcripts containing both differential
genes and differential alternative splicing and replicates, but ultimately, we
need to simulate reads corresponding to these counts. As we do not want
to make any assumptions about the position-wise biases of reads, we use
real yeast RNA-seq data to derive start/end fragment positions - ideally
there should be virtually no splicing in annotated transcripts in yeast. These
derived position-wise biases are mapped and scaled for human transcripts
selected for simulation. This means for a human transcript of transcribed
length [ a yeast template transcript will be searched with similar length [;.
If the template transcript is longer the subsequence of length [ with the most
observed start/end reads is used. If the template transcript is shorter (I3 <1)
then [—1[; randomly selected positions are assigned a probability of zero.
Using these derived position-wise probabilities of the fragment start positions,
the start positions are sampled. To determine the corresponding fragment end
positions, the insertion length is sampled from a N(200,360) distribution,
and the end position is sampled similarly to the start position in a window of
size 5 around start+insertion size.

The scripts for the simulation that can be used to simulate data based
on any dataset with a sufficient number of replicate measurements, can
be downloaded from https://www.bio.ifi.Imu.de/software/empires/index.html.
For the evaluation of the DE and DAS methods we used three different
human RNA-seq datasets (ECTO, STEM and EBV) with different numbers
of replicates and sequencing depth. Suppl. Table 1 contains a short overview
of the used datasets. We applied the DE methods DESeq, edgeR, limma, MS-
EmpiRe as well as the DAS methods BANDITS, DEXSeq, DRIMSeq, MATS
and our own method to the simulated datasets. For details on how the data was
processed and how the methods were called see the Supplement section 2.

RESULTS
Evaluation of differential expression analysis

We evaluate the performance of EmpiRe on simulated
data for differential gene expression. Due to its successful
application to peptide intensities of mass spectrometry data in
Ammar et al. (21), we want to demonstrate its applicability
to count data from RNA-seq. Multiple simulations were
created using different datasets as input for the simulation,
differing in the number of replicates and sequencing depth.
Simulated genes with too low read counts across samples
(as defined by the filterByExpr function of edgeR) are
filtered, which results in ~9.500 to 12.500 genes. The MS-
EmpiRe approach can directly be applied to read count
data, so we evaluate the performance of MS-EmpiRe and its
modified approach EmpiRe which includes condition-specific
EEDs. Additionally, we apply three established differential
expression detection tools: DESeq?2 (33, 34), edgeR (35) and
limma (36). While the former two are specifically designed
for read count data, limma is a more general model, originally
developed for RNA microarrays.

Table 1 shows the results of the performance evaluation
for differential expression methods. Since the differences in
performance between the tools are marginal, we do not report
and discuss them in detail. Both auroc and auprc are above
99% for all methods in all simulations indicating a close to
perfect separation between differential and non-differential
genes. If we look at the precision and recall, differences
between the tools become larger. Both measures report the
performance at a certain score cutoff. A common choice is
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method auprc  auroc fl prec. /recall TP /FP method auprc auroc fl  prec./recall TP/FP
DESeq 99.71 9991 9859 97.46/99.74 772/ 20 BANDITS 042 050 0.32 66.67/ 0.16 2/ 1
s edgeR 99.67 99.88 91.35 84.27/99.74 772/144 s DEXSeq 074 095 7093 81.72/62.66 787/176
& limma 99.69 9991 91.41 84.37/99.74 772/143 E DRIMSeq 0.87 093 62.68 91.99/47.53 597/ 52
»2 MS-EmpiRe 99.64 99.97 98.59 97.46/99.74 772/ 20 v tMATS 0.61 0.79 47.18 60.45/38.69 486/318
EmpiRe 99.63 99.83 99.03 98.59/99.48 768/ 15 EmpiReS  0.84 0.92 78.02 89.83/68.95 866/ 98
DESeq 99.86 99.99 93.65 88.05/100.00 774/105 BANDITS 045 0.66 2840 72.08/17.68 222/ 86
> edgeR 99.82 99.99 89.48 80.96/100.00 774/182 > DEXSeq 0.52 094 59.70 46.81/82.40 1035/1176
m limma 99.86 99.99 89.17 80.46/100.00 774/ 188 m DRIMSeq 059 0.86 57.66 61.16/54.54 685/ 435
= MS-EmpiRe 99.74 99.97 9497 90.42/100.00 774/ 82 M IMATS 053 0.69 40.11 65.52/28.90 363/ 191
EmpiRe 99.60 99.98 97.10 94.83/ 99.48 770/ 42 EmpiReS  0.71 090 7526 87.97/65.76 826/ 113

Table 1. Evaluation results of the differential expression methods. While all
methods perform very well in terms of auroc and auprc, EmpiRe achieves the
best precision and, thus, nearly achieves the FDR cutoff of 5% also for the
more challenging EBV dataset.

to use the multiple testing corrected p-value for each gene,
further denoted p,q4; or FDR. Precision reports how many of
the detected genes are actually differential while the recall
measures how many of all differential genes were detected. We
typically apply a FDR cutoff of 5%, which is quite common
since it means that the expected precision at this cutoff is
95%. High precision is important since type I errors, i.e.
falsely detecting a non-differential gene, often have a greater
impact on downstream analyses or follow-up experiments than
missing a few of the differential genes. Not all of the tools
achieve a precision of at least the expected value of 95%
at about the same high recall value. EdgeR and limma only
achieve a precision of about 84% for the simulation based on
the STEM dataset, and for the EBV simulation all methods
yield precision values below 95%. While EmpiRe is only
slightly below 95%, MS-EmpiRe and DESeq have precision
values of around 90% and edgeR and limma reach even only
about 80%. Apparently, even though the ordering of the genes
is nearly perfect, the distribution assumption free approach of
EmpiRe is better able to capture the variance and control FDR
than the established tools.

EmpiRe, although not designed specifically for counts and
sequencing data, is able to control the FDR at the desired level
while detecting nearly all differential genes.

Evaluation of differential alternative splicing on
simulated data

As EmpiReS performed well on differential gene expression
we applied it to our simulated differential alternative splicing
data and compared its performance to established tools for
this task: BANDITS (29), DEXSeq (37), DRIMSeq (17) and
rMATS (20).

Table 2 shows the evaluation results for simulations based
on two different datasets. The performance of the DAS
methods is in general worse than for DE and there are more
differences between the methods. As for DE we applied a FDR
cutoff of 5% to the predictions and calculated precision and
recall. BANDITS and rMATS are not very sensitive and thus
achieve only low recall values. All methods are not able to
properly control for the FDR, with DRIMSeq and EmpiReS
yielding the best precision for the simulation based on the

Table 2. Evaluation results for the differential alternative splicing methods
using 100bp long reads and biased read positions. Over all datasets, EmpiReS
achieves the best results both in terms of f1 measure as well as for auprc.

STEM dataset at 92% and 89%, respectively, and EmpiReS
(88%) for the simulation based on the EBV dataset. EmpiReS
performs best in terms of fl measure for both datasets,
indicating that it provides the best trade-off between precision
and recall. Next, we evaluated the ordering of the prediction
by calculating auroc and auprc. Here, auprc is better suited for
inbalanced benchmark sets such as ours, where the number
of true and false examples differs greatly. Again, DRIMSeq
and EmpiReS performed best on the STEM simulation (auprc
of 0.87 and 0.84, respectively), while EmpiReS is the only
method to achieve a auprc above 0.7 for the EBV simulation.

Furthermore, we compared the performance of the methods
on different simulation runs with different datasets (STEM,
ECTO or EBV), read lengths (60 or 100) and position-wise
bias (bias taken from yeast data or unbiased that is uniformly
distributed).

Figure 2 shows the performance of the methods on biased
and unbiased simulations. BANDITS and DEXSeq yield
lower recall and precision values for the unbiased simulations,
while DRIMSeq and rMATS perform better on the unbiased
simulations. DRIMSeq has a higher precision on unbiased
data but slightly lower recall, while rMATS achieves a higher
recall on unbiased data with slightly lower precision. Only
EmpiReS performs similarly on both the simulations with and
without position-wise bias with nearly the same precision and
recall values. Moreover, the precision and recall values show
the least variation between the different simulation setups for
EmpiReS. In our interpretation this indicates that approaches
like DRIMSeq strongly depend on the assumption of uniform
read distribution on the transcript sequence, while EmpiReS
does not.

Influence of read mapping on performance of splice event
detection

Figure 3 compares the performance of DEXSeq and EmpiReS
for different mappings: the mapper that is normally used for
this method (HISAT2 for DEXSeq and EC-contextmap for
EmpiReS), contextmap and the ideal mapping, where reads
are mapped exactly like they were simulated. For DEXSeq
the recall is comparable for all mappers at about 60%-80%,
while the precision (45%-80%) is slightly better for HISAT2
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Figure 2. Influence of biased read positions on the performance results for
different simulation runs (read lengths 60 or 100, dataset EBV, ECTO or
STEM and read positions biased or uniform). Only EmpiReS yields similar
precision and recall values for all simulations independent on whether the read
positions were biased or not.

than for contextmap and best for the ideal mapping. Overall
the influence of the mapping on DEXSeq’s performance is
modest. For EmpiReS, however, both the recall (60%-70%)
and precision (80%-95%) are improved from contextmap to
EC-contextmap to the ideal mapping. Especially the precision
is improved for all simulation setups and nearly always lies
above 90% when the ideal mapping is used showing that
errors in the DAS detection originate in the ambiguity of the
read sequencing leading to mapping errors and thus to wrong
signals.

Evaluation of validated DAS events

We used two published datasets for which several differential
alternative splicing events have been validated experimentally.
Bebee et al. (38) (GEO accesssion GSE64357) compares
wild-type and Epithelial splicing regulatory proteins (Esrp)
double knocked-out mouse cells. For each condition only 2
replicates were measured and overall 28 differentially spliced

Bebee Shen
method called wvali. found | called vali. found
BANDITS | 94 11 4149 32
DEXSeq 1124 23 8723 31
DRIMSeq | 649 18 5978 32
rMATS 974 26 4121 32
EmpiReS 520 17 5186 32

Table 3. Overview of the results of the DAS methods for the validated
splicing events for the Bebee and Shen datasets. For the Shen dataset all
methods found nearly all of the 32 validated splicing events, while there are
greater differences for the Bebee dataset that consists of only two replicates
and for which 28 splicing events were validated. DRIMSeq and EmpiReS
predict only half as many events as rMATS and DEXSeq, but also misses
more of the validated splicing events.

100-

- "
= B =

measure
E recall
‘ precision

recall/precision
o
<

25-

DEXSeq on contextmap ~
DEXSeq on default
DEXSeq on ideal

EmpiReS on contextmap ~

EmpiReS on default  ~
EmpiReS on ideal

method

Figure 3. Performance of DEXSeq and EmpiReS on different mappings
for different simulation runs. Both methods were applied to mappings of
contextmap, their default mapper (HISAT2 for DEXSeq and EC-contextmap
for EmpiReS) and the ideal mappings, that is reads are mapped exactly where
they were simulated.

events were validated. Shen et al. (20) (SRA accesssion
SRP014759) measures two human prostate cancer cell lines
with 3 replicates per cell line and validated 32 splicing events.

Table 3 shows how many events were called by the different
DAS methods and how many of the validated events were
among the called events. For the Shen dataset nearly all
methods found all of the validated splicing events, only
DEXSeq missed one of the 32 events. However, the methods
differ vastly in the number of called events, ranging from
4.100 for rMATS to 8.700 predicted events for DEXSeq.
EmpiReS with about 5.200 predicted events is comparatively
conservative, but still manages to detect all validated splicing
events. For the Bebee dataset there were more differences. The
number of predicted splicing events ranged from about 90 for
BANDITS to over 1.000 for DEXSeq. Also the number of
validated splicing events that were predicted from the DAS
methods differed more than for the Shen dataset. No method
was able to predict all of the 28 validated splicing events. This
is most likely explained by the low statistical power when only
two replicates are measured. The two methods that predict the
highest number of events (DEXSeq and rMATS) also find the
highest number of validated events (23 and 26, respectively).
EmpiReS finds 17 of the 28 validated splicing events, while
only predicting 520 events in total. Thus, while only predicting
half as many events it still manages to find about two thirds
of the validated events, indicating a higher precision, just as
observed in the simulations.

DISCUSSION

The increasing number of high throughput measurement
techniques makes differential analysis methods and pipelines
for omics data ever more important. A common analysis
step is the differential quantification of certain features of
measured objects across conditions or compared to controls.
Typical are differential gene expression and differential
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alternative splicing. Consequently, there are many methods
and associated tools available for these purposes. But as the
results depend quite intricately on the applied methods, the
user needs to have detailed knowledge about the models
employed in the respective methods and, even then, it is
unclear how to deal with inconsistent and contradicting
results. In order to assess the available tools it is preferable
to detect as many true and relevant events (true positives)
as possible while keeping the number of false discoveries
as small as possible. Typically, the user specifies a FDR
threshold, e.g. 5%, such that it is expected to obtain only five
false predictions among every hundred positive predictions of
the method.

With MS-EmpiRe, we have previously introduced an
approach for the quantification of differential proteins in mass
spectrometry data based on measured peptide intensities. The
EmpiRe method introduced here shows how to exploit the
EmpiRe approach for differential gene expression for read
count data derived from RNA-seq measurements. Moreover,
we generalize the approach for doubly differential setups.

To evaluate both differential expression and differential
alternative splicing, we use a simulation approach that makes
minimal assumptions. Instead of sampling reads from some
predefined and assumed distribution, we use measurements
from real experiments and introduce differential genes
or alternative splicing events by swapping the labels of
genes/isoforms in a subset of replicate samples. This way the
distribution of the counts of the real experiment is retained.
Moreover, the position of the reads can also be distributed
according to a real experiment in yeast where no biases
caused by splicing events should be present. The resulting
simulated datasets are thus more realistic as they retain all
biases present in a given real experiment. This simulation
approach can be applied to any real experiment to be used in
future benchmarking studies.

EmpiRe yields results comparable to established tools for
differential gene expression such as DESeq, edgeR and limma,
but significantly improves the precision. It thus predicts less
false positives compared to the established methods.

Additionally, we show how to extend EmpiRe to doubly
differential analyses (EmpiReS) and report results on the
quantification of differential alternative splicing (i.e. a typical
doubly differential setup). Compared to the state of the art
tools DEXSeq, BANDITS, DRIMSeq, and rMATS, EmpiReS
yields overall better trade-offs between precision and recall
for different simulation setups using different sequencing
depths and biases derived from real datasets. Moreover,
its performance was most robust with respect to different
simulation setups and did not depend on whether or not a
position-wise bias was present in the data.

EmpiRe(S) offers a general unified approach to differential
analyses. We have shown that its lack of assumptions makes it
applicable to various data types (mass spectrometry derived
intensities, sequencing based read counts) and non-trivial
research questions such as differential alternative splicing.
Since EmpiRe(S) depends on replicated measurements to
allow for empirical estimation of measurement errors and
biological variation, it requires at least two replicates per
condition. We think that EmpiReS will also be useful for more
complicated setups such as time series measurements over
multiple conditions, population studies with many individuals,

and in particular single cell measurements, even more so as
many more (biological) replicates will be available to estimate
the required error fold change distributions very accurately.
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