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Abstract 

Genetic variants affecting gene expression, termed expression quantitative trait loci (eQTLs), 

underlie phenotypic variation in complex traits and disease risk 1–3. Studies in purified blood cell 

populations 4–6 and computational analyses in human tissues 7,8 suggest that many eQTLs are 

cell-type specific. Single-cell RNA sequencing (scRNA-seq) has shown promise for eQTL 

mapping in blood cells and cell lines 9–11. However, the complexity of mammalian tissues makes 

studying cell-type eQTLs with scRNA-seq highly challenging. Here, we report a novel approach 

in the model nematode Caenorhabditis elegans that uses scRNA-seq to map eQTLs at cellular 

resolution in a single one-pot experiment. We studied an extremely large population of hundreds 

of thousands of genetically distinct individuals and mapped both cis and trans eQTLs across the 

different cell types of C. elegans. We find cell-type-specific trans-eQTL hotspots and show that 

they affect the expression of core pathways in the relevant cell types. Finally, we find single-cell-

specific eQTL effects in the nervous system, including an eQTL with opposite effects in two 

individual neurons. Our results show that eQTL effects can be specific down to the level of single 

cells. 
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Main Text  

Cell-type-specific eQTL mapping in a single one-pot experiment 

Genome-wide eQTL mapping involves acquiring genotypes and gene expression profiles for a 

genetically diverse cohort. We recently developed a method, C. elegans extreme quantitative 

trait locus (ceX-QTL) mapping, for genetic analysis of complex traits in extremely large 

populations of segregants 12. The method takes advantage of a mutation in the gene fog-2 that 

forces the normally hermaphroditic C. elegans to reproduce via obligate outcrossing, allowing 

us to propagate a large crossing experiment for multiple generations. 

Here we build on ceX-QTL by combining it with single-cell RNA sequencing (scRNA-seq) 

to carry out eQTL mapping at cellular resolution in a single one-pot experiment (Fig 1A). In this 

approach, a large heterogeneous pool of cells from thousands of genetically distinct individuals 

is profiled using scRNA-seq, cell types are inferred by clustering scRNA-seq profiles and 

studying known cell-type markers, and genotype information is reconstructed using expressed 

genetic variants, enabling eQTL mapping in multiple cell types simultaneously. C. elegans has 

an invariant cell lineage that leads to each individual having the same number of cells, with cell 

types defined down to cellular resolution 13, making this organism exceptionally well-suited for 

this study.  

We propagated a cross between the laboratory strain N2 and a highly divergent isolate 

from Hawaii, CB4856, for four generations, generating a pool of 200,000 genetically distinct F4 

segregants. We dissociated the segregant pool to single cells at the L2 larval stage and profiled 

the cells with scRNA-seq. We identified clusters in a Uniform Manifold Approximation and 

Projection (UMAP) of the dataset 14–16, and determined their cell-type identities using known 

markers 17,18. Our final dataset comprises 55,508 cells classified into 19 different cell types (Fig 
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1B) (Table S1). The observed number of cells of each type was strongly correlated with the 

known cell-type abundance in L2 larvae (Spearman’s ⍴ = 0.87, p = 2.2 x 10-6 , Fig S1).  

Most of the cells in our sample were expected to carry unique genotypes (materials and 

Methods). This design is advantageous for eQTL mapping because it maximizes the sample 

size 19, but requires de novo genotype calling, since the genotype of each cell is unknown 

beforehand. Rather than assign deterministic genotype calls based on sparse scRNA-seq data, 

we derived genotype probabilities for each cell using a Hidden Markov Model (HMM) (Fig S2). 

We then performed eQTL mapping with these genotype probabilities in a negative binomial 

modeling framework (Materials and Methods). 

 

eQTL mapping in multiple cell types 

We mapped 1,718 cis eQTLs in 1,294 genes, and 451 trans eQTLs in 390 genes, at a false 

discovery rate (FDR) of 10% across the different cell types (Fig 2A-B, Table S2). The number of 

eQTLs detected in each cell type was strongly correlated with the number of cells of that type 

(Spearman’s  ⍴ = 0.91,  p < 2.2 x 10-16). In cell types with >1000 cells, we mapped between 52 

and 415 eQTLs (Table S1). For 1,071 of the 1,294 genes with a cis eQTL (83%), the eQTL was 

detected in only one cell type. For 208 of the remaining 223 genes (93%), the direction of the 

eQTL effect was the same in all cell types in which it was detected.  

We studied to what degree our cis eQTL results were concordant with gene expression 

differences between the parents. We generated a scRNA-seq dataset from 6,721 N2 and 3,104 

CB4856 cells, and used a classifier trained on the segregant dataset to identify cell types in the 

parental scRNA-seq dataset. We then carried out a differential expression analysis in each cell 

type. We found 870 differentially expressed genes (at a >2 fold change and FDR of 10%), of 
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which 201 (23%) had a cis eQTL in the same tissue (OR = 18.8, p < 2.2 x 10-16, Fisher’s Exact 

Test). 191 of these cis eQTL (95%) showed the same direction of effect as the parental 

difference. Further, the effect sizes of the significant cis eQTLs were strongly correlated with the 

sizes of the parental differences (Spearman’s ⍴ = 0.66, p < 2.2 x 10-16) (Fig S3-4). These results 

provide independent support for our cis-eQTL mapping, and show that for a sizable fraction of 

the genes, those cis eQTLs are a major cause of differential gene expression between the 

strains. 

 

Comparison between bulk and single-cell cis-eQTL mapping 

To investigate the relationship between single-cell and bulk eQTL mapping, we compared our 

single-cell eQTLs to those previously identified in a panel of 200 recombinant inbred lines (RILs) 

generated from crossing N2 and CB4856 20. In the bulk study, a large population of whole worms 

from each RIL was recovered at a late larval stage, L4, and profiled on expression microarrays. 

We reanalyzed data for 11,535 genes expressed in both datasets and identified 981 cis eQTLs 

in the bulk dataset (at an FDR cutoff of 10%). Despite major differences in experimental design, 

including the developmental stage of the worms, the overlap with the single-cell cis eQTLs was 

highly significant, with 335 cis eQTLs shared between the studies (Odds Ratio = 7.2,  p < 2.2 x 

10-16, Fisher’s exact test) (Fig. 2C). These shared loci represented 34% of the bulk cis eQTLs 

and 32% of the single-cell cis eQTLs. Furthermore, the bulk and single-cell eQTL effect sizes 

were highly correlated (Spearman’s ⍴ = 0.64, p < 2.2 x 10-16) (Fig 2D). Lastly, single-cell eQTLs 

detected in multiple cell types were more likely to also be seen in the bulk study: 50% of the 

genes with cis eQTLs detected in multiple cell types were also identified in bulk, compared to 

28% of the eQTLs detected in only one cell type (OR =  2.58, p  = 2.1 x 10-8) (Fig. 2C). This 
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observation suggests that the single-cell eQTL mapping approach improves the power to detect 

cell-type specific effects. 

 

Shared and cell-type specific trans-eQTL hotspots  

We observed that 90 of the 451 trans eQTLs clustered at 5 hotspots, each containing 12-31 

eQTLs  (Fig. S5, Table S3). A hotspot on Chr I was identified independently in both neurons and 

seam cells; the top associated variant (Chr. I:10890182) was the same for both cell types (Fig. 

S5A-B). The other hotspots were identified in the body wall muscle (on Chr. I) (Fig. S5C), the 

intestine (on Chr. V) (Fig. S5D), and neurons (two distinct hotspots on Chr. III) (Fig. S5B).  

To test whether the target genes of these 5 hotspots are involved in coherent biological 

processes, we relaxed the FDR threshold to 20%, which increased the number of genes linked 

to each hotspot to 21-42, and performed Gene Ontology (GO) enrichment analysis (Table S4). 

For three of the hotspots, we found significant enrichments that were consistent with the cell-

type specificity of the hotspot. The targets of the hotspot detected in intestinal cells were weakly 

enriched for genes involved in the innate immune response (FDR-corrected p = 0.042), a major 

role of that tissue 21.  The targets of the hotspot detected in the body wall muscle were enriched 

for genes associated with the term myofilament (FDR corrected p = 6.4 x 10-8), actin cytoskeleton  

(FDR-corrected p = 4.2 x 10-6), and related terms. The enrichment was driven by the genes mup-

2, tni-1, tnt-2, mlc-2, mlc-3, lev-11 and act-4. mlc-2 and mlc-3 encode a myosin light chain, and 

act-4 encodes an actin protein. lev-11 encodes a tropomyosin, and mup-2, tni-1, and tnt-2 

encode 3 of the 4 proteins in C. elegans that are expressed in the body-wall muscle and form 

troponin complexes, highly conserved regulators of muscle contraction 22 (Fig S6). 
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The targets of the neuronal hotspot on the right arm of Chr III were enriched for genes 

involved in vesicle localization (FDR-corrected p = 7.5 x 10-3), as well as for BMP receptor 

binding genes (FDR-corrected p = 2.8 x 10-3). The latter enrichment was driven by dbl-1 and tig-

2, orthologs of human bone morphogenetic protein (BMP) genes BMP5 and BMP8 and ligands 

of the transforming growth factor beta (TGF-β) pathway 23. Notably, dbl-1 was discovered as a 

gene that regulates body size in C. elegans 24, the hotspot peak marker is located <300 kb from 

the peak of a QTL we previously identified for body size 25, and the corresponding confidence 

intervals overlap (Table S3), suggesting that differential regulation of the TGF-β pathway is 

involved in variation in body size between N2 and CB4856. 

 

Cell-specific eQTL effects in the C. elegans nervous system 

C. elegans is a premier model for studying neurobiology at the cellular level, which is aided by 

its invariant cell lineage and the diverse functions associated with specific individual neurons. 

Importantly, many of the neurons are highly variable in their gene expression, and express 

specific gene markers 26. To identify specific subtypes of neuronal cells, we separately clustered 

the 12,467 cells identified as neurons and compared the clusters to previous C. elegans scRNA-

seq datasets, including the recently published C. elegans Neuronal Gene Expression Map & 

Network (CeNGEN) 17,18,27,28 (Table S5). The neurons fell into 81 distinct clusters, ranging from 

17 to 872 cells. We mapped these clusters onto 100 (83%) of the 120 neuronal clusters identified 

in CeNGEN (Fig S7). We also identified CEM neurons, which are male specific and absent from 

CeNGEN, based on the expression of the marker cwp-1 29.  

We mapped cis eQTLs in each of the single neuronal subtypes (sn-eQTLs) and identified 

a total of 163 sn-eQTLs in 132 genes at an FDR of 10% (Fig 3A, Table S6). Of these, 117 (88%) 
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were identified in only a single neuronal subtype. Functional annotation of sn-eQTLs identified 

25 genes involved in signaling (FDR-corrected p = 0.047), including 12 genes involved in G-

protein Coupled Receptor (GPCR) signaling (FDR-corrected p = 0.047) and 8 genes involved in 

neuropeptide signaling (FDR-corrected p = 9.9 x 10-3). 

We compared the sn-eQTLs to those identified when all neurons were analyzed jointly 

(“pan-neuronal mapping”), and found that a sizable fraction of the sn-eQTLs did not have 

evidence for a pan-neuronal signal: 92 were not identified pan-neuronally at an FDR of 10%, 

and 69 were not identified even at a highly permissive FDR of 50%, suggesting that they exert 

their effects only in specific neuronal subtypes (Fig 3A). Regardless of statistical significance, 

pan-neuronal eQTLs should have consistent effect directions across neuronal subtypes, while 

subtype-specific eQTLs should not. We therefore compared the direction of effect of each sn-

eQTL in the subtype in which it was detected with its direction of effect in the set of all neurons 

excluding that subtype. Among the 69 sn-eQTLs with no signal in the pan-neuronal mapping 

even at the permissive FDR, the direction of the effect was concordant for 33 and discordant for 

36, not significantly different from chance (p > 0.5; binomial test), as would be expected if these 

effects are truly subtype-specific  (Fig 3B). In contrast, among the 94 that had a pan-neuronal 

signal at an FDR of 50%, the direction of the effect was concordant for 88 and discordant for 

only 6 (p < 0.000001; binomial test), consistent with differences in detection arising from limited 

statistical power. 

In a striking case, we observed an sn-eQTL in the neuropeptide gene nlp-21 that showed 

significant and opposing effects in two neurons (Fig. 3C-D). In the RIC neuron, higher nlp-21 

expression was associated with the CB4856 allele (β = 4.4, FDR-corrected p  = 0.03), while in 

the RIM neuron, higher nlp-21 expression was associated with the N2 allele (β = -5.4, FDR-
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corrected p  = 9.8 x 10-7). In the pan-neuronal mapping, no significant effect is observed for this 

gene. We identified the RIC and RIM neurons in the parental dataset, and although the small 

number of cells in each group (35 and 27, respectively, with only 9 and 5 of them from CB4856) 

was insufficient for statistical testing, the directions of the differences agreed with the eQTL 

effects (Fig 3E). These results provide direct evidence that eQTLs can be specific down to the 

cellular level. 

 

Discussion 

We used scRNA-seq to map eQTLs in C. elegans across cell types in a single one-pot 

experiment. Earlier scRNA-seq eQTL mapping studies were limited in sample size to at most 

~100 individuals, but nevertheless highlighted the potential of this approach to identify cell-type 

9 and developmental 11 eQTLs, as well as loci affecting expression variance 10. Our novel 

approach allowed us to map eQTLs in tens of thousands of genotypically distinct individuals and 

enabled detection of both cis and trans eQTLs, as well as resolution of their effects down to the 

level of specific cells. 

  One of the major factors affecting gene expression studies is variation resulting from 

uncontrolled environmental differences between individuals that are grown or processed 

separately. By using scRNA-seq, we were able to process all individuals jointly. After the initial 

parental cross, all subsequent steps carried out over the course of five C. elegans life-cycles 

(three weeks) were performed in bulk, limiting any confounding environmental factors. To 

minimize the influence of genotype on development, we synchronized the worms at the first 

larval stage, L1, and collected samples at the L2 stage, limiting the time for differences to 

accumulate post-synchronization. Even careful synchronization is not expected to completely 
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remove the effects of genetic variation on developmental timing, and such variation can be 

combined with gene expression time course data collected during development to increase the 

power of eQTL mapping and to study the developmental dynamics of eQTLs 30. This raises the 

possibility that future scRNA-seq studies of C. elegans across developmental stages would open 

the door to a similar analysis of our single-cell eQTL dataset. 

Previous work suggested the existence of cell-type specific eQTL hotspots in C. elegans 

based on the expression patterns of hotspot targets 30. We discovered three hotspots that are 

cell-type specific, with targets that are involved in core functions performed by these cell types. 

Recently, eQTL hotspots have been identified in human blood cells 31,32, as well as in cell lines 

33. These results suggest hotspot and trans eQTL discovery is facilitated by expression studies 

that can distinguish cell types and point to a larger role of hotspots in the genetics of gene 

expression in animals. 

A comparison of the single-cell cis eQTLs to those mapped in a previous whole-worm 

eQTL study from our laboratory showed a highly significant overlap despite major differences in 

experimental design. These results join accumulating evidence that cis eQTLs have robust, 

consistent effects 34,35, and show that many of the effects are conserved across worm 

development. The strong overlap of cis eQTLs mapped by scRNA-seq and by whole-worm 

analysis also suggests that the effect of many cis eQTLs is conserved across cell types. By 

generating an extremely large number of unique segregants, our method enables scaling up the 

number of studied individuals simply by sequencing a larger number of cells. Thus, the 

increasing throughput of single-cell technologies and sequencing platforms will enable future 

work to study cell-type specificity of cis and trans eQTLs in greater detail. 
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Lastly, we discovered cis eQTLs that act in single subtypes of C. elegans neurons, 

including many that were not found when all neurons were analyzed jointly. Importantly, we also 

discovered an eQTL that influences expression of the gene nlp-21 in opposing directions in two 

different neurons. These results show that despite the overall pattern of conservation, cis eQTL 

effects can be specific down to the level of single cells. Studying the genetics of gene expression 

across all levels, from bulk tissues to specialized cell types, is therefore crucial for a 

comprehensive understanding of regulatory variation—distinct genetic effects can be found at 

every step. 
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Figure 1. Whole-organism eQTL mapping with single-cell RNA-sequencing (scRNA-seq). (A) A 

large population of segregants is dissociated to single cells. Each cell in the suspension has an 

unknown genotype and cell-type identity. The suspension is profiled using scRNA-seq. Cell-type 

identity is inferred by clustering cells and comparing the expression of known marker genes. 

Genotypes are reconstructed from expressed single-nucleotide variants (SNVs). (B) The UMAP 

projection of 55,508 scRNA-seq expression profiles from approximately 200,000 C. elegans F4 

segregants collected at the L2 larval stage is shown. Cells are colored based on the inferred cell type.    
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Figure 2. eQTL mapping in cell types. (A) A genome-wide map of eQTLs across all cell types is 

shown. The position of the eQTLs is shown on the x-axis, while the y-axis shows the position of the 

associated transcripts. Points along the diagonal are cis eQTLs (those mapping to nearby genes). (B) 

The number of cis and trans eQTLs mapped in each cell type. (C) The overlap between a previous 

study that mapped eQTLs in whole worms in a panel of recombinant inbred lines (RIL) and our dataset. 

(Left) The proportion of genes with a cis eQTL in at least one dataset, out of all genes tested. (Middle) 
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Of the 1,688 significant cis-eQTL genes, 355 had a cis eQTL in both datasets, representing a highly 

significant enrichment. (Right) Hits mapped in more than one cell type were more likely to also be 

found in the whole-worm (“bulk”) dataset. (D) Quantitative comparison between normalized effect 

sizes in our dataset and in the whole-worm dataset. 
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Figure 3. Neuron-specific eQTL mapping. (A) cis-eQTLs mapped in single neuronal subtypes (sn-

eQTLs) are shown. The top three rows indicate whether the eQTL was mapped pan-neuronally at a 

10% FDR threshold (row 1), at a 50% FDR threshold (row 2), and whether the sign of the effect 

estimate (“effect direction”) was the same in the pan-neuronal and single cell mapping (row 3). (B) 

Comparing the effect direction between the sn-eQTL mapping and mapping in a set of neurons 

excluding the sn-eQTL neuron shows evidence for subtype-specific effects. The number of genes 

showing the same (“purple”) or opposite (“turquoise”) effect directions is shown for genes with pan-

neuronal FDR > 50% (top) and < 50% (bottom). (C-D) An eQTL with antagonistic effects in two 
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neurons. Higher expression of the gene nlp-21 in the RIM neuron is associated with the N2 allele (C), 

while higher expression in the RIC neuron is associated with the CB4856 allele (D). In C and D, a 

linear fit is shown for illustration. All p values are FDR-corrected. Read counts were normalized to the 

number of UMIs in each cell and log-transformed. (E)  Expression of nlp-21 in the parental dataset. 

The direction of effect is concordant between the left panel and (C) (RIM neuron) and between the 

middle panel and (D) (RIC neuron). Horizontal lines are averages. 
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Materials and Methods 

C. elegans culturing 

C. elegans strains were cultured at 20°C using standard conditions with the exception that the 

agar in the nematode growth media (NGM) was replaced with a 4:6 mixture of agarose and agar 

(NGM+agarose), to prevent burrowing of the CB4856 strain. Parental strains used were QX2314 

(N2 fog-2(q71) V; hsp-90p::GFP II) and PTM299 (CB4856 fog-2(kah89)). Large segregant 

panels were generated as before 12. Briefly, 500 L4 males from PTM299 and 500 L4 

hermaphrodites from QX2314 were seeded on a plate for 30 hours, and gravid worms and eggs 

were collected and bleached. Eggs were synchronized to L1 larvae for 24h, and seeded on 10cm 

NGM+agarose plates. In each generation, gravid worms were bleached, their progeny 

synchronized for 24h and seeded. The entire process was repeated up to F4, with 3-4 days per 

generation.  

 

Cell extraction and sequencing 

192,000 F4 were seeded on four 10cm NGM+agarose plates seeded with OP50. L2 were 

recovered after 24 hours, and staging was validated under a stereomicroscope. L2 cell 

dissociation was carried out as previously described 36, implementing modifications from a later 

study 37, as well as our own. Worms were recovered off the plates and washed three times in 

M9. Lysis was then done with an SDS-DTT solution (200 mM DTT, 0.25% SDS, 20 mM HEPES, 

pH 8.0, 3% sucrose) in a hula mixer set on low speed to prevent worms from settling. The lysate 

was observed under the stereoscope every two minutes, and lysis was stopped when a blunted 

head shape appeared in the majority of worms 37, after ~4 minutes. Worms were then washed 

quickly three times in 1ml of M9, and two additional times in 1ml of egg buffer (118 mM NaCl, 
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48 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 25 mM HEPES, pH 7.3, osmolarity adjusted to 340 

mOsm with sucrose). Worms were then resuspended in 0.5ml of 20mg/ml Pronase E that was 

freshly prepared in L15 media supplanted with 2% fetal bovine serum (L15-FBS) and adjusted 

to 340 mOsm with sucrose. Worm dissociation was done by continuous pipetting on the side of 

the tube, and monitored every 2-3 minutes on a microscope equipped with a 40x phase contrast 

objective lens. Dissociation was stopped when few intact worms remained and a high density of 

cells was visible. 0.5ml of L15-FBS was added to stop the reaction, and the lysate was spun for 

6 minutes at 500g at 4°C. The cell pellet was resuspended in PBS (PBS was adjusted to 340 

mOsm with sucrose). Cell suspension was spun for 1 minute in 100g at 4°C to remove remaining 

undigested worms, counted and diluted to 1M cells/ml in osmolarity adjusted PBS, and loaded 

directly onto 5 lanes of 3’ Chromium single-cell RNA-sequencing flow cells (10x Genomics), 

targeting 10,000 cells on each lane. Library prep was carried out according to manufacturer's 

protocol. Prepared libraries were sequenced together on an S4 lane of Novaseq 6000. A paired-

end 2x150 run was done, to maximize the recovery of single-nucleotide variants. In all 

downstream processing, each of the five 3’ Chromium lanes processed concurrently was treated 

as a separate “batch”, and lane identity corresponds to the “batch” identity for the rest of the 

methods. 

 

Single-cell RNA-sequencing data processing 

Raw sequencing reads were analyzed using CellRanger (Ver 3.0.2). We used a gene transfer 

format (GTF) file that was corrected for misannotation of 3’ untranslated regions (3’UTR) that 

was generated in a previous study 18. C. elegans cell-types differ widely in the number of UMIs 

that are recovered using scRNA-seq. Therefore, a simple UMI cutoff, as is commonly used, may 
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be biased for cell-types with more UMIs. We therefore implemented an iterative pipeline to 

recover clusters of bona fide cells and remove cell doublets as well as degraded cells. We took 

20,000 cells with the most UMIs in each cluster (twice the targeted number of cells, 100,000 

overall), and processed them in Monocle (Ver 3) 38. Default parameters were used, with the 

exception that 100 dimensions were used for reduction, and batch was added as a covariate. 

Leiden clustering identified a total of 154 clusters, and we used the top_markers function in 

Monocle to identify the genes upregulated in each. We then removed clusters whose top genes 

included any ribosomal genes or the mitochondrial genes ndfl-4, nduo-6, atp-6, ctc-2, ctc-3, ctc-

1, which we noticed were usually found together as the most upregulated genes in clusters that 

did not specifically express any known markers for C. elegans cell-types. This removed a total 

of 30,980 cells (31%). For the remaining 69,020 cells, raw counts were processed using the R 

package SoupX to reduce ambient RNA contamination 39. We then normalized, reduced 

dimensions and clustered the background corrected cell profiles in Monocle using the same 

parameters as above.  

To annotate cell-types, we used the markers described in a previous study (Table S12 in 

Ref 18) that reanalyzed a previous L2 single-cell dataset 17. Our cell-type annotation corresponds 

to the “UMAP” column in that table, with the following exceptions: (a) we separated hypodermis 

from seam cells, somatic gonad from sex muscle cells, and glia from excretory cells, since those 

groups were not clustering together in our data. (b) cells identified as “Miscellaneous” in that 

table were annotated as individual cell-type identifications in our data, with the exception of the 

sphincter and anal muscles which were not differentiated from each other in our data. Finally, 

we re-evaluated our cell type identifications, and filtered cell doublets as well as dead cell or 

debris that may still contaminate bona fide cell-type clusters. We trained a classifier using our 
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manually curated cell-type classifications with a L2-penalized multinomial logistic regression 

framework, as implemented in the Scikit-learn Python package (v0.22) 40. We read the raw gene 

expression matrices into python using scanpy (v1.4.2). We removed 2,582 genes that were 

expressed in less than 10 cells. The gene expression levels of each cell were corrected so that 

the total gene expression counts added up to 10,000. Per gene, these corrected counts were 

normalized using a log(1+x) transformation. To speed up the computation of the multinomial 

logistic regression, we only used the 2,037 genes with a mean expression between 0.0125 and 

3, and a minimum dispersion of 0.5. We scaled the gene expression matrix so that the 

expression level of each gene across cells had a mean of 0 and a variance of 1, after scaling 

expression values over 20 were set to 20. We fit a multinomial logistic regression model using 

the scaled gene expression values for the 2,037 highly variable genes from the complete set of 

69,020 cells to obtain an estimate for the inverse regularization strength (C). Using the estimated 

C of 7.74 x 10-04, we performed 5 fold cross validation to estimate the probability that each cell 

belongs to one of the manually curated cell-type classifications. Any cell with a probability higher 

than 0.2 of belonging to 2 or more cell types (9,198)  was classified as a doublet. Any cell which 

did not belong to a cell-type with probability >= 0.4 (5,547) was classified as low quality. In total, 

we removed 11,398 cells that were classified as a doublet or low quality. We removed an 

additional 2,114 cells classified as Neurons as described in the section “Neuronal cell-type 

classification”. For the remaining final list of 55,508 cells, we used the output of the classifier as 

the final cell-type classification. The final classification is shown in Figure 1. For display purposes 

the plot in Figure 1 was generated by rerunning umap on the finalized dataset with euclidean 

distance metric and umap.min_dist=0.5, resulting in a more compressed visualization of the 

dataset. 
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Estimating the number of unique genotypes 

We note that calculating the number of expected unique genotypes is akin to the well-

known “Birthday problem” in statistics. Given C cells sampled from I individuals, the expected 

number of cells with a unique genotype is C(1−1/I)C-1. Assuming 50%-90% of worms were 

successfully dissociated (a conservative range), we expect 31,134-40,257 unique genotypes. 

 

Single-nucleotide variant counting 

We used a list of single-nucleotide variants (SNVs) we previously curated for CB4856 compared 

to the N2 reference 12. We derived genotype informative UMI counts for N2 and CB4856 variants 

using Vartrix version 1.0 (https://github.com/10XGenomics/vartrix) directly on the output of 

CellRanger. To reduce SNV counts that result from SNVs in the ambient RNA background, we 

only kept SNVs that resided in genes with positive counts in the background corrected matrix.  

 

Genotype inference using a hidden Markov model 

We set up a hidden Markov model (HMM) to infer the genotypes of the recombinant progeny 

41,42. The HMM is used to calculate the probability of underlying genotypes for each individual 

and requires three components: (1) prior probabilities for each of the possible genotypes, (2) 

emission probabilities for observing variant informative reads given each of the possible 

genotypes, (3) and transition probabilities - the probabilities of recombination occurring between 

adjacent genotype informative sites. 

 For the autosomal chromosomes we defined prior genotype probabilities as 0.25 for 

homozygote N2, 0.5 for heterozygote CB4856/N2, and 0.25 for homozygote CB4856. For the 
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sex chromosome we defined prior genotype probabilities as 0.44 for homozygotes N2, 0.44 for 

the heterozygote CB4856/N2, and 0.11 for homozygote CB4856. These values were chosen 

because to generate the segregant population, N2 hermaphrodites were crossed to CB4856 

males, and thus contributed twice as many X chromosomes to the progeny as CB4856. 

 Emission probabilities were calculated as previously described for low coverage 

sequencing data 43,44 under the assumption that the observed counts of reads for both possible 

variants (Y) at a genotype informative site (g) arise from a random binomial sampling of the 

alleles present at that site and that sequencing errors (e) occur independently between reads at 

a rate of 0.002: 

 

 

 

 

 

Where (D) is the total read depth at a genotype informative site for a given individual, (r) is the 

total read depth for the N2 variant at that site, and N represents the N2 variant and C represents 

the CB4856 variant. 

 Transition probabilities were derived from an existing N2 x CB4856 genetic map 45. We 

linearly interpolated genetic map distances from the existing map to all genotype informative 

sites in our cross progeny. We scaled these genetic map distances, multiplying them by a factor 

of 0.4, to account for the fact that the previous genetic map was built using ten generations of 

intercrossing whereas progeny from our cross are derived from four generations of intercrossing 

46. 
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 For QTL mapping we used an additive coding, summing the probability that the genotype 

was homozygote CB4856 with one half the probability that the genotype was heterozygote 

N2/CB4856. 

 

eQTL mapping 

Genotype probabilities were standardized, and markers in very high LD (r>.9999) were pruned. 

This LD pruning is approximately equivalent to using markers spaced 5 centimorgans (cm) apart. 

For each transcript, we counted the number of cells for which at least one UMI count was 

detected in each cell type. Transcripts with non-zero counts in at least 20 cells in a cell type were 

considered expressed in that cell type and used for downstream analyses. 

As has been previously described for droplet scRNA-seq, counts of UMIs can be 

adequately parameterized by a gamma-poisson distribution, which is also known as the negative 

binomial distribution 47. Thus we used a negative binomial regression framework for eQTL 

mapping here. We also note that simpler approaches using log(counts+1) with ordinary least 

squares behave pathologically, especially in regard to behavior with multiple partially correlated 

covariates, and simulations (not shown) showed such models lead to inflated false positive rates.   

 For each expressed transcript in each cell type we first fit the negative binomial 

generalized linear model: 

 

  (1) 

  (2) 

   (3) 
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Which has the following log-likelihood: 

 

(4) 

 

And where  is a vector of UMI counts per cell,  is a vector of the log(total UMIs per cell) and 

controls for compositional effects,  is an indicator matrix assigning cells to batches, and  is 

the vector of standardized genotype probabilities across cells for the closest genotypic marker 

to each transcript from the pruned marker set. In addition,  is a vector of estimated coefficients 

from the model,  is the expected value of Y for a given cell ,  is the total number of cells in 

the given cell type, and  is a negative binomial overdispersion parameter. Model parameters 

were estimated using iteratively-reweighted least squares as implemented in the negbin.reg 

function in the Rfast2 R package. If the model did not converge, model parameters were 

estimated with the gam function in the mgcv package 48, which opts for certainty of convergence 

over speed. We note that due to the computational burden of fitting so many GLMs in the context 

of sc-eQTL mapping, we chose to estimate  once for each transcript in each cell type for this 

model, and use that estimate of  in the additional models for that transcript within the cell type, 

as described below. This approach is conservative, as the effects of unmodeled factors (for 

example trans eQTLs) will be absorbed into the estimate of overdispersion, resulting in larger 

estimated overdispersion   and lower model likelihoods. Computational approaches that re-

estimate  for each model, that jointly model all additive genetic effects, or that regularize  

across models and transcripts 49, may further increase statistical power to identify linkages. 
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To evaluate the statistical significance of cis eQTLs, a likelihood ratio statistic 

 , was calculated comparing the log-likelihood of this model described above ( ) 

to the log-likelihood of the model where  is re-estimated while leaving out the covariate  for 

the cis eQTL marker ( ). A p-value was derived under the assumption that this statistic is  

distributed with one degree of freedom. This p-value was used for the evaluation of significance 

of cis eQTLs for the neuronal subtypes. Within each neuronal subtype, FDR adjusted p-values 

were calculated using the method of Benjamini and Hochberg 50. For the other cell types (with 

typically much larger cell numbers) and for the genome-wide scans for eQTLs, a permutation 

procedure was used to calculate FDR adjusted p-values, and is described further below.  

For each expressed transcript in each cell type we also scanned the entire genome for 

eQTLs, enabling detection of trans eQTLs. A similar procedure was used as for cis eQTL except 

that equation (3) was replaced with: 

 

   (5) 

 

where  is a vector of the scaled genotype probabilities at the th genotypic marker, and the 

model is fit separately, one at a time, for each marker across the genome for each transcript. A 

likelihood ratio statistic for each transcript, within each cell type, for each genotypic marker is 

calculated by comparing this model to the model where  is re-estimated while leaving out the 

covariate . The likelihood ratio statistic was transformed into a LOD score, by dividing it by 

. We also used functions in the fastglm R package for this scan, again re-using 

estimates of  obtained as described above for each transcript for each cell type. For each 

transcript and each chromosome, QTL peak markers were identified as the marker with the 
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highest LOD score. The 1.5 LOD-drop procedure was used to define approximate 95% 

confidence intervals for QTL peaks 51. 

FDR-adjusted p-values were calculated for QTL peaks. They were calculated as the ratio 

of the number of transcripts expected by chance to show a maximum LOD score greater than a 

particular LOD threshold vs. the number of transcripts observed in the real data with a maximum 

LOD score greater than that threshold, for a series of LOD thresholds ranging from 0.1 to 0.1+the 

maximum observed LOD for all transcripts within a cell type, with equal-sized steps of 0.01. Per 

chromosome, the number of transcripts expected by chance at a given threshold was calculated 

by permuting the assignments of segregant identity within each batch relative to segregant 

genotypes, calculating LOD scores for all transcripts across the chromosome as described 

above, and recording the maximum LOD score for each transcript. In each permutation instance, 

the permutation ordering was the same across all transcripts. We repeated this permutation 

procedure 10 times. Then, for each of the LOD thresholds, we calculated the average number 

of transcripts with maximum LOD greater than the given threshold across the 10 permutations. 

We used the approxfun function in R to interpolate the mapping between LOD thresholds and 

FDR and estimate an FDR-adjusted p-value for each QTL peak 52.  

The same procedure was performed for cis eQTL analysis, with the difference being that 

the expected and observed number of transcripts at a given LOD threshold were calculated only 

at the marker closest to the transcript. We note that, as expected, Benjamini and Hochberg 

adjusted p-values, and FDR adjusted p-values from this permutation procedure for cis eQTLs 

were nearly identical. 

 

scRNA-seq in the parental strains 
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The parental QX2314 and PTM299 strains were grown separately for 4 generations on 10cm 

plates, with recurrent cycles of bleaching and synchronization as was done for the segregant 

population. For single cell preparation, synchronized L1 from both strains were seeded together 

in equal numbers on 10cm plates, and they were processed together from that point onwards, 

to limit any environmental effects. We believe that differences in efficiency of the cell preparation 

procedure between N2 and CB4856 could explain the imbalanced representation in the final 

dataset (6,721 N2 and 3,104 CB4856 cells). We took advantage of the different parental 

genotypes when processing the cells, and called cells as those with at least 50 SNV counts 

supporting one genotype, and less than 50 supporting the other. Cell-type identification was 

automated by using the logistic regression model trained on the segregants which is discussed 

above. Differential expression analysis was carried out using the DEsingle R package in each 

cell type, as well as globally in all cells combined 53.  

To compare differential expression results with our cis eQTL results, we first normalized 

the effect size of each cis eQTL by its standard error. Those were used directly in comparisons 

done within each cell type. To compare with global differential expression, those standardized 

effects were combined across all cell types in which an eQTL was identified using Stouffer’s 

weighted-Z method 54.  

 

Processing whole-worm eQTL data 

Microarray genotype and gene expression data for our published expression QTL data were 

acquired from the gene expression omnibus (GEO) 20. Probe sequences were realigned to the 

WBcel235 transcriptome using BWA, and uniquely mapping probes were used. Expression 

probes that were present in less than 2/3 of the sample were removed. The genotype and 
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expression matrices were standardized. To map eQTLs, we calculated the Pearson correlation 

between each probe and every genotype. Correlation coefficients were transformed to LOD 

scores using  . To assess significance and account for multiple testing, we 

permuted the sample identities 100 times and calculated the average number of transcripts with 

an identified eQTL at different LOD scores. We compared these results to the unpermuted LOD 

scores to estimate the false-discovery rate (FDR)58, and selected a cutoff corresponding to a 

rate of 10% (LOD = 4.2), equivalent to the single-cell mapping. cis eQTLs were derived by 

calculating the Pearson correlation between transcript expression and the normalized genotypes 

in the variant nearest to a given transcript, transforming to LOD score and comparing against 

the global threshold. 

 

Hotspot analysis 

To discover hotspots, we split the genome into 130 bins of 5 centimorgans each. We then 

counted the number of eQTLs in each bin identified in each cell type (applying a 10% FDR 

significance threshold), after removing all cis linkages. Cis linkages were defined here as those 

where the transcribed gene falls within the 95% eQTL confidence-interval range extended by 

1MB on both sides. A bin was considered to have an excess of linkages if the number of linkages 

exceeded the number expected by chance from a Poisson distribution, given the average 

number of linkages per bin for that cell type and a Bonferroni correction for the total number of 

bins (p<3.8e-4) 55. The findpeaks function in the pracma R package was used to identify peak 

hotspot bins and prevent identifying sets of adjacent bins as hotspots. 
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For gene ontology (GO) analysis, we identified hotspot targets using the same procedure 

above, but relaxed the significance threshold to 20% FDR. We then used the R package topGO 

to identify enriched terms, with the genes expressed in the cell type used as background. 

 

Neuronal cell-type classification 

Neuronal classification was carried out using a combination of available C. elegans scRNA-seq 

datasets, including a published L2 dataset 17,18, and the C. elegans Neuronal Gene Expression 

Map & Network (CeNGEN) project 28. Neuronal cells were processed separately using monocle3 

with default parameters, with the exception that 100 dimensions were specified for the 

preprocess_cds step. The analysis was carried out in two passes. In the first pass, we processed 

all cells identified by our classifier as neurons. Following Leiden clustering, we removed 2,114 

cells that were in clusters whose top genes were mostly mitochondrial and ribosomal genes, 

similar to the analysis described above for the global dataset. We then processed the pruned 

dataset in monocle3 as described above. To annotate the final neuronal clusters, we first used 

the list of marker genes from two previous publications 18,27, to derive candidate clusters that 

uniquely express marker genes. We next used the top_markers function in monocle3 to identify 

upregulated genes in each cluster compared to the rest. These were compared with the data 

available in the online SCeNGEN Shiny application (https://cengen.shinyapps.io/SCeNGEA) for 

the candidate cluster. The full list of genes used for classification is found in Table S5. In the 

final dataset, clusters Unknown_1 - Unknown_4 are of unknown identity and do not correspond 

to the clusters of the same name in CeNGEN, while the clusters Unknown_touch and 

Unknown_glut_2 do correspond to cell clusters of the same names in CeNGEN. 
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Single neuronal subtype eQTL (sn-eQTL) analysis 

sn-eQTL mapping is described above (section “eQTL mapping”). GO annotation of genes with 

sn-eQTL was done in topGO, with the genes expressed in neurons (determined using the criteria 

for inclusion in eQTL mapping) used as background. A heatmap was plotted using the 

ComplexHeatmap package 56. To determine the consistency in effect direction between the sn-

eQTL neuron and the rest of the neurons, we repeated the eQTL mapping, aggregating cells 

from all neuronal cell-types but omitting the neuron with the sn-eQTL. The RIC and RIM neurons 

in the parental datasets were identified using the same gene markers used in the segregant 

eQTL dataset, as described in Table S5. 
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Supplementary Figures 

 

 

Figure S1. Observed representation of cell-types in our dataset compared to expected. 

The expected number of cells was calculated by manually curating the cellular lineage 

information available at https://www.wormatlas.org/ for the L2 stage. 
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Figure S2. Probabilistic genotyping using a hidden markov model (HMM). A cell with the 

median (69) number of unique genotype-informative SNV UMI counts is shown for illustration. 

The trace is a summation of the probability of a CB4856 homozygous genotype and half the 

probability of CB4856 heterozygous genotype at each position. Each vertical line is a count for 

an SNV, and colors correspond to the count depth. Vertical lines pointing upwards denote counts 

supporting the CB4856 variant, while lines pointing downwards are counts supporting the N2 

variant. 
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Figure S3.  cis eQTLs reflect gene expression differences in the parent strains. 

Comparison between cis eQTLs mapped across all cell types and gene expression differences 

in a dataset of 6,721 N2 and 3,104 CB4856 cells. For cis eQTLs mapped in multiple cell-types, 

effect sizes were combined using Stouffer’s weighted-Z method 54. Differential gene expression 

between N2 and CB4856 was calculated using R package DEsingle 53.  
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Figure S4. Correlation between cell-type cis-eQTL signal and differential gene expression 

between the parental strains. The data corresponds to Figure S3, split out by each cell type 

separately. 
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Figure S5. cell-type-specific trans-eQTL Hotspots. A genome-wide map of eQTLs in seam 

cells (A), neurons (B), body-wall muscle cells (C) and intestinal cells (D) is shown. The position 

of the eQTLs is shown on the x-axis, while the y-axis shows the position of the associated 

transcripts. The dotted line marks the peak position of the hotspot, while targets of each hotspot 

are colored. 
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Figure S6. Cell-type expression of genes that form troponin complexes. Size of circles 

corresponds to the percentage of cells expressing each gene in each cell-type, and the color 

corresponds to average log(counts + 1). Of the four troponin genes strongly expressed in the 

body wall muscle, three are affected by a trans-eQTL hotspot on Chr. I. 
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Figure S7. UMAP projection of 12,468 neurons. Each cluster is labeled based on the neuronal 

identity. Clusters represent either single neurons, or few neurons with shared function.  
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