Additional file 1

Leakage-free covariate adjustment

Let v be the target variable or feature which we want to adjust by covariates $C_{1}, C_{2}, \ldots, C_{r}$. Denote by v_{i} and $C_{i 1}, C_{i 2}, \ldots, C_{i r}$ the observed values of v and the C s for subject i.

Suppose we are given a cross-validation split of the subjects into a training and a testing set.

Continuous v

If v is continuous, we use the training set to fit a linear regression model:

$$
v=\beta_{0}+\beta_{1} C_{1}+\beta_{2} C_{2}+\ldots+\beta_{r} C_{r}
$$

For each subject i (whether in the training or testing set), we subtract the model-fitted values from v_{i} :

$$
v_{i}^{\text {adj }}=v_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} C_{i 1}+\hat{\beta}_{2} C_{i 2}+\ldots+\hat{\beta}_{r} C_{i r}\right)
$$

Binary v

If v is binary with values are 0 and 1 , we use the training set to fit a logistic regression model:

$$
\operatorname{logit}(\pi)=\beta_{0}+\beta_{1} C_{1}+\beta_{2} C_{2}+\ldots+\beta_{r} C_{r}
$$

where $\pi=\operatorname{Prob}(v=1)$.
For each subject i (whether in the training or testing set), we subtract the model-fitted values from the observed outcomes:

$$
v_{i}^{\text {adj }}=v_{i}-\hat{\pi}_{i}
$$

where

$$
\hat{\pi}_{i}=\frac{\exp \left(\hat{\beta}_{0}+\hat{\beta}_{1} C_{i 1}+\hat{\beta}_{2} C_{i 2}+\ldots+\hat{\beta}_{r} C_{i r}\right.}{1+\exp \left(\hat{\beta}_{0}+\hat{\beta}_{1} C_{i 1}+\hat{\beta}_{2} C_{i 2}+\ldots+\hat{\beta}_{r} C_{i r}\right)}
$$

Multiclass v

This is a simple extension of the binary case. If v is multiclass with values $0,1, \ldots, K$, we use the training set to fit a multinomial logistic regression model, deriving values $\hat{\pi}_{k}$ for $k=1, \ldots, K$.

For each subject i (whether in the training or testing set), we subtract the model-fitted values from the observed outcomes:

$$
v_{i}^{\mathrm{adj}}=v_{i}-\sum_{k=1}^{K} \hat{\pi}_{k i} k
$$

