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Abstract  

Precise patterns of gene expression are driven by interactions between transcription factors, 10 

regulatory DNA sequence, and chromatin.  How DNA mutations affecting any one of these 11 

regulatory ‘layers’ is buffered or propagated to gene expression remains unclear.  To address 12 

this, we quantified allele-specific changes in chromatin accessibility, histone modifications, and 13 

gene expression in F1 embryos generated from eight Drosophila crosses, at three embryonic 14 

stages, yielding a comprehensive dataset of 240 samples spanning multiple regulatory layers.  15 

Genetic variation in cis-regulatory elements is common, highly heritable, and surprisingly 16 

consistent in its effects across embryonic stages.  Much of this variation does not propagate to 17 

gene expression.  When it does, it acts through H3K4me3 or alternatively through chromatin 18 

accessibility and H3K27ac.  The magnitude and evolutionary impact of mutations is influenced 19 

by a genes’ regulatory complexity (i.e. enhancer number), with transcription factors being most 20 

robust to cis-acting, and most influenced by trans-acting, variation.  Overall, the impact of 21 

genetic variation on regulatory phenotypes appears context-dependent even within the constraints 22 

of embryogenesis.  23 
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Introduction 24 

The development of a multicellular organism requires the tight regulation of gene expression 25 

in both space and time to ensure that reproducible phenotypes are obtained across individuals and 26 

environmental conditions.  DNA regulatory elements (e.g. promoters and enhancers) are essential 27 

to this process by integrating regulatory information from sequence-specific transcription factors 28 

(TFs), RNA polymerase II (Pol II), and other regulatory proteins to drive specific spatio-temporal 29 

patterns of expression during development.  But while gene expression patterns are typically 30 

quite precise, the DNA regulatory elements that control such expression states are replete with 31 

genetic variation (mutations) that can impact transcriptional regulation at multiple levels 32 

including TF binding (Kasowski et al. 2010; Spivakov et al. 2012; Behera et al. 2018), chromatin 33 

state (Waszak et al. 2015), transcriptional start site usage (Schor et al. 2017), gene expression 34 

levels (Garfield et al. 2013; Battle et al. 2015), and transcript isoform diversity (Cannavo et al. 35 

2017).  As a result, genetic variation in regulatory elements can contribute to variation in disease 36 

susceptibility among individuals (Epstein 2009; Lowe and Reddy 2015) and to evolutionary 37 

change between species (Wittkopp and Kalay 2011), by impacting higher-level phenotypes.   38 

Although regulatory mutations can have large effects, many behave effectively neutrally, 39 

making it challenging to predict which genetic variants will have an impact.  Part of the difficulty 40 

comes from the general lack of knowledge about which regions of non-coding DNA have 41 

regulatory (not just biochemical) function.  An additional challenge is the apparent robustness of 42 

gene regulatory networks.  At least within a laboratory context, whole sections of regulatory 43 

DNA can be removed with little apparent impact on phenotype or fitness (Ahituv et al. 2007), 44 

and evolutionarily divergent regulatory sequences are often swapped between species with few 45 

detectable changes in gene expression (Borok et al. 2010).  These studies demonstrate that 46 

developmental systems have the ability to compensate or “buffer” the effects of regulatory 47 

mutations, e.g. via compensation by other regulatory elements with partially overlapping 48 

activities (Hong et al. 2008; Frankel et al. 2010; Cannavo et al. 2016).  49 

The complex relationship between DNA sequences and regulatory function further 50 

complicates our understanding of how mutations can impact gene regulation.  For example, 51 

mutations affecting TF binding motifs can have a large impact on chromatin accessibility, Pol II 52 

occupancy, histone modifications and gene expression (Kircher et al. 2019).  But in some 53 
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contexts/tissues, TF binding is driven by collective processes that can include protein-protein as 54 

well as protein-DNA interactions, such that mutations affecting a single TF motif may not 55 

substantially affect TF recruitment (Junion et al. 2012; Doitsidou et al. 2013; Uhl et al. 2016; 56 

Khoueiry et al. 2017).  Moreover, many sequence variants affecting TF occupancy in vivo lie 57 

outside the TF’s binding motif, and are likely due to variation affecting the binding of co-58 

occurring factors (Kasowski et al. 2010; Zheng et al. 2010; Reddy et al. 2012) or an overall 59 

change in DNA shape (Lu and Rogan 2018).  To make matters more complex, enhancer output is 60 

not a strict function of all TF’s occupancy – enhancers often contain binding sites for multiple 61 

factors with redundant input, and in some cases, different combinations of TFs can produce the 62 

same expression output (Brown et al. 2007; Zinzen et al. 2009; Khoueiry et al. 2017).  Even in 63 

cases where an enhancer’s activity is abolished by mutations, the gene’s expression may not be 64 

affected, as genes often have many enhancers with partially overlapping activity, which can 65 

buffer the functional impact of genetic variation impacting a single enhancer (Hong et al. 2008; 66 

Frankel et al. 2010; Cannavo et al. 2016).  With a few exceptions (Bullaughey 2011), this 67 

complex genotype-to-phenotype relationship cannot be modelled using regulatory sequence 68 

information alone, but rather must be evaluated empirically (Khoueiry et al. 2017). 69 

Allelic-specific data provides a unique opportunity to study the molecular mechanisms of cis-70 

acting variation and has uncovered multiple regulatory processes through which cis-acting 71 

variation impacts transcriptional control (Kilpinen et al. 2013; Chen et al. 2016).  F1 crosses of 72 

inbred strains provide an elegant method to determine the contribution of both cis and trans 73 

variation by overcoming the limits of genetic variation between trios and the general lack of 74 

statistical power to interrogate trans-acting variation using population data (Wittkopp et al. 2004; 75 

Tirosh et al. 2009; Goncalves et al. 2012; Wong et al. 2017).  Taking advantage of this F1 design, 76 

we set out to better understand how natural sequence variation impacts gene regulation during 77 

embryonic development.  We collected Drosophila F1 hybrid embryos and quantified allele-78 

specific changes in open chromatin (ATAC-Seq), enhancer and promoter activity (using 79 

H3K27ac or H3K4me3 & H3K27ac ChIP-Seq as proxies, respectively), and gene expression 80 

(RNA-seq).  Our half-sibling design of F1 embryos was generated by crossing males from eight 81 

genetically distinct, wild-derived isogenic lines from the Drosophila Genetic Reference Panel 82 

(DGRP) (Mackay et al. 2012) to females from a common, laboratory-derived isogenic reference 83 

strain.  In addition to having practical advantages for conducting large scale crosses, as described 84 
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below, the use of a common female line allowed us to evaluate the impact of regulatory 85 

mutations while controlling for maternal effects, which can contribute disproportionately to 86 

variability in early developmental phenotypes (Lynch and Walsh 1998; Garfield et al. 2013).  By 87 

collecting matched phenotypic measurements from two parental strains (F0), we also estimated 88 

the heritability of cis-acting mutations and the relative magnitude of trans-acting genetic 89 

variation that contributes to phenotypic divergence.   90 

Overall, we find allelic variation in chromatin accessibility and histone marks to be common 91 

and significantly correlated between regulatory layers, with the effects of regulatory mutations 92 

being more strongly coupled at promoters than distal elements (putative enhancers).  Using this 93 

genetic variation as a perturbation to gene regulation, we uncovered different mechanistic rules 94 

in the order of information flow during transcriptional regulation.  Specific classes of genes, such 95 

as TFs, are in general more strongly buffered against the effects of this variation, which in turn 96 

reflects their patterns of inheritance and genetic architecture (having a greater proportion of trans 97 

and less additive heritability).  In some cases, selection is driven to near fixation in gene 98 

expression (but interestingly not in upstream regulatory layers), affecting genes involved in 99 

environmental responses and pesticide resistance.  Taken together, this comprehensive data set 100 

provides new insights into the functional impact of cis-regulatory DNA variation and how this is 101 

transmitted across different regulatory layers during embryogenesis, and how patterns of 102 

inheritance can influence the visibility of regulatory sequence variants to natural selection.  103 

  104 
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Results 105 

Quantifying gene expression and regulatory element activity in hybrid embryos 106 

We collected F1 hybrid embryos by mating eight genetically distinct inbred lines from the 107 

DGRP collection (Mackay et al. 2012) to females from a common maternal line (Fig. 1a).  The 108 

resulting F1 panel contains an average of 567,412 SNPs per cross, and a total of 1,455,988 109 

unique SNPs covering a range of minor allele-frequencies and levels of conservation (phyloP 110 

scores) (Fig. S1a, Table S1).   111 

The F1 embryos were collected at three important stages of embryogenesis: 2-4 hours after 112 

egg laying, consisting primarily of pre-gastrulation, unspecified embryos (mainly stage 5), 6-8 113 

hours (mainly stage 11), when major lineages within the three germ-layers are specified, and 10-114 

12 hours (mainly stage 13), during terminal differentiation of tissue lineages (Fig. 1a).  For each 115 

developmental stage, RNA-Seq, ATAC-Seq, and iChIP for H3K27ac and H3K4me3 (Buenrostro 116 

et al. 2013; Lara-Astiaso et al. 2014) were performed from the same collection of embryos (4 117 

measurements x 3 stages x 8 genotypes = 96 samples).  In addition, we collected samples from 118 

the parents of one F1 genotype, forming a parent/offspring trio that allowed us to partition 119 

genetic differences between the parents into cis and trans (Wittkopp et al. 2004).  All 120 

measurements were made in replicates from independent embryo collections to assess biological 121 

and technical variability, giving a total of 240 samples (192 F1 samples (96 x 2 replicates) + 48 122 

parental (4 measurement x 3 stages x 2 genotypes x 2 replicates)).  Read counts were highly 123 

correlated between biological replicates, with median correlation coefficients of 0.98 for RNA, 124 

ATAC and histone data (Fig. S1b, Methods).   125 

To define non-coding features, ATAC-Seq and ChIP-Seq reads from each cross were mapped 126 

to each parental line independently and the significant peaks merged to produce a combined set 127 

of common peaks used in subsequent comparisons across all genotypes.  In total, we identified 128 

11,211 genes with detectable expression, 31,963 ATAC-Seq peaks, 19,769 H3K27ac peaks, and 129 

6,648 H3K4me3 peaks, active at one or more stages of embryogenesis (Table S2).  Of these, 130 

93.9%, 95.8%, 95.2%, and 96.9%, respectively, contained at least one SNP that distinguishes 131 

maternal and paternal haplotypes in at least one line.  The CG12402 locus, a predicted ubiquitin-132 

protein transferase, provides a good example of overall signal quality (Fig 1a).  The gene has 133 

dynamic expression, transitioning from very low to high expression from 2-4 hours to 10-12 134 
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hours (Fig. 1a, RNA-seq), which is accompanied by quantitative changes in chromatin 135 

accessibility, and to a lesser extent in histone modifications in its promoter-proximal region.   136 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.05.21.107961doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.107961


 8 

To examine the regulatory relationships between these different signals, we divided the data 137 

into promoter proximal (within +/- 500 bp of an annotated transcriptional start site (TSS) or 138 

H3K4me3 peak) or distal (putative enhancer) elements.  Looking globally at promoter proximal 139 

regions, all signals show the expected enrichment and distribution around the TSS (Fig 1b, 140 

proximal), demonstrating the quality of the data.  The ATAC-seq signal, for example, is highest 141 

directly at the promoter, representing occupancy of the basal transcriptional machinery, while 142 

H3K27ac and H3K4me4 signals are highest at the +1 nucleosome, reflecting the predominantly 143 

unidirectional nature of Drosophila promoters (Core et al. 2012; Mikhaylichenko et al. 2018).  144 

Moreover, H3K27ac has the expected higher signal levels at promoters compared to distal sites, 145 

(Kheradpour et al. 2013; Kwasnieski et al. 2014).  Interestingly, while all three regulatory signals 146 

(ATAC-seq, H3K27ac and H3K4me3) are highly correlated at the promoters of actively 147 

transcribed genes (8,433 promoters contain all 4 signals, Fig 1c, left upset plot), 3,907 regions 148 

marked by H3K4me3 and overlapping peaks of ATAC-seq and/or H3K27ac show no detectable 149 

RNA-signal (Fig. 1c bar plots, 1b).  Approximately 850 of these involve annotated transcripts of 150 

non-coding RNA (Flybase annotation) that lack a poly-A tail and were thus not selected in our 151 

Poly-A+ RNA-seq library.  This suggests a surprising number of additional unannotated 152 

transcriptional events even within the well-annotated Drosophila genome.     153 

The majority of H3K27ac (62.5%) and ATAC peaks (63.7%) are distal to an annotated 154 

promoter, and likely represent enhancer elements.  Of the distal ATAC peaks, 58% 155 

(12,587/21,594) have no H3K27ac signal and may represent inactive enhancers or other 156 

regulatory elements, e.g. insulators (Fig. 1c).  The remaining 9,007 distal elements overlap 157 

H3K27ac signal (Fig. 1c, right), which is generally bimodally distributed around the ATAC-seq 158 

Figure 1: Quantifying gene expression and regulatory element activity in hybrid embryos 

a. Left: Experimental design and data structure. RNA-seq, ATAC-seq and iChIP of H3K4me and H3K27ac were 
performed on embryos of three developmental stages from 8 F1 hybrids with a common maternal line.  Right: 
Genome browser overview for the CG12402 gene locus showing all data for 2-4 hours and 10-12 hours for the 
genotype vgn28.  Bottom track shows characterized enhancers (Kvon et al. 2014). b. Top panel shows density 
plots for read count signal from each data type for TSS proximal and distal regions (left and right, respectively). 
Shaded regions indicate the 95% confidence intervals.  Plots are centered at the TSS for promoter proximal regions, 
and ATAC summits for distal regions. Bottom panel shows a heatmap representation of the data type 
corresponding to the density plots shown above where rows are sorted by mean RNA-seq and mean ATAC-seq 
signal.  c. Upset plots show the colocalization of signal for proximal and distal regions (at peaks in regulatory 
regions and genes) for all four data types. Regions common between data types (filled circle) are joined by a 
vertical bar. Horizontal bar plots indicate the number of unique genes/features.  Pie charts show the proportion of 
features with statistically different total read counts between time points (color indicates the number of times 
(0/1/2) the feature is differentially expressed). 
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peak (Fig. 1b), suggestive of active enhancers.  Conversely, 40% (6,116/15,123) of H3K27ac 159 

peaks do not overlap a significant ATAC peak (Fig. 1c, right) and represent regions with 160 

quantitively lower ATAC signal (Fig. S1c), below our stringent threshold for detection.  Both 161 

gene expression (RNA-seq) and non-coding elements (based on ATAC-seq and chromatin 162 

signatures) show evidence of dynamic activity, with the majority (72%-96%) of features showing 163 

statistically significant changes in total counts between developmental time points across all F1 164 

lines (Fig. 1c, pie charts; Methods), CG12402 being one example (Fig. 1a).   165 

Taken together, these features demonstrate both the quality and richness of the data and its 166 

usefulness to further annotate the regulatory landscape of the Drosophila genome at these 167 

important stages of embryogenesis.  168 

 169 

Allele-specific variation is common across genotypes and regulatory layers  170 

To examine the impact of genetic variation, reads from each cross were mapped to 171 

personalized genomes for each parent and assigned to the maternal or paternal haplotype, where 172 

possible (Methods).  To test for allele-specific differences for each gene per line and time 173 

combination, we used an empirical Bayes framework to model allele-specific counts for each 174 

data type using a beta-binomial model (Fig. S2a).  Most promoter proximal and distal elements 175 

had the expected allelic ratios centered at 50:50 across autosomes (Fig 2a), with a slight elevation 176 

in the magnitude of allelic imbalance (AI) at distal sites (Fig. S2b).  RNA allelic ratios were also 177 

concordant with the direction of change of embryonic eQTL (Fig. S2c), previously quantified in 178 

the same paternal lines at the same stages of embryogenesis (Cannavo et al. 2017), further 179 

verifying our approach.  180 

To evaluate sex ratios in the embryo pools, and to set a reference point for evaluating allelic 181 

imbalance and dosage compensation on the X-chromosome (Lucchesi and Kuroda 2015), we 182 

sequenced the genomic DNA (gDNA) of each cross.  This confirmed that our embryonic pools 183 

were relatively sex balanced, with the expected X-chromosome allelic ratio of ~0.66 observed 184 

across our gDNA dataset (Fig 2b).  Consistent with full dosage compensation on the maternally-185 

derived male X chromosome (Georgiev et al. 2011), we observed a maternal:paternal ratio of 186 

0.74 for RNA (Fig. 2b; Methods).  Interestingly, a similar degree of up-regulation (dosage 187 

compensation) was not observed for chromatin data: for both chromatin accessibility and  188 
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Figure 2:  Allelic imbalance is common across regulatory data types  190 
a. Density plot of allelic count distribution and matching boxplot showing total read count abundance (log10) 191 
in the autosomes at TSS proximal (left) and distal (right) regions for all data types assayed.  b. Box plot 192 
shows the distribution of the maternal allelic ratio of X chromosome in each data type.  Each distribution is 193 
compared to the allelic ratio observed in genomic DNA in grey.  c. Pie charts show significantly allelic 194 
imbalance (AI) genes/features at promoter proximal (left, TSS +/-500 bp) and distal (right, 500-1500 bp +/- 195 
from TSS) regions for all four data types (FDR<0.1).  Upper: AI events in at least one F1 line at any time 196 
point. Lower: AI events detected in all 8 F1 lines in all time points, on a per line and time basis.  d. Smoothed 197 
histograms show the distribution of coefficients of genetic variation for all features with statistically 198 
significant between-line variances within each regulatory layer.  e. Box plots show the distribution of 199 
coefficient of genetic variation (CVg, y axis) for chromatin accessibility (left) and H3K27ac signal (right), 200 
for promoter -proximal and -distal sites.  Genetic influences are more pronounced at distal regulatory 201 
elements in ATAC and H3K27ac.  f. Line plots show three examples of individual lines having distinct 202 
expression profiles.  Coefficients of genetic variation are typically larger for RNA than for non-coding 203 
features, an effect that often results from one or two lines having significantly altered expression relative to 204 
the panel as a whole.  205 

 206 

histone modifications, the observed ratio at X chromosome sites (H3K27ac=0.688, 207 

H3K4me3=0.692) is more similar to the observed genomic ratio of 0.66 than to the expected 208 

ratio of 0.75 under full dosage compensation (Fig. 2b).  The ratios showed no significant 209 

difference when comparing proximal to distal sites, arguing against the hypothesis that the two-210 

fold upregulation of gene expression on the male Drosophila X chromosome results from a two-211 

fold increase in the loading of polymerase at its genes’ promoters (Conrad et al. 2012).  Our 212 

results rather indicate that whatever the mechanism of dosage compensation in Drosophila, it 213 

does not lead to a linear increase in chromatin accessibility on the male X chromosome, though 214 

some increase in accessibility on the upregulated X is consistent with our measurements (Urban 215 

et al. 2017; Pal et al. 2019).  Regardless of its cause, we used the empirically observed average 216 

ratio for X-chromosome features for each data type to form the null-hypothesis in subsequent 217 

beta-binomial tests for allelic imbalance. 218 

Overall, allelic imbalance is common, with 46% of genes and between 18-25% of non-coding 219 

features showing statistically significant AI in at least one line at one or more time point (Fig. 2c, 220 

FDR <0.1).  The magnitude of AI is generally evenly distributed across SNPs with a range of 221 

minor allelic frequencies, however highly imbalanced peaks show a strong enrichment for 222 

extremely rare SNPs (including potentially de-novo mutations) found uniquely in the maternal 223 

line relative to the 205 lines of the full DGRP panel (Fig. S2d, Chi^2 test; p<2.2e-16), 224 

highlighting the disproportionate impact of rare and de-novo mutations on expression phenotypes 225 
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(Cannavo et al. 2017).  Allelic imbalance is more frequently observed for RNA than for other 226 

regulatory layers (Fig. 2c).  In contrast to what is observed in mammals (Villar et al. 2015), 227 

promoter-proximal elements are slightly more polymorphic (pair-wise differences (pi) = 0.132 vs 228 

0.129, Wilcoxon-test p = 1e-10) and evolve faster (phyloP = 0.514 vs 0.560, Wilcoxon-test, p < 229 

2.2e-16) in Drosophila as compared to distal elements (putative enhancers) (Table S3).  Despite 230 

this, distal peaks of open chromatin and H3K27ac show larger (Tukey’s ASD, p < 0.0001) 231 

and more frequent (χ2 test, p < 2.2e-16) allelic imbalance than their proximal counterparts (Fig 232 

S2b).  233 

To understand how allelic-imbalance relates to heritable variation at the total count level, we 234 

took advantage of the fact that our measured F1 lines share a common maternal genotype.  As a 235 

result, line effects (from a linear model) are expected to be directly proportional to heritability – 236 

the degree to which phenotypic variation can be explained by genetic factors (Lynch and Walsh 237 

1998).  To make these effects comparable across genes and features, line effects (standard 238 

deviations) were scaled by the mean read count of each feature, expressing line effects as a 239 

percentage deviation from the mean phenotype (coefficient of genetic variation).  For chromatin 240 

features, the magnitude of genetic variation on measured signal is relatively modest, with the 241 

average peak varying by ~5-10% of the mean phenotype among crosses (Fig. 2d).  Overall, the 242 

effects of heritability genetic variation is higher at distal regulatory elements as compared to their 243 

proximal counterparts (Fig. 2e, p < 1e-5, Methods), consistent with the greater magnitude of AI 244 

at distal sites.  For RNA, in contrast, the magnitude of genetic effects is pronounced, with an 245 

average  coefficient of genetic variation of ~9% and some genes showing coefficients of ~40%, 246 

indicating that genetically encoded differences in expression can account for nearly half of some 247 

genes’ mean expression levels.  In many cases, such high coefficients are driven by one or a few 248 

lines showing highly divergent patterns of expression (Fig. 2f, right) suggesting that large-effect 249 

gene expression differences in this population can be driven by large-effect cis-acting mutations.   250 

 

Allelic imbalance is pronounced in metabolism and environmental response genes 251 

Imbalanced genes and associated regulatory features are enriched for fast-evolving and 252 

Drosophila-specific genes lacking clear categorical annotations (Mi et al. 2003; Turner et al. 253 

2008) and are depleted in TFs and their associated regulatory elements (Fig. S3, Table S4), 254 
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consistent with our previous eQTL study (Cannavo et al. 2017).  AI is also enriched for 255 

metabolic genes at the RNA level, although interestingly this is not observed for associated 256 

regions of open chromatin or histone modifications (Fig. S3, Table S4).  The observed 257 

differences in AI among gene categories may reflect differential histories of selection; regulatory 258 

regions in the vicinity of TFs show a depletion of nucleotide diversity (pi, rank biserial 259 

correlation = -0.052, p < 1e-4) and harbor more low-frequency SNPs (rank biserial correlation = 260 

-0.173, p = 2.8e-3; Table S4) compared to background.  However, this difference AI could also 261 

be explained by different gene categories having different sensitivities to mutations (buffering), a 262 

point we explore further below.  263 

For most gene categories, AI is equally likely to favor the maternal or the paternal allele.  264 

However, a subset of categories shows consistent and often large parent-specific biases, a trend 265 

that is particularly striking for male-biased genes associated with immunity or insecticide 266 

resistance (Fig. S4a; Table S5).  Cyp6g1, for example, is not expressed in embryos of our 267 

maternal line (Fig. S4b), which is derived from a laboratory stock isolated before the widespread 268 

use of agricultural pesticides, or in embryos sequenced by the modENCODE project (Celniker et 269 

al. 2009).  It is, however, strongly upregulated in every measured paternal haplotype from the 270 

wild, and its overexpression contributes to DDT resistance in multiple Drosophila species (Fig. 271 

S4b, (Daborn et al. 2001; Battlay et al. 2016)).  Highly imbalanced genes like Cyp6g1 (Table S5) 272 

overlap genes whose expression varies extensively among lines (Fig. S4c, p < 1e-6) and who 273 

have high levels of heritability, highlighting the important contribution of selection on cis-274 

regulatory elements in shaping responses to changing environments.  275 

 276 

The impact of cis-acting genetic variation is largely consistent across development  277 

We next evaluated if, and to what extent, allelic ratios change during development.  Overall, 278 

we observed a surprising constancy of allelic imbalance between embryonic time points: Despite 279 

the temporal modularity of many cis-regulatory elements, imbalanced features at one time point 280 

have a ~50% chance of being imbalanced in the subsequent time-point (Fig. 3a, S5a).  To further 281 

quantify the potential impact of development on allelic ratios, we constructed a series of linear 282 

models comparing the effect sizes of genetics (genotype/line effect) vs developmental stages 283 

(time effect) on total counts and allelic ratios across our experimental design.  For total counts, 284 
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developmental time was the greatest contributor to variation across all data types (Fig. 3b, upper 285 

panel), consistent with the clear time specific clustering by principal component analysis (Fig. 286 

3b, lower panel, shown for RNA, Methods).  Interestingly, this predominance of time is largely 287 

restricted to distal and not proximal sites for ATAC-Seq (Fig 3d), likely reflecting the frequently 288 

constitutive accessibility of promoters during Drosophila embryogenesis (Cusanovich et al. 289 

2018).  In contrast to the total counts, the impact of developmental time on allelic ratios is 290 

significantly reduced compared to genetic (line) effects (Fig 3c, upper panel).  Correspondingly, 291 

there is a lack of time-point specific clustering in PCA (Fig 3c, lower panel), although there are 292 

some examples of allelic ratios that change over time in a coordinated manner between 293 

regulatory layers (Fig. S5b).  294 

 295 

Figure 3:  Allelic imbalance is generally not predictive of developmental time 296 
a.  The relationship of allelic imbalance across time points for RNA (upper panel) and chromatin 297 
accessibility (lower panel).  Proportions of AI and non-AI features are shown in black and grey, 298 
respectively, and represented by the thickness of line. Exact proportions for each category are provided as 299 
numbers.  Data for 2-4 hour time point for RNA are not included due to presence of maternal transcript at 300 
this stage.  b.  Top: Box plots show the distribution of effect sizes obtained from mixed linear models, for 301 
total counts.  For each type of data (gene/feature), the effect sizes of time (T) and line (L) effects are shown.  302 
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Bottom: Principal component analysis of gene expression for total counts.  c.  Top: Box plots showing the 303 
distribution of effect sizes obtained from mixed linear models, for allelic ratios.  For each type of data 304 
(gene/feature), the effect sizes of time (T) and line (L) effects are shown.  Bottom: Principal component 305 
analysis of gene expression for allelic ratios.  d. Results from mixed linear models examining the effect of 306 
developmental time versus line (genotype) between proximal and distal ATAC-seq peaks for total count 307 
data.  Distal peaks show a larger time effect compared to genotype effect (Mann-Whitney U, p<2.2e-61).  308 
This is only slightly evident for promoter proximal peaks (Mann-Whitney U, p<8.5e-5).     309 
 310 

Interactions between genetic and developmental effects can play an important role in gene 311 

regulation (Paaby and Gibson 2016; Yadav et al. 2016).  We therefore looked for evidence of 312 

interaction effects in linear models fitted to total counts or allelic ratios containing only time, 313 

only genotype, time plus genotype (time + genotype), or interactions between the two (genotype 314 

x time (GxT)).  Interaction effects occur frequently at the total count level and are particularly 315 

common for gene expression, making up nearly 30% of all analyzed models (Table S6) and 316 

highlighting a potentially important role for developmental stage by genetic (GxT) interactions in 317 

population-level variation during embryogenesis, as previously observed (Cannavo et al. 2017).  318 

In contrast, there is little evidence for interaction effects at the level of allelic ratios for gene 319 

expression or ATAC-seq peaks (Table S6), consistent with the relatively small numbers of allelic 320 

ratios reported to show influences of gene x environment interactions across environmental 321 

conditions (Moyerbrailean et al. 2016; Knowles et al. 2017).   322 

In summary, allelic effects are often larger at distal compared to promoter regions, with allelic 323 

effects at both regions being surprisingly stable across develompental time points.  In contrast, 324 

total counts vary dramatically between time points, with interactions between genotype and 325 

developmental stage (GxT) being common, particularly for gene expression.  Given that total 326 

counts are influenced by genetic variation in both cis and trans, this highlights an important role 327 

for trans acting variation in the maintenance of evolutionarily relevant interaction effects  328 

 329 

 Information flows in different directions across cis-regulatory layers 330 

Although quantitative signals at chromatin features are highly correlated with gene 331 

expression, the relative causal relationships between chromatin accessibility, histone 332 

modifications, and gene expression remain unclear.  To assess this, we used allelic ratios as a 333 

perturbation measured at different regulatory layers to model the paths by which genetic 334 
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variation influences regulatory phenotypes.  Allelic ratios in all pairs of datatypes are correlated, 335 

to varying extents (Fig. 4a), and in all cases we could reject the null hypothesis of independence 336 

(e.g. highest p-value between all comparisons was 4.2e-17 for ATAC and H3K4me3).  We tested 337 

for an enrichment/depletion of co-occurring, statistically significantly imbalanced (FDR < 0.1) 338 

genes/features using an intersection-union test (Fig 4b; Methods), using a distance of +/-1500 kb 339 

to assig distal features to genes.  The co-occurrence of allelic imbalance is especially pronounced 340 

for chromatin features, in particular H3K4me3 and proximal H3K27ac with a log-odds >2.0 (Fig. 341 

4b).  Interestingly, for chromatin accessibility and H3K27ac, the co-occurrence of AI is more 342 

pronounced at promoters (proximal) than enhancers (distal) (Fig. 4b), despite allelic imbalance 343 

being slightly more frequent (p<2.2e-16, Fig. 2c) and of greater magnitude (Fig. S2b) at distal 344 

sites.  This suggests that H3K27ac and chromatin accessibility are more functionally coupled at 345 

promoters compared to enhancers, perhaps reflecting the fact that not all active enhancers seem 346 

to require H3K27ac (Bonn et al. 2012; Pradeepa et al. 2016). 347 

Due to the large amount of covariation between the different regulatory features (Fig. 4a), it is 348 

difficult to infer causal relationships from correlation data alone.  To address this, we used partial 349 

correlation to identify independent, pairwise correlations between multiple co-varying variables 350 

beyond their global correlations after thresholding on allelic ratios to remove features/genes with 351 

low information content (Fig. 4c,  S6a , Methods) (Lasserre et al. 2013; Pai et al. 2015).  We first 352 

analyzed the total count data to evaluate the overall relationships among histone modifications 353 

and gene expression.  Our results closely mirror those of Lasserre et al in CD4+ and IMR90 cells 354 

(Lasserre et al. 2013), including finding a clear relationship between gene expression levels and 355 

the total abundance of H3K27ac that ‘explains away’ (at least in a statistical sense) much of the 356 

correlation between gene expression and promoter-proximal H3K4me3 (Fig. 4d, left).  We also 357 

observed a statistically significant relationship between open chromatin and gene expression, 358 

though the strength of this partial correlation is reduced relative to standard Pearson correlation 359 

analyses (Fig. S6b). 360 
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Figure 4: Allelic imbalance is propagated through regulatory layers via different epigenetic paths 

a. Heatmaps show Pearson correlation coefficient of allelic ratios between each pair of data type for 
promoter proximal (left) and promoter distal (right) regions. Data restricted to 6-8 hours plus 10-12 hours, 
and features/genes whose allelic ratio exceeds 0.5 +/- 0.06.  b. Increased log odds of co-occurrence of 
allelic imbalance between two regulatory layers.  X-axis shows the log odds based on intersection-union 
tests (Methods).  6-8 hours plus 10-12 hours data is shown.  Bars stemming from dots are 95% confidence 
intervals.  c. Stepwise example of a partial correlation analysis of allelic ratios for three variables (ATAC, 
RNA and H3K4me3).  Partial correlation analysis is shown between gene expression and chromatin 
accessibility (upper row), and promoter proximal H3K4me3 and chromatin accessibility (lower row).  
Venn diagram schematics (top left) illustrates the variance of each variable and its shared proportion 
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To assess the functional impact of cis-regulatory perturbations, we next applied the partial 361 

correlations analysis to allelic ratios (Fig. 4d, right).  Relative to the total count data, allelic ratios 362 

reveal a much stronger relationship between open chromatin and gene expression for both 363 

proximal and distal regulatory elements (Fig. 4d, right), highlighting an important, possibly 364 

causal, link between mutations affecting accessibility (presumably TF occupancy) and gene 365 

expression. A significant correlation is also observed between H3K27ac and open chromatin at 366 

promoters, though interestingly, we see little evidence for a direct relationship between H3K27ac 367 

and gene expression itself (Fig. 4d, right).  The latter is surprising as it differs from what is 368 

observed with total count data, and suggests that although promoter H3K27ac is highly 369 

correlated with, and even predictive of gene expression (Karlic et al. 2010), they may not be 370 

mechanistically directly linked.  In contrast, allelic ratios for promoter proximal H3K4me3 show 371 

strong evidence of a direct correlation with gene expression that is independent of, at least in a 372 

statistical sense, allelic differences in chromatin accessibility or H3K27ac (Fig. 4d, right).  Taken 373 

together, this analysis suggests two independent pathways by which selection on segregating 374 

mutations could influence gene expression, one affecting open chromatin and promoter-proximal 375 

H3K27ac, and the other influencing H3K4me3.   376 

To explore these relationships further, we analyzed each edge identified by partial correlations 377 

using copula directional dependence analysis (Kim et al. 2008; Lee and Kim 2019), a statistical 378 

approach based on copula regression that evaluates the directionality of the pairwise relationships 379 

allowing for non-linearities (Methods).  This method assigns a direction to each edge for which 380 

there is clear evidence for greater explanatory weight in one direction.  For TSS-proximal 381 

regions, this placed RNA upstream of both H3K4me3 and open chromatin (Fig. 4d right, arrow).  382 

(orange), as measured by linear regression (orange lines).  Left panels: Pearson correlations for the two 
comparisons are significant.  Middle panels: regression of each initial variable against a third, 
confounding variable (H3K4me3, upper row; RNA, lower row).  Residuals of the initial variables 
(colored lines) represent the non-overlapping part of the circle of the same color in the schematic.  Right 
panels: correlations of the residuals, which exclude the variance shared by the confounding factor (dashed 
circle in schematic).  This resulting partial correlation is not significant in the bottom example, suggesting 
a lack of direct correlation within the pair H3K4me3-ATAC.  d. Partial correlation and directional 
dependency regression for total counts (left) and allelic ratios (right).  Significant partial correlations 
(solid lines) suggest dependencies among regulatory layers.  For each significant edge (p < 0.01), copula 
regression was used to assign directionality (arrows, delta > 0.01).  Line thickness indicates the value of 
partial correlations, dashed lines indicate non-significance.  Results for promoter proximal and distal 
regions shown separately. 
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Although counter intuitive at first glance, this suggests that gene expression is not highly 383 

sensitive to variations in H3K4me3, while conversely changes to RNA is more predictive of 384 

H3K4me3 enrichment.  This could reflect redundancy between regulatory elements, i.e. changes 385 

in a single open chromatin region, as tested here, may not be sufficient to impact expression in an 386 

allele-specific manner.  This result is also consistent with the hypothesis that H3K4me3 is not 387 

functionally required for transcription, but may rather be deposited as a consequence, and be 388 

involved in post-transcriptional events, as recently proposed (Howe et al. 2017).  Similarly, 389 

allele-specific variation in RNA better explains variation in chromatin accessibility compared to 390 

the reverse, i.e. not all variation in open chromatin leads to a corresponding change in gene 391 

expression (Fig. 4d, right).   392 

In summary, cis-acting genetic variation shows greater covariance between open chromatin 393 

and H3K27ac enrichment at promoters compared to putative enhancers.  By measuring 394 

informative dependencies on the impact of cis-acting genetic variation, we identified multiple 395 

epigenetic pathways affecting transcription.  Specifically, genetic variation acts to change gene 396 

expression levels via the interplay between at least two different promoter-proximal paths: open 397 

chromatin and H3K27ac, or H3K4me3.  Moreover, the flow of information suggests that gene 398 

expression is often buffered against cis-acting mutations (presumably affecting TF binding) at 399 

associated regulatory elements.    400 

 401 

Regulatory buffering varies depending on gene function and local chromatin architecture  402 

Genes from different functional categories often have differences in the complexity of their 403 

regulatory landscapes.  Metabolic genes, for example, typically have relatively simple and more 404 

compact regulatory landscapes with fewer enhancers that are generally located close to the 405 

gene’s promoter (Zabidi et al. 2015).  TFs, in contrast, have many enhancers often with partially 406 

overlapping spatial activity (“shadow enhancers”) that are located at varying distances from the 407 

gene’s promoter (Spitz and Furlong 2012; Long et al. 2016).  This additional regulatory 408 

complexity is thought to make TFs more robust to deletions and sequence variation affecting 409 

their regulatory elements (Xiong et al. 2002; Cretekos et al. 2008; Montavon et al. 2011; 410 

Cannavo et al. 2016).  To examine this, we assessed the extent to which allelic imbalance in the 411 

expression of different gene categories is independent of, or decoupled from, imbalance in their 412 
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associated regulatory elements, treating gene categories with greater independence as ‘buffered’.  413 

Among all comparisons of conditional probabilities, the expression of TFs, transmembrane 414 

genes, ancient genes (conserved bilaterian processes), signalling pathway genes, secreted genes, 415 

are most insensitive to imbalance in other regulatory layers (Fig. 5a).  In contrast, genes and their 416 

regulatory elements associated with cytoskeletal function, glycoproteins, and notably metabolism 417 

show an increased sensitivity to allelic imbalance in other regulatory layers (Fig. 5a).  Taken 418 

together, our analyses suggest that in addition to purifying selection acting to remove genetic 419 

variation, regulatory buffering helps to ensure robust expression of TFs and other developmental 420 

regulatory factors from the effects of cis-acting mutations.  421 

To more directly assess the relationship between buffering and regulatory complexity, we 422 

compared the number of ATAC-seq peaks in a gene’s regulatory domain (+/- 1.5kb TSS) with 423 

the probability of imbalance in that gene’s expression.  Imbalanced genes have fewer associated 424 

ATAC-seq peaks genome-wide (Kruskal Wallis p =1.1e-16, Fig 5b).  This trend is particularly 425 

striking for single-peak genes, which have significantly more AI than genes with multiple 426 

associated regulatory elements (Mann-Whitney U test, p-value=6.4e-6).  Consistent with the 427 

observation of transcriptional robustness (a lack of AI) for genes with multiple regulatory 428 

elements, genes associated with partially redundant enhancers (or shadow enhancers) have a 429 

modest reduction in the frequency of allelic imbalance compared to genes without (Fig. 5c, 430 

𝑥!=5.3, p=0.02), based on a previously defined set of shadow enhancers for mesodermal genes 431 

(Cannavo et al. 2016).  We note, however, that this buffering is not absolute – even genes with 432 

multiple regulatory elements are more likely to be imbalanced when multiple associated peaks 433 

show unbalanced allelic ratios (Fig. 5d).   434 

In summary, there is a relationship between a gene’s regulatory complexity and the degree to 435 

which its expression is influenced by non-coding genetic variation in its regulatory elements, 436 

with more regulatory elements providing a degree of buffering against genetic perturbations.  437 

Allelic imbalance at multiple enhancers in the vicinity of a gene can have a cumulative influence 438 

on allele-specific gene expression. 439 
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Figure 5: Regulatory buffering varies across gene categories and with local chromatin structure 

a. Conditional probability of allelic imbalance in gene expression given allelic imbalance in associated 
chromatin peaks (left) and regions of H3K27ac (right) across gene categories. X-axis show log2 fold 
change where background is based on genome-wide expectation.  Gene categories enriched (orange) or 
depleted (blue) for imbalance, relative to background, are indicated (FDR>0.1, Fisher’s exact test).                 
b. Box plots denote the probability of allelic imbalance in gene expression based on numbers of 
neighbouring ATAC peaks (TSS < 1.5kb).  Genes associated to more ATAC peaks are more likely to 
show similar expression in both alleles compared to genes with fewer peaks.  c. Pie charts displaying the 
proportion of genes with allelic imbalance in RNA associated to ATAC-seq peaks overlapping known 
partially redundant/shadow enhancers (top) or not (bottom).  Genes associated with shadow enhancers 
are less likely to be allelic imbalanced compared to genes without (𝑥!=5.3, p=0.02).  d. ATAC-seq peaks 
have a cumulative effect on gene expression. The probability of imbalance in gene expression (y-axis) is 
shown as a function of the number of ATAC-seq peaks that are allelic imbalanced (left) or not imbalanced 
(right).  
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Variation in gene expression is less heritable than for chromatin features 440 

Gene expression phenotypes are influenced by linked cis-acting genetic variation, but also by 441 

trans acting variation that is not directly captured using F1s alone.  To estimate the relative 442 

impact of trans-acting variation, we performed the same experiments (iChIP-Seq, ATAC-Seq, 443 

and RNA-Seq) on a trio of lines consisting of one F1 line and stage-matched embryos from the 444 

maternal (vgn) and paternal (DGRP-399) lines.  As the two homologous chromosomes in F1 445 

cells have a common nuclear trans environment, allelic ratios in F1s estimate cis-based 446 

differences between the two parents.  Differences in parental read counts not reflected in F1 447 

allelic-ratios give an estimate of trans-acting contributions to between line divergence (Landry et 448 

al. 2005; Tirosh et al. 2009; Goncalves et al. 2012; Wong et al. 2017).  449 

Using a maximum likelihood framework, we classified features as cis, trans, cistrans, or 450 

conserved and found a similar distribution among categories for all non-coding chromatin 451 

features, with cis-acting effects being more common than trans (59% vs. 41%, p < 2.2e-16, 452 

chi^2; Fig. 6a, Methods, Table S7).  This enrichment is particularly pronounced for histone 453 

modifications, with nearly twice as many cis influenced peaks compared to trans (Fig 6a, S7a).  454 

Gene expression, in contrast, is more strongly influenced by trans-acting genetic variation (Fig. 455 

6a: 55% trans vs. 45% cis, p = 0.0073, chi^2).  Moreover, a higher fraction of cistrans genes 456 

have more trans compared to cis variation, a pattern not observed for chromatin features (trans 457 

proportions 0.67 vs. 0.53, p = 2.77e-05; Fig. S7a).  458 

Previous studies suggest that the effects of cis-acting mutations are more likely to be inherited 459 

in an additive manner, compared to trans influences (Lemos et al. 2008; Meiklejohn et al. 2014; 460 

Wong et al. 2017).  This has important consequences, as it is typically additive genetic variation 461 

that is most directly acted upon by natural selection (Lynch and Walsh 1998).  We evaluated this 462 

in our data by examining the extent to which the F1 signal (total read count) for each 463 

gene/feature departed from the parental average (a strictly additive model).  For open chromatin, 464 

whether influenced by cis or trans, we could reject a non-additive model in fewer than 1% of 465 

cases (Fig. S7b), consistent with the finding that most variation affecting TF binding is inherited 466 

additively (Wong et al. 2017).  For gene expression, in contrast, the additive model could be 467 

rejected for 32% of genes, with trans influenced genes departing from an additive model far 468 

more often than cis (Fig. 6b: 24% vs. 2%, p < 1e-4). 469 
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Figure 6: Chromatin features are more heritable than gene expression 

a. Scatter plots of F1 allelic ratio (x-axis) against the maternal/paternal ratio observed in (normalized) 
parental, total count libraries.  Genes/features along the diagonal are exclusively influenced by cis-acting 
variation, while vertically distributed genes/features show exclusively trans-influences.  Colors indicate 
maximum likelihood classification into cis, trans, and cistrans (a mixture of cis and trans) or conserved 
genes/features.  b. Left, bar plots shows the magnitude of deviation from additivity (parental mean) for 
features classified as cis vs. tran (BIC >= 2). Right, pie charts showing fraction of additive and non-
additive genes for cis (upper) and trans (lower) classes.  c. Classification of cistrans effects (BIC >= 2) 
for each regulatory layer into categories reflective of likely selective effects.  Numbers and horizontal 
bars represent the size and relative proportions of each cistrans relative direction class in each data type.  
There is more directional selection (same directions, cis + trans > cis) than compensatory evolution 
(opposite directions, cis + trans < cis) in gene expression as compared to in chromatin features. 

 

To better understand the factors that contribute to the proportion of trans-acting variation (and 470 

by association, non-additive heritability), we examined the contribution of regulatory complexity.  471 

Mirroring our buffering results, genes with more regulatory elements in their vicinity are more 472 

likely to be classified as trans-acting (trans = 2.58 peaks per gene vs. 1.9, p = 0.00094) and more 473 

likely to show non-additive inheritance (non-additively inherited genes = 2.19 peaks per gene vs. 474 

1.82 peaks per gene, p = 1.4e-3).  Similarly, there is a significant, though modest, enrichment of 475 
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trans influences among TFs and a depletion among metabolic genes, two categories that are 476 

strongly distinguished in the complexity of their associated regulatory landscapes (Table S8).  477 

Correspondingly, among 80 tested gene categories, DNA-binding TFs (p = 3e-3) and 478 

interestingly mitochondrial associated genes (p = 2e-6) stand out as the two gene categories with 479 

statistically elevated frequencies of non-additive inheritance (Fisher’s exact test; Methods).  480 

Thus, while TFs generally show reduced genetic variation among lines and reduced allelic 481 

imbalance in gene expression (Fig. S3), they are still affected by trans-acting variants whose 482 

non-additive inheritance reduces the efficacy by which selection can alter gene expression 483 

differences among different lines.  484 

Genes influenced by both cis and trans acting variants (cistrans) provide an opportunity to 485 

understand patterns of recent selection: In the face of compensatory evolution, cis and trans 486 

acting influences are more likely to work in opposite directions, while directional selection will 487 

be more likely to reinforce cis and trans effects acting in the same direction.  Using the 488 

classification of cis and trans by Goncalves et al (Goncalves et al. 2012), we observed that cis 489 

and trans effects were much more likely to act in a compensatory manner as compared to gene 490 

expression: for chromatin accessibility and histone modifications, 13% of cistrans features were 491 

classified as same vs. 37% for RNA (Fig. 6c: p < 2.2e-16 chi^2).  This suggests that for RNA 492 

there is either more frequent directional selection or less efficient selection against directional 493 

changes.  This result is robust to the method used to classify cis + trans effects (Landry et al. 494 

2005), with 63% of cistrans RNA features being classified as divergent for RNA vs. 22% for 495 

chromatin features (Fig, S7d: p < 2.2e-16 chi^2).  Taken together, these results suggest clear 496 

differences in evolutionary trajectory between regulatory layers which reflects population 497 

processes operating at different levels of organization, as well as differences between functional 498 

gene classes. 499 

 500 

 501 

 502 

 503 

 504 
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Discussion 505 

We used genetic variation to better understand the impact of sequence variation in regulatory 506 

DNA on embryonic gene expression, and to shed light on how these effects are propagated or 507 

buffered through different layers of regulatory information.  We generated allele-specific 508 

measurements of chromatin occupancy (ATAC-seq), chromatin activity state (ChIP-seq of 509 

chromatin modifications) and gene expression (RNA-seq) in F1 embryos from eight different 510 

genotypes across multiple stages of embryogenesis.  Our analysis of this extensive dataset led to 511 

several conclusions about the impact of regulatory mutations on transcriptional phenotypes. 512 

First, although cis-acting genetic variation in gene expression and associated regulatory 513 

signals is fairly common in development, its effects are not equally distributed across the 514 

genome.  Allelic variation is both more frequent and has greater magnitude at distal regulatory 515 

elements (putative enhancers) compared to promoters, despite genetic variation itself being more 516 

common at promoters.  This may in part be due to differences in the relative importance of 517 

sequence content at promoters and enhancers – many promoters, particularly for broadly 518 

expressed genes, are remarkably tolerant to mutations (Schor et al. 2017).  Interestingly, despite 519 

having a greater magnitude, AI at distal elements is less likely to be propagated to other 520 

regulatory layers (Fig. 3), suggesting that enhancer mutations are either more effectively buffered 521 

or of lower functional impact, a hypothesis that fits well with the observed robustness of gene 522 

expression to deletions that remove distal regulatory elements (Hong et al. 2008; Cannavo et al. 523 

2016).  However, large effect gene-by-gene or gene-by-environment interactions can 524 

theoretically serve to release this ‘cryptic’ genetic variation (Gibson and Dworkin 2004; 525 

Schneider and Meyer 2017; Zheng et al. 2019).  Whether such interactions are sufficiently 526 

common for regulatory traits is currently unknown, although we note here that the genetic 527 

contribution to (total count) gene expression varies considerably between time points, suggesting 528 

a substantial context-specificity to the genetic variation underlying gene expression variation. 529 

Second, although all data types (open chromatin, histone modifications, RNA levels) are 530 

highly correlated, their explanatory values (potential causal relationships) as revealed by partial 531 

correlation analysis are far from equal.  Using cis-acting variation as perturbations to 532 

development, we observed a strong, potentially direct relationship between genetic variants 533 

affecting open chromatin (TF binding) at both proximal and distal sites and gene expression, as 534 
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expected.  The relationship between histone modifications and gene expression, however, proved 535 

more surprising – in contrast to total count data, both in this study and previously reported 536 

(Lasserre et al. 2013), we note a strong, potentially causal, link between allelic-imbalance in 537 

H3K4me3 signal and allelic imbalance in associated genes.  538 

Although highly correlated with gene expression, the functional requirement of H3K4me3 for 539 

transcription is controversial (Howe et al. 2017).  Our copula analysis placed H3K4me3 540 

downstream of RNA (Fig. 4d), suggesting that RNA levels are not impacted by variation 541 

affecting H3K4me3.  This placement of RNA upstream of H3K4me3, inferred from our 542 

statistical analysis of the functional impact of genetic variation on both properties, is supported 543 

by recent genetic ablation studies showing that RNA transcription does not require H3K4me3 544 

(Clouaire et al. 2012; Margaritis et al. 2012; Clouaire et al. 2014).  This is consistent with 545 

suggestions that H3K4me3 is deposited as a consequence of transcription and may be required in 546 

more downstream post-transcriptional events (Howe et al. 2017).  In addition, we also observed a 547 

second, independent, pathway in which genetic mutations affecting H3K27ac impacted gene 548 

expression, but only when they were also associated with cis-influenced changes in chromatin 549 

accessibility.  550 

Third, the impact of cis-regulatory variation on gene expression is influenced by regulatory 551 

complexity, with genes that have more regulatory elements being less likely to show allelic 552 

imbalance (Fig 5).  In part, this may be due to selection against variation in regulatory elements 553 

associated with these genes.  As observed in other studies (Cannavo et al. 2016, ), we found a 554 

clear reduction in allelic variation in regulatory elements associated with TFs and developmental 555 

regulators as compared to other gene categories.  But selection is unlikely to be the whole story.  556 

Even when associated mutations are present, TFs and other genes with complex regulation show 557 

a degree of independence from allelic imbalance in associated regulatory layers, an active 558 

buffering process resulting from the presence of multiple regulatory inputs (Waymack 2019).  559 

Notably, the buffering of genes with multiple regulatory elements is not absolute - as the number 560 

of regulatory regions with AI near a gene increases, so does the probability that the gene shows 561 

allelic imbalance.  We propose that information averaging in cis-regulatory landscapes enhances 562 

the overall consistency of transcriptional responses, with clustered regulatory elements, including 563 

shadow enhancers, leading to a reduction in overall allelic imbalance.  In addition, large effect 564 

mutations can directly influence gene expression, with likely consequences for adaptive 565 
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phenotypes, while small effect mutations, e.g. those affecting histone modifications or chromatin 566 

accessibility without affecting gene expression, may accumulate over time to have functionally 567 

relevant phenotypes.  568 

Finally, we found that trans-acting variation is more common for RNA than for any other 569 

regulatory layer, with resulting consequences for the selection and heritability of gene expression 570 

relative to chromatin features.  Specifically, genes with complex regulatory landscapes, e.g. 571 

transcription factors, had a higher trans proportion of their overall genetic influences.  This 572 

observation, which is likely due to buffering effects within complex cis regulatory landscapes, 573 

has potentially counter intuitive evolutionary consequences, as predominantly trans-influenced 574 

genes are significantly more likely to show non-additive, and thus less selectable, patterns of 575 

inheritance.  As a result, trans-acting variation affecting genes such as TFs may remain in 576 

populations even as negative selection and buffering act to reduce the influence of cis-acting 577 

mutations.  578 

In summary, allelic variation in chromatin accessibility and histone modifications at 579 

regulatory elements is prevalent in the genome and capable of propagating across regulatory 580 

layers.  Information flow depends on the type of regulatory element and appears mitigated at 581 

developmental factors.  Notably, these cis-regulatory changes to individual genes do not have an 582 

appreciable effect on overall developmental programs. 583 

 584 

  585 
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Methods 586 

Detailed methods for all sections are provided in the supplementary file.  587 
 588 

Fly husbandry, crosses and embryo collection 589 

F1 hybrid embryos were generated by crossing males from eight genetically distinct inbred lines 590 

from the Drosophila Genetic Reference Panel (DGRP) collection (Mackay et al. 2012) to 591 

females from a common maternal “virginizer” line.  The virginizer line contains a heat-shock 592 

inducible pro-apoptotic gene (hid) on the Y chromosome (Starz-Gaiano et al. 2001) of a 593 

laboratory reference strain (w1118).  We made the virginizer line isogenic by backcrossing for 594 

over 20 generations (Ghavi-Helm et al. 2019).  Placing embryos from the virginizer stock at 37oC 595 

kills all male embryos, thereby facilitating the collection of a large population of isogenic virgin 596 

females, which were mated to males of different DGRP lines (listed in Fig. 1a).   In addition, we 597 

collected samples from the parents of one genotype (399) for cis-trans analysis (see below).   598 

 599 

RNA-seq, ATAC-seq and iChIP 600 

For three developmental stages (2-4hr, 6-8hr and 10-12hr after egg-laying), we performed RNA-601 

Seq, ATAC-Seq, and iChIP for H3K27ac and H3K4me3 for pooled embryos of each F1 602 

strain.  All experiments were performed in biological replicates from independent embryo 603 

collections.  iChIP experiments were performed as described in Lara-Astiaso et al. 2014 (Lara-604 

Astiaso et al. 2014).  ATAC-seq libraries were 125bp PE, RNA-Seq 118bp PE, and iChIP 75bp 605 

PE.  In addition, gDNA from ~100 embryos per F1 cross was extracted and 75bp SE libraries 606 

constructed.  All libraries were run on a Bioanalyzer chip, multiplexed and sequenced with 607 

Illumina machines. 608 

 609 

Sequencing reads processing 610 

Strain-specific genomes and liftOver chain files were constructed for each DGRP paternal line 611 

using custom scripts to insert SNPs and indels into the Drosophila dm3 assembly (version 5 from 612 

FlyBase).  To annotate these parental genomes, we used pslMap (Zhu et al. 2007) to shift 613 

reference annotations r5.57 to the parental genomes.  ATAC-seq and ChIP-seq reads were 614 

mapped using BWA (Li and Durbin 2010), while RNA-seq reads mapped using STAR (Dobin et 615 
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al. 2013).  In all cases, overlapping read pairs were trimmed so each base was covered only once 616 

by the higher quality read.  The resulting alignments against both parental genomes were merged 617 

into a single alignment file.  To generate allele-specific counts, reads were scored for their 618 

overlap with known cross-specific SNPs.  Discordant reads (those overlapping alleles assigned to 619 

different parents) were discarded.  Genomic DNA was generated for each F1 line to filter 620 

potentially miscalled variants, and simulated reads from each parental genome were used to 621 

assess and filter out regions with likely mappability errors.  Peak calling was performed using 622 

Macs2 (-broad) for iChIP reads and Hotspot for ATAC-seq reads (Zhang et al. 2008; John et al. 623 

2011).  To compare between lines and times, we constructed merged peak coordinates across 624 

samples (Supplementary methods). 625 

 626 

Test for allele-specific imbalance 627 

Due to the extensive maternally deposited transcripts still present at 2-4 hours, we excluded the 628 

RNA-seq data from this time point from all down-stream allele-specific analysis to avoid 629 

potential confounding effects in allelic imbalance measurements.  To test for allelic imbalance, 630 

an empirical Bayesian method was used to test the null hypothesis for differences in read counts 631 

between F1 alleles for each feature of each data set (RNA-seq, ATAC-seq, H3K4me3, 632 

H3K27ac).  Individual tests were performed for each line and for each time point.  Total F1 633 

counts (𝑛"
#,%,&	)	can be modeled on an allele-specific basis (𝑧"

#,%,&) using a beta-binomial 634 

distribution.  Specifically, 𝑧"
#,%,& denotes the number of reads from the maternal allele mapped to 635 

feature f for pool of individuals i, of paternal strain s, at time t. 𝑛"
#,%,& denotes the total number of 636 

reads mapping to genes for pool of individuals i of strain s, at time t.  637 

𝑧'
#,%,&~	𝐵𝑖(𝑛'

#,%,& , 𝑝'
#,%,&) 638 

𝑝"
#,%,&	~	𝐵𝑒(𝛼, 𝛽) 639 

where 𝛼, 𝛽 are the shape parameters of the beta distribution.  We tested the following scenarios 640 

by maximum likelihood estimation: 641 

𝑁𝑜	𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒:	𝛼 = 𝛽 642 

𝐴𝑙𝑙𝑒𝑙𝑖𝑐	𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒:	𝛼 ≠ 𝛽 643 
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Due to limited replicates per condition, we used information across features to reduce the 644 

uncertainty of estimates and improve power by assuming that all features have the same mean-645 

variance relationship (Robinson et al. 2010; Love et al. 2014).  Empirical data was used to 646 

estimate the over-dispersion parameter (𝜌) for each data type based on the beta-binomial 647 

distribution.  Maximum likelihood estimation was used to obtain 𝛼 and 𝛽 for each feature of time 648 

t and strain s. 𝜌 is calculated as follows:  649 

𝜌 =
1

𝛼 + 𝛽 + 1 650 

The mean over-dispersion value for all features was used as the shrinkage term and likelihood 651 

ratio tests (df=1) were used to obtain a p-value, which was adjusted using FDR (Benjamini 652 

1995).  Autosomes were tested separately to sex chromosomes; features on chromosome X were 653 

tested using a background allelic ratio of no imbalance centered on the averaged ratio of maternal 654 

versus paternal alleles across the data set being compared (i.e. RNA, ATAC, H3K4me3, 655 

H3K27ac).  Autosomal features were tested using a null distribution of 0.5.  656 

 657 

Allele-specific changes across lines and developmental time 658 

A linear mixed-effects model, where random effect components were incorporated, was used to 659 

estimate variability between pools of individuals, time points and lines, 660 

𝑦'
(,#,),& =	𝜇' + 𝛿'& + 𝜔'# + (𝛿𝜔)'& 							𝜔'#	~	Ν(0, 𝜎'!) 661 

𝜇' is the intercept term. 𝛿'& is a random effect term denoting time. 𝜔'# is a random effect based on 662 

strain and (𝛿𝜔)'&  is a interaction term for time by strain. 663 

To infer the significance of time or strain dependent allele bias, we restricted the values that the 664 

parameters can take.  Library size differences were corrected for at the allele-combined count 665 

level using the TMM method in ‘edgeR’ (Robinson et al. 2010) prior to analysis.  Count data was 666 

filtered for reads with more than 20 allele-combined counts.  Each autosomal feature was tested 667 

using read counts at SNPs common to all lines.  Not all features contained enough information 668 

for statistical testing, subsequent analyses were limited to features with at least six samples in 669 

each of the three time points in at least four genetic strain.  670 

 671 
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Allele-specific changes across regulatory layers 672 

Intersection-union tests were used to examine the pairwise co-occurrence of allelic imbalance in 673 

overlapping genes/features, limited to autosomes, based on rejecting the null hypothesis if a 674 

significant outcome with respect to the feature compared at the same time point exists for both 675 

data types (Berger 1996).  676 

To infer pairwise relationships between regulatory data types while reducing indirect relations, 677 

partial correlation analysis was performed using ‘GeneNet’ (Opgen-Rhein and Strimmer 2007) 678 

for both allelic ratios and total count data.  Directional dependence modeling was performed in a 679 

regression framework using copulas to describe the bivariate distribution between our pairwise 680 

datasets (Lee and Kim 2019).  Copula regression was used to infer the flow of information for 681 

pairwise relationships that showed a significant relationship in partial correlation analyses.  682 

Conditional probabilities for the probability of allelic imbalance given imbalance in a different 683 

regulatory data type were calculated by the definition: 684 

𝑃(𝐴|𝐵) = 	
𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵)  685 

where A and B are the probabilities of allelic imbalance in each data type. 686 

 687 

Cis trans analysis 688 

For one F1 line (vgn x 399) and its parental lines, maximum likelihood estimation (MLE) was 689 

used to compare parental and offspring ratios simultaneously to determine whether gene 690 

expression, chromatin accessibility, H3K4me3 and H3K27ac enrichments are influenced by cis-, 691 

trans-, conserved or both cis- and trans- acting effects by modeling read counts.  For parents, the 692 

data was modeled using negative binomial distributions and allelic differences in F1 alleles 693 

modeled using beta-binomial distribution (Supplemental Methods).  We constrained parameter 694 

estimation for each model based on four different regulatory scenarios and derived maximum 695 

likelihood values for each hypothetical case on a site-by-site basis.  In the presentation of the 696 

proportions of features assigned to each category (Fig. 6a, S7c), we presented the maximum 697 

likelihood assignment.  In subsequent analyses, we limited analyses to features that showed a 698 

BIC difference >= 2.  699 
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 700 

Test for compensatory mutation 701 

Genes were classified as having cis- and trans-acting influences following the procedure of 702 

Goncalves et al. (Goncalves et al. 2012).  For all genes, we asked if their cis and trans 703 

contributes act to reinforce one another (same direction) or if they operated in opposite 704 

directions.  Formally, for the i_th gene, we define the average log2 fold change for the parental 705 

lines as x_i and the average log2 allelic ratio from the F1 data as y_i. We then classified: 706 

Opposite – cis stronger: (0 < y_i < x_i) OR (0 > y_i > x_i) 707 

Opposite – trans stronger: (x_i < 0 < y_i) OR (y_i < 0 < x_i) 708 

Same – cis stronger (0 < x_i < y_i < 2x_i) OR (0 > x_i > y_i > 2x_i)  709 

Same – trans stronger (0 < 2x_i < y_i) OR (0 > 2x_i > y_i) 710 

A complementary analysis following Landry et al (Landry et al. 2005) can be found in the 711 

supplemental methods.  712 

 713 

Measuring additive vs. non-additive heritability  714 

In the case of additively inherited gene expression (or read counts for any of our measured 715 

features), the signal observed in the F1 is expected to be equal to the midpoint (average) of the 716 

two parents, while non-additively inherited genes/features should show a significant departure 717 

from that midpoint.  To formally test for non-additivity, we made use of the standard workflow 718 

in DESeq2 with two modifications.  First, we set the betaPrior option equal to TRUE.  After 719 

setting the reference genotype to the F1 (vgn x 399) using the relevel function, we then extracted 720 

the results using the ‘results’ function and the contrast vector c(0,1,-.5, -.5) to contrast the full 721 

value of the F1 genotype with ½(vgn + 399). Features with an FDR < .1 were considered as 722 

“non-additive”.  723 

 724 

  725 
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Data Access 726 

All raw data has been deposited to EMBL-EBI hosted ArrayExpress, accession numbers: 727 

E-MTAB-8877 (gDNA), E-MTAB-8878 (RNA-seq), E-MTAB-8879 (ATAC-seq), E-MTAB-728 

8880 (ChIP-seq H3K4me3, H3K27ac).  Processed data, including total counts, allelic ratios, 729 

cis/trans estimates, estimated per-feature heritability, mappability filters, and parental genotype 730 

files can all be downloaded from http://furlonglab.embl.de/data  731 
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