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Abstract. The treatment of complex diseases often relies on combinatorial therapy, a strategy

where drugs are used to target multiple genes simultaneously. Promising candidate genes for

combinatorial perturbation often constitute epistatic genes, i.e., genes which contribute to a

phenotype in a non-linear fashion. Experimental identification of the full landscape of genetic

interactions by perturbing all gene combinations is prohibitive due to the exponential growth of

testable hypotheses. Here we present a model for the inference of pairwise epistatic, including

synthetic lethal, gene interactions from siRNA-based perturbation screens. The model exploits

the combinatorial nature of siRNA-based screens resulting from the high numbers of sequence-

dependent off-target effects, where each siRNA apart from its intended target knocks down

hundreds of additional genes. We show that conditional and marginal epistasis can be estimated

as interaction coefficients of regression models on perturbation data. We compare two methods,

namely glinternet and xyz, for selecting non-zero effects in high dimensions as components

of the model, and make recommendations for the appropriate use of each. For data simulated

from real RNAi screening libraries, we show that glinternet successfully identifies epistatic

gene pairs with high accuracy across a wide range of relevant parameters for the signal-to-

noise ratio of observed phenotypes, the effect size of epistasis and the number of observations

per double knockdown. xyz is also able to identify interactions from lower dimensional data

sets (fewer genes), but is less accurate for many dimensions. Higher accuracy of glinternet,

however, comes at the cost of longer running time compared to xyz. The general model is

widely applicable and allows mining the wealth of publicly available RNAi screening data for

the estimation of epistatic interactions between genes. As a proof of concept, we apply the model

to search for interactions, and potential targets for treatment, among previously published sets

of siRNA perturbation screens on various pathogens. The identified interactions include both

known epistatic interactions as well as novel findings.
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Introduction

Genetic interactions are also referred to as epistasis, a term that originates from the field

of statistical genetics and describes genetic contributions to the phenotype that are not linear

in the effects of single genes (Wright 1932; Cordell 2002). Considering two genes at a time,

positive and negative epistasis refer to a greater and smaller effect, respectively, of the double

mutant genotype than expected from the two single mutant genotypes relative to the wild type.

In genetics, the phenotype of primary interest is the reproductive success of a cell, which is

commonly termed fitness (Orr 2009). In this context, a fitness landscape is the mapping of

each combination of possible configurations of gene mutations to a fitness phenotype (de Visser,

Cooper, and Elena 2011).

The knowledge of fitness landscapes is highly relevant for personalized disease treatment

(Kaelin 2005). In cancer, for example, genetic aberrations result in cells with increased somatic

fitness, for instance, by evading apoptosis or gaining the ability to metastasise. This increase

subsequently promotes post-metastatic tumour development (Hanahan and Weinberg 2011). A

major challenge in cancer therapy is the fact that many genes with driving mutations cannot

be adequately targeted for inhibition due to toxic side effects and rapid development of drug

resistance (Force and Kolaja 2011; Holohan et al. 2013). To overcome this challenge, a strategy

based on the inhibition of genes that interact with genes with cancer driving alterations was

proposed (Ashworth, Lord, and Reis-Filho 2011). This strategy is based on the principle of

synthetic lethality (Kaelin 2005; Jerby-Arnon et al. 2014; O’Neil, Bailey, and Hieter 2017), the

extreme case of negative epistasis, where single mutants are compatible with cell viability but

the double mutant results in cell death. Identifying synthetic lethal gene interactions allows

targeting cancer cells in which one of the two genes is mutated, by using drugs that affect the

other. In the presence of this drug, the cancer cell lineage will no longer be viable (Chan and

Giaccia 2011).

The identification of fitness landscapes is however a very challenging task, simply due to the

exponential growth of the space of interactions. For yeast, for example, it has been shown to

be feasible to experimentally perform 75% of all pairwise knockouts (Costanzo et al. 2010).

However, in humans, with approximately 20,000 protein-coding genes, this would constitute to

almost 200 million experiments to test all pairwise interactions. An approach that has been

successfully applied to identify synthetic lethality in vitro is large-scale perturbation screening

of human cancer cell lines using RNA interference (Steckel et al. 2012; Laufer et al. 2013;

McDonald et al. 2017; DepMap 2020). However, this strategy only allows cataloguing synthetic

lethal gene pairs where one gene is always specific to the screened cell line. While these methods

may be sufficient for the identification of a few promising targets for cancer therapy, they do

not allow us to estimate general pairwise gene interactions at the human exome scale.
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2 GENE INTERACTIONS FROM PERTURBATION SCREENS

Short-interfering RNAs (siRNAs), the reagents used in RNAi perturbation screening, exhibit

strong off-target effects, which results in high numbers of false positives rendering the perturba-

tions hard to interpret (Jackson et al. 2006). While this is usually conceived as a problem, here

we take advantage of this property for the estimation of genetic interactions (Schmich et al.

2015; Srivatsa et al. 2018; Tiuryn and Szczurek 2019). We propose a novel approach for the

second order approximation of a human fitness landscape by inferring the fitness of single gene

perturbations and their pairwise interactions from RNAi screening data (Figure 1). Our ap-

proach is not restricted to interactions with mutant genes of a specific cell line or explicit double

knockdowns. We leverage the combinatorial nature of sequence-dependent off-target effects of

siRNAs, where each siRNA in addition to the intended on-target knocks down hundreds of addi-

tional genes simultaneously. Not distinguishing between on- and off-targeted genes, we consider

each siRNA knockdown as a combinatorial knockdown of multiple genes. Hence, every large-

scale RNAi screen, though unintended, contains large numbers of observations of high-order

combinatorial knockdowns and provides a rich source for the extraction of pairwise epistasis.

These off-target effects have previously been used to improve inference of signalling pathways

among a small number (on the order of a dozen) genes (Srivatsa et al. 2018; Tiuryn and Szczurek

2019). Here, however, we attempt to use it to discover epistatic gene pairs in a genome-wide

fashion (i.e. among tens of thousands of genes). Our approach is formulated as a regularized

regression model. It can also be deployed for the estimation of epistasis from phenotypes other

than fitness, such as for instance phenotypes that measure the activity of disease-relevant path-

ways, e.g. for pathogen entry (Rämö et al. 2014), TGFβ-signalling (Schultz et al. 2011), or

WNT-signalling (Tang et al. 2008). Long term, the identification of disease-relevant epistatic

gene pairs may allow the design or re-purposing of agents for combinatorial therapy with the

potential to improve the efficacy of drugs.

In solving this model, we adapt two recent statistical learning methods, namely glinternet

(Lim and Hastie 2015) and xyz (Thanei, Meinshausen, and Shah 2018) to select genes and

gene-pairs with non-zero effects on fitness, and evaluate both models on simulated data from

real RNAi libraries. We vary the signal-to-noise ratios, number of true gene–gene interactions,

number of observations per double knockdown and effect size for epistasis. We find that,

within ranges that are realistic to real RNAi data, both approaches are capable of inferring

pairwise epistasis with favourable precision and sensitivity when only a small number of genes

are involved in interactions. In several tests glinternet continued to infer correct interactions

up to several thousand genes, however the run time prohibits more thorough testing. To

demonstrate the model on a real data set, we use the perturbation data from (Rämö et al.

2014). Using glinternet, we search for interactions between kinases, and report the most

significant results.

Our simulations are performed using R, and the source code is available at: https://github.

com/bioDS/xyz-simulation.
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Figure 1. RNAi fitness landscape model. Black arrows indicate outputs that
are actually produced. Red arrows indicate theoretical output.

1. Methods

We fix the binary alphabet Σ = {0, 1} representing the two possible states in a perturbation

experiment. The value zero denotes the normal state of the gene (unperturbed wild type),

whereas the value one indicates knockdown of the gene (perturbed). For p genes we denote by

Σp the set of binary sequences of length p, indicating the perturbation status of each gene. Any

subset P ⊆ Σp is called a perturbation space and its elements are called perturbation types. If

the perturbations are genetic mutations, then the perturbation types are genotypes.

1.1. Fitness landscapes and epistasis. In the following, we focus on fitness landscapes,

but would like to note that the theory also holds for any mapping of perturbation type to

phenotype. A fitness landscape is a mapping f : P → R+ from perturbation type space to non-

negative fitness values. Genetic interactions are a property of the underlying fitness landscape

(Beerenwinkel, Pachter, and Sturmfels 2007). For p = 2 genes, the perturbation type space

P = {0, 1}2 contains the wild-type 00, two single perturbations 01 and 10, and the double
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4 GENE INTERACTIONS FROM PERTURBATION SCREENS

perturbation 11. The fitness landscape f : {0, 1}2 → R+ can be written as

f(0, 0) = β0

f(1, 0) = β0 + β1

f(0, 1) = β0 + β2

f(1, 1) = β0 + β1 + β2 + β1,2

for parameters βi ∈ R. β0 is called the bias, β1 and β2 main effects, and β1,2 the interaction.

Epistasis is defined as

(1) ε = f(0, 0) + f(1, 1)− f(0, 1)− f(1, 0)

It measures the deviation of the fitness of the double knockdown from the expectation under a

linear fitness model in the main effects. We see that ε = β1,2.

1.1.1. Fitness landscape model. It is challenging to generalize the notion of epistasis (Equa-

tion 1), because in higher dimensions, many more types of genetic interactions exist (Beeren-

winkel, Pachter, and Sturmfels 2007), even when restricting to pairwise interactions. In general,

it will be impossible to estimate all interactions encoded in the fitness landscape reliably from

data. In the following, we show how to assess marginal and conditional pairwise epistasis. For

p ≥ 1 genes, we consider the Taylor expansion of the fitness landscape

(2) f(x1, . . . , xp) = β0 +
∑
i

xiβi +
∑
i<j

xixjβi,j +
∑
i<j<k

xixjxkβi,j,k + . . .

Ignoring interactions of order 3 and higher we obtain the more computationally tractable ap-

proximation:

(3) f(x1, . . . , xp) ≈ β0 +
∑
i

xiβi +
∑
i<j

xixjβi,j

1.1.2. Conditional epistasis. For two genes i and j and a fixed set of background perturbations

b = (x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xp) ∈ Rp−2
+ we define conditional epistasis between

gene i and j given b as

(4) εi,j|b = f(x1, . . . , xi−1, 0, xi+1, . . . , xj−1, 0, xj+1, . . . , xn)

+ f(x1, . . . , xi−1, 1, xi+1, . . . , xj−1, 1, xj+1, . . . , xp)

− f(x1, . . . , xi−1, 1, xi+1, . . . , xj−1, 0, xj+1, . . . , xp)

− f(x1, . . . , xi−1, 0, xi+1, . . . , xj−1, 1, xj+1, . . . , xp)

Proposition 1. For the fitness landscape model (3), the interaction terms βi,j are independent

of b and equal to conditional epistasis, that is, εi,j|b = βi,j.
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Proof. Without loss of generality, we can consider (i, j) = (1, 2). Let b = (x3, . . . , xp). In

model (3) we have

ε1,2|b = f(0, 0, x3, . . . , xp) + f(1, 1, x3, . . . , xp)(5)

−f(1, 0, x3, . . . , xp)− f(0, 1, x3, . . . , xp)

= β0 +

(
β0 + β1 + β2 + β1,2 +

∑
i>2

xiβ1,i +
∑
i>2

xiβ2,i

)

−

(
β0 + β1 +

∑
i>2

xiβ1,i

)
−

(
β0 + β2 +

∑
i>2

xiβ2,i

)

All terms except the interaction β1,2 cancel out, therefore ε1,2|b = β1,2. �

1.1.3. Marginal epistasis. The marginal fitness landscape of genes i and j is

(6) fi,j(xi, xj) =
∑

{xk∈{0,1}|k 6=i,j}

f(x1, . . . , xp)

and marginal epistasis between genes i and j is the epistasis of the marginal fitness landscape,

(7) εi,j = fi,j(0, 0) + fi,j(1, 1)− fi,j(1, 0)− fi,j(0, 1)

For example, for p = 3 genes, marginal epistasis between gene 1 and 2 is

(8) ε1,2 = [f(0, 0, 0) + f(0, 0, 1)] + [f(1, 1, 0) + f(1, 1, 1)]

− [f(1, 0, 0) + f(1, 0, 1)]− [f(0, 1, 0) + f(0, 1, 1)]

Corollary 1. For the fitness landscape model (3), the interaction terms βi,j are related to

marginal epistasis via εi,j = 2p−2 βi,j.

Proof. From Proposition 1 we have that conditional epistasis for a pair of genes (i, j) and a

fixed genetic background of the remaining p− 2 genes equals βi,j. There are 2p−2 such genetic

backgrounds, and the conditional epistasis is the same for all of them. �

Thus, in the fitness landscape model (3), which contains all main effects and pairwise interac-

tions, but no interactions of higher order, the interaction terms βi,j alone determine conditional

and marginal epistasis of the fitness landscape.

1.2. Estimation of epistasis from RNAi perturbation screens. In in vitro RNAi exper-

iments cells are perturbed by reagents, such as siRNA, shRNA, and dsRNA (Singh, Narang,

and Mahato 2011), each targeting a specific gene for knockdown. In recent years, it has been

shown (Jackson et al. 2006) that siRNAs exhibit strong sequence-dependent off-target effects,

such that, in addition to the intended target gene, hundreds of other genes are knocked down.
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6 GENE INTERACTIONS FROM PERTURBATION SCREENS

Thus, we can regard siRNA perturbation experiments as combinatorial knockdowns affecting

multiple genes simultaneously. On the basis of the fitness landscape model (3), we propose a

regression model for the estimation of epistasis from RNAi data. This inference is only feasible

because of the unintended combinatorial nature of siRNA knockdowns.

1.2.1. Perturbation type space. For an RNAi-based perturbation screen, the perturbation type

space P = {g1, . . . , gn} is represented as the n×p matrix X that contains gi in row i. Based on

the nucleotide sequences of the reagents, perturbations can be predicted by models for micro

RNA (miRNA) target prediction (Lewis et al. 2003). We use X1, . . . , Xp to denote the p

column vectors of X for genes 1, . . . , p and denote by Xi ◦Xj the column vector consisting

of the element-wise products of the entries of Xi and Xj. As a measure of fitness, we use the

vector Y ∈ Rn
+, denoting the number of cells present after siRNA knockdown.

1.2.2. Regression model. We aim to estimate the conditional epistasis βi,j between the
(
p
2

)
pairs

of genes (i, j) ∈ {1, . . . , p}2 from all combinatorial gene perturbations in the screen represented

in the n× p matrix X, and the n× 1 vector of fitness phenotypes Y . Based on (3) we regress

phenotype Y on perturbations X,

(9) E [Y |X] = β0 +
∑
i

Xiβi +
∑
i<j

(Xi ◦Xj)βi,j

The estimated βi,j are interpreted as the expected change in the response variable Y per unit

change in the predictor variable (Xi ◦Xj) with all other predictors held fixed (Mosteller and

Tukey 1977). From Corollary 1 it follows that estimates for marginal epistasis εi,j can be

obtained by multiplication of βi,j with the constant 2p−2.

1.2.3. Inference. We aim to infer the regression parameters β =
(
β0,β{i:i>0},β{i,j:i<j}

)
. Since

it is infeasible to directly perform least squares linear regression on the matrix containing all(
p
2

)
interactions, we use a two-stage process. First, we use either the group lasso regularisation

package glinternet (Lim and Hastie 2015), or the xyz interaction search algorithm (Thanei,

Meinshausen, and Shah 2018) to select non-zero interactions. This variable selection step is the

main computational challenge.

When using glinternet, we infer parameters β =
(
β0,β{i:i>0},β{i,j:i<j}

)
by minimising the

squared-error loss function

(10) L(Y , X;β) =
1

2

∥∥∥∥∥Y −
(
β0 +

∑
i

Xiβi +
∑
i<j

(Xi ◦Xj)βi,j

)∥∥∥∥∥
2

2

under the strong hierarchy constraint

(11) βi,j 6= 0⇒ βi 6= 0 and βj 6= 0.
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This constraint allows conditional epistasis between gene i and j, i.e., βi,j 6= 0, only if both

single-gene effects βi and βj are present and constrains the search space. Lim and Hastie (2015)

show that this model can be formulated as a linear regression model with overlapped group

lasso (OGL) penalty (Jacob, Obozinski, and Vert 2009), where, in contrast to the group lasso

(Yuan and Lin 2006), each predictor can be present in multiple groups.

To perform the variable selection, xyz searches for pairs (i, j) that maximise Y TXiXj. These

are the interaction effects that account for the largest component of the response Y . While xyz

can be used directly to find the largest interactions, we used xyz_regression to estimate all

interactions. xyz_regression solves the following elastic-net problem (Thanei, Meinshausen,

and Shah 2018)

(12) min
(β0,β)∈Rp+1,θ∈Rp(p+1)/2

[
1

2n

N∑
i=1

(yi − β0 − xTi β − wTi θ)2 + λ(Pα(β) + Pα(θ))

]
,

where

(13) W ∈ Rn×p(p+1)/2 = (X1 ◦X1, X1 ◦X2, . . . , X1 ◦Xp, X2 ◦X2, . . . , Xp ◦Xp)

is the matrix of interactions, and

(14) Pα(β) = (1− α)
1

2
||β||2`2 + α||β||`1

is the elastic-net penalty.

The parameter α decides the compromise between the ridge-regression penalty (α = 0) and

the lasso penalty (α = 1). We left the default value of α = 0.9. The solution is found iteratively,

with only a particular set of beta values are allowed to be non-zero at each iteration. In every

iteration, the beta values that violate the KarushKuhnTucker conditions are added to this set.

Rather than being computed directly, these beta values are found using the xyz algorithm.

We followed the recommendation in (Thanei, Meinshausen, and Shah 2018) and used L =
√
p

projections to find the strong interactions. Our own tests in Appendix C also suggest that

further projections do not improve performance.

Second, once the non-zero effects have been estimated using either glinternet or xyz, we

construct a matrix X ′ with all elements of the set {Xi|Xi 6= 0} ∪ {Xi ◦ Xj|Xi · Xj 6= 0}
as columns, in an arbitrary order. We then fit Y ∼ X ′β using R’s lm least squares linear

regression to calculate the coefficient estimates and corresponding p-values. We adjust the

p-value to control the false discovery rate with the method of Benjamini and Hochberg (1995),

and refer to this adjusted value as the q-value. Given this two-step procedure, we do not expect

these values to be the same as if they were calculated using the complete interaction matrix.

We are nonetheless able to distinguish between more and less significant effects, with the caveat

that the p < 0.05 cut-off is completely arbitrary.
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8 GENE INTERACTIONS FROM PERTURBATION SCREENS

1.3. Software. The overlapped group lasso for strongly hierarchical interaction terms is im-

plemented in the R-package glinternet 1.0.10 by Lim and Hastie (Lim and Hastie 2015)

and available through the Comprehensive R Archive Network (CRAN) at https://cran.

r-project.org/web/packages/glinternet/. The xyz algorithm is implemented in xyz 0.2

by Gian-Andrea Thanei (Thanei, Meinshausen, and Shah 2018) available at https://cran.

r-project.org/web/packages/xyz/. The simulations are run using a version of this software

that also contains a trivial bug fix, available at https://github.com/bioDS/xyz-simulation.

For the data simulation, analysis and visualisation, we used the R-packages Matrix 1.2.6, dplyr

0.4.3, tidyr 0.4.1 and ggplot2 2.1.0. All simulations are performed using R 3.2.4.

1.4. Simulation of RNAi data. The data simulation followed a three-step procedure. First,

we simulate the siRNA–gene perturbation matrix X based on real siRNA libraries. Second,

main effects βi and conditional epistasis between pairs of genes βi,j are sampled. Based on

X and β, we then sample fitness phenotypes Y from our model (3) and add noise to match

specific signal-to-noise ratios (Hastie, Tibshirani, and Friedman 2009)

(15) SNR =
Var (E [Y |X])

Var (Y − E [Y |X])
.

Details for each step including parameter ranges are as follows.

We simulate siRNA–gene perturbation matrices based on four commercially available genome–

wide libraries for 20 822 human genes from Qiagen with an overall size of 90 000 siRNAs. First,

we predict sequence dependent off-targets using TargetScan (Garcia et al. 2011) for each siRNA

as described in (Schmich et al. 2015). We threshold all predictions to be 1 if larger than zero

and 0 otherwise. Then, we sample n = 1 000 siRNAs from {1, . . . , 90 000} and p = 100 genes

from {1, . . . , 20 822} without replacement and construct the n × p binary matrix X. Hence,

each row Xi· then contained the perturbation type gi = (xi,1, . . . , xi,p).

We simulate q ∈ {5, 20, 50, 100} non-zero conditional epistasis terms βi,j between genes i and

j from all observed combinatorial knockdowns, i.e. if the simulated screen contained siRNAs

that target both genes. This is a necessary condition for the identifiability of βi,j, as otherwise,

according to the model (9), βi,j will be multiplied by a zero vector Xi ◦Xj = 0. The effect size

of the βi,j is sampled from Norm(0, 2). In order to maintain a strong hierarchy, we subsequently

simulate for each interaction βi,j both main effects βi and βj. Further, we add r ∈ {0, 20, 50, 100}
additional main effects. The effect sizes of the main effects are sampled from Norm(0, 1), so

that the variance in the response fitness phenotypes are split in a ratio of 1:2 between main

effects and interactions.

In order to model synthetic lethal pairs, interactions with effect strength of −1000 (on log

scale) are added to the simulated data. Since lethal interactions may occur with little or no main

effect present (Jerby-Arnon et al. 2014), we allow these pairs to violate the strong hierarchy

and do not add main effects. This is done both for biological plausibility, and to evaluate the
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performance of xyz and glinternet under less ideal circumstances. Since only glinternet

assumes the strong hierarchy, this scenario might favour xyz.

Based on simulated perturbation matricesX, simulated main effects βi and interaction terms

βi,j, we sampled fitness values with β0 = 0 according to the fitness landscape model (3)

Y ∼ Norm
(∑

iXiβi +
∑

i<j(Xi ◦Xj)βi,j, σ
2I
)
,

where we chose σ2 for fixed SNRs s ∈ {2, 5, 10}.

1.5. Evaluation criteria. We focus the evaluation on the estimated parameters of the model,

specifically the conditional epistasis terms, β̂{i,j:i<j}, rather than the model’s performance in

predicting the fitness phenotypes Y . Given the ground truth of true conditional epistasis

between gene i and j, β{i,j:i<j}, we assess the performance of the model to identify epistasis,

i.e., estimated non-zero coefficients β̂i,j, by computing the number of true positives (TPs), false

positives (FPs) and false negatives (FN). Here, TPs represent the number of gene pairs (i, j)

such that βi,j 6= 0 and β̂i,j 6= 0, FPs the number of gene pairs (i, j) : βi,j = 0 and β̂i,j 6= 0 and

FNs the number of gene pairs (i, j) : βi,j 6= 0 and β̂i,j = 0. The performance is then summarised

using the following measures

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 = 2
precision× recall

precision + recall

Furthermore, we investigate whether estimates β̂i,j have the same sign as the ground truth

conditional epistasis and we quantify the deviation of the magnitude from the truth. Where

applicable, we also evaluate the effect of selection of only those βi,j which significantly deviate

from zero on the model’s performance.

2. Results

First, we evaluate the proposed approach to estimating epistatic effects from off-target per-

turbations on simulated data. The approach depends on a model able to detect non-zero

pairwise interactions (Figure 1). Here, we evaluate the approach using two such alternative

models, glinternet and xyz.

We evaluate the ability of both xyz and glinternet to identify epistasis between pairs of

genes from RNAi screens on simulated data with p = 100 genes and n = 1 000 siRNAs. Only for

xyz, we also test larger data sets, with p = 1 000 and n = 10 000. We use off-target information

from real siRNAs and investigate the performance for varying signal-to-noise ratios, number of

true interactions, number of observations per double knockdown, and effect sizes for epistasis.
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We perform a separate set of tests where we specifically assess the performance of the two

methods to identify synthetic lethal interactions, the strongest negative interactions. For this

purpose, we simulate a separate data set that contains additional synthetic lethal pairs of genes.

In this test, we attempt to identify only lethal interactions using xyz and glinternet, given

increasingly large numbers of genes.

2.1. Identification of epistasis under varying conditions. Both xyz and glinternet

are tested on a series of small simulated data sets. For each combination of parameters

q ∈ {5, 20, 50, 100}, r ∈ {0, 20, 50, 100} and s ∈ {2, 5, 10}, controlling the number of true

interactions, the number of additional main effects, and the SNRs of the fitness phenotypes,

respectively, we sample 50 independent data sets. xyz is tested on a series of larger data sets,

with parameters q ∈ {50, 200, 500, 1000}, r ∈ {0, 200, 500, 1000} and s ∈ {2, 5, 10}. Only 10

independent data sets are sampled in these cases. Each data set consists of the perturbation

matrix X, phenotypes Y , true conditional epistasis βi,j and main effects βi.

The distribution of the number of observations for pairwise knockdowns of gene i and j is

shown in Appendix, Figure 10 for an exemplary perturbation matrix X. While only a few

genes have many observations, 87% of gene pairs are simultaneously perturbed by at least

one siRNA. We also find that number of additional main effects has relatively little impact

on detecting interactions (Appendix A), and this value is kept constant during our tests. We

select only estimates β̂i,j with a magnitude significantly different from zero (q-value < 0.05).

This significantly improves precision, at a slight cost to recall, using both glinternet and xyz

(Appendix, Figure 13).

2.1.1. Number of double knockdowns per gene pair. We fixed the number of additional main

effects to 20 and investigated performance with respect to the number of double knockdowns

per epistatic gene pair, i.e. siRNAs that target both genes (Figure 2). The results are largely

similar for both xyz and glinternet. As expected, for increasing numbers of observations,

we observe an increase in precision and recall with a steeper increase of precision compared to

recall and decreased performance for higher number of true interactions. The number of true

epistatic gene pairs primarily affects recall, which decreases for higher numbers of true non-

zero βi,j. For gene pairs with more than 80 observations of the double knockdown, glinternet

shows strong performance with F1 values between 0.68− 0.9 across all tested numbers of true

interactions and an SNR larger than or equal to 5 (Figure 2a).

xyz shows significantly improved performance for gene pairs with more than 40 observations,

with F1 values almost all above 0.25. Small numbers of true interactions are particularly

accurate, with F1 > 0.5 when there are also only 5 such effects (Figure 2b).
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Figure 2. Identification of epistasis for increasing numbers of observations of
the pairwise double knockdown. The number of additional main effects not
overlapping with the set of interacting genes is fixed to 20. Results using (a)
glinternet and (b) xyz.

The number of times each pair of genes is observed is shown in Figure 3. We see that in

the large simulation, in which all parameters are multiplied by ten, the number of observations

of each pair of genes is similarly scaled. As a result, the overall distribution is similar to the

smaller simulation.

(a)

0

10

20

30

40

(0
,1

0]

(1
0,

20
]

(2
0,

40
]

(4
0,

80
]

(8
0,

In
f]

Observations of double knockdown

G
en

e 
pa

irs
 [%

]

(b)

0

10

20

30

40

50

(0
,1

00
]

(1
00

,2
00

]

(2
00

,4
00

]

(4
00

,8
00

]

(8
00

,In
f]

Observations of double knockdown

G
en

e 
pa

irs
 [%

]

Figure 3. The distribution of the fraction of gene pairs stratified by ranges of
observed double knockdowns. Gene pairs with zero observations are not shown.
(a) p = 100, n = 1000; (b) p = 1000, n = 10000.
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12 GENE INTERACTIONS FROM PERTURBATION SCREENS

2.1.2. Epistatic effect size. We observe that, for both xyz and glinternet, the performance

of the model increases with the absolute value of the magnitude of the conditional epistasis

between pairs of genes |βi,j| (Figure 4). Both for negative and positive epistasis, recall and

precision steeply increase with increasing effect size. For pairs of genes with |βi,j| > 1 and

SNRs ≥ 10, the model performs favourably with F1 values of 0.6 and higher in glinternet,

and at least 0.25 in xyz. Overall performance also marginally improves for glinternet at

SNR = 5, but no clear effect is seen for xyz or SNR = 10. With both xyz and glinternet, we

observe exceptions to the general pattern of the overall V-shape for precision and recall, where

strongly negative and positive epistasis and weak epistasis lead to high and low performance

of the model, respectively. This effect can be explained by the fact that, after the significance

test, an extremely small number of interactions are reported in these ranges (most often only

one), with no false positives. The fact that the model’s performance notably decreases for

small effect sizes around zero explains why we observe a trend of decreasing performance for

increasing numbers of true interactions, when we average over all effect sizes. This is because

sampling true epistatic effect sizes from Norm(0, 2) for increasing numbers of true interactions

increases the fraction of interactions with small effects around zero.

Notably, we can see in Figure 4b that even when the overall performance is poor, xyz is still

able to find a small number of strong interactions relatively accurately. This is particularly

promising, since synthetic lethal pairs would be such interactions.
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Figure 4. Identification of epistasis for varying effect size. Using (a)
glinternet and (b) xyz.

2.1.3. Direction. We evaluate the ability of each method to distinguish between negative and

positive epistasis among epistatic gene pairs identified as true positives (Figure 5). For both

glinternet and xyz, the fraction of incorrect estimates of direction (positive vs. negative) is

higher for decreasing effect size and increasing number of true interactions. For epistatic effects
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with an absolute value > 1, we observe at most 3% incorrect predictions with glinternet, and

8% with xyz. We observe at most 9% and 15% incorrect predictions for smaller effect sizes for

glinternet and xyz respectively. Furthermore, we observe that increasing SNRs leads to a

subtle decrease of incorrectly predicted direction.
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Figure 5. Concordance between the sign of true and estimated epistasis. The
fraction of incorrectly identified signs between true and estimated epistasis for
(a) glinternet and (b) xyz.

2.1.4. Magnitude. We evaluate the deviation of the magnitude of estimates for epistasis from

the ground truth as a function of observed double knockdowns (Appendix, Figures 14 and 21).

The deviation in magnitude is computed as
|βi,j |−|β̂i,j|
|βi,j | , i.e. the percent relative change in devia-

tion with respect to the true epistasis. We observe that across varying numbers of observations

the model predicts the magnitude of epistasis between pairs of genes with high accuracy using

both xyz and glinternet.

2.2. Scalability. Running glinternet until it has converged takes a prohibitively long time

on larger data sets. While we are able to run our p = 100, n = 1, 000 simulations in slightly

under two minutes, increasing to p = 1, 000, n = 10, 000 takes over two days using ten cores.

Since fitting with small lambda values takes the majority of the time, we can improve this

by changing the minimum value of lambda that gets used. Adjusting this from lambdaMax
100

to
lambdaMax

4
, and fitting only five lambdas in this range rather than fifty, glinternet still takes

over an hour. This makes the repeated simulations from subsection 2.1 impractical at a larger

scale with glinternet, although we do investigate some larger data sets in subsection 2.3.

Since xyz has significantly shorter run time than glinternet, here we more thoroughly inves-

tigate performance on larger data sets. Repeating the earlier simulations with every parameter
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14 GENE INTERACTIONS FROM PERTURBATION SCREENS

increased by a factor of 10 (Figure 6), we find that the overall trends remain the same. The

fraction of incorrectly identified signs is omitted, as in this test there are no such results.

There is a significant drop in both precision and recall, and now only effects with a magnitude

greater than 3 are found a significant amount of the time (Figure 6b).
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Figure 6. Simulations repeated using xyz and larger data sets. (a) number of
observations of double knockdown. (b) Precision/recall/f1 by actual effect
strength.

2.3. Synthetic Lethal Pairs. Synthetic lethal pairs are of particular interest, and given that

xyz is able to somewhat reliably find extremely strong interactions, it is natural to ask whether

it can be used to quickly find lethal pairs, despite its poor performance on weaker interactions.

We fix the number of main effects to 10, and simulated 10 000 siRNAs on 1 000 genes. Synthetic

lethal pairs are created as interaction effects of magnitude −1000 (log scale). Since lethal pairs

often do not have strong main effects (i.e. do not follow the strong hierarchy assumption), the

components of the interaction are not used as main effects in this case.

Increasing the number of lethal interactions significantly reduces recall, but does not have

a clear effect on precision. At this scale, xyz is often able to correctly identify some lethal

interactions (Figure 7), particularly when there are only a few to find.
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Figure 7. Precision, recall, and F1 performance for varying numbers of
synthetic lethal pairs, with additional background interactions, using xyz.
Neither side of the lethal interactions are used as main effects, and as far as
lethal interactions are concerned, there is no hierarchy present.

2.3.1. Synthetic lethality detection in larger matrices. While we could not run a significant

number of tests at this scale using glinternet, we could investigate how well its accuracy scales

compared to xyz. To do this, we simulated sets of up to p = 4000 genes, and measured the

performance of both xyz and glinternet. In this case, both to avoid allocating more elements

to a matrix than R allows, and to keep the run time of glinternet low, only n = 2×p siRNAs

are simulated. The ratio of siRNAs, genes, main effects, interactions, and lethals, is fixed to:

n = 200 siRNAs, p = 100 genes, bi = 1 main effect, bij = 20 interaction effects, l = 5 lethal

interactions. Data sets are then generated with these values multiplied by 5, 10, 20, and 40.

As in the previous simulation, components of lethal interactions are not added as main effects.

The strong hierarchy assumption is not valid in this case.

Interactions are then found with both xyz and glinternet. Here we focus specifically on

synthetic lethal detection, and only correct lethal pairs are considered true positives, Any other

pair (including a true interaction that is not a lethal) is considered a false positive.
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Figure 8. The performance of (a) glinternet and (b) xyz on increasingly
large data sets.

We can see in Figure 8a that precision with glinternet remains fairly consistent as p in-

creases. There is a roughly proportional reduction in recall as the number of lethal interactions

increases. After a slight increase from 500 to 100 genes, the actual number of significant inter-

actions found remains fairly consistent. Beyond p = 2000, we found that xyz typically fails to

find any of the lethal pairs (Figure 8b)
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Figure 9. Run time in seconds to find interactions on increasingly large data
set. 9a: glinternet. 9b: xyz. We compiled glinternet with OpenMP and
ran with numCores = 10.
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Figure 9 shows that neither xyz nor glinternet quite demonstrate a linear run time, but

the run time for glinternet increases sharply beyond p = 2000. It is possible that this is

simply the result of less efficient cache use with larger data, but it is nonetheless worth noting.

2.4. Violations to model assumptions. For the regularised regression model (9) we assume

strong hierarchy (11) between main effects βi and interaction terms βi,j in order to reduce

the search space of all possible non-zero coefficients p +
(
p
2

)
during inference. We refer the

reader to (Lim and Hastie 2015), where Lim and Hastie show how violations to this assumption

affect the performance. For instance, the performance of the model is evaluated when the

ground truth only obeys weak hierarchy, i.e. only one main effect present, no hierarchy, or anti-

hierarchy. Additionally, approximately 2.5% of simulations failed to run using xyz, because

the estimated interaction frequency of non interacting pairs was too low. These were fairly

evenly distributed across all combinations of parameters (Figure 16), and are not believed to

have substantially affected the results.

2.5. Summary recommendation. After simulating siRNA knockdown data sets of various

sizes, and under various conditions, and attempting to reconstruct the interacting pairs using

both xyz and glinternet, we arrive at the following recommendations. For data sets contain-

ing less than 4,000 genes (assuming between 2 and 10 experiments per gene), we recommend

using glinternet to find interactions. Where glinternet would have a prohibitively long run

time (data sets larger than those mentioned above), xyz continues to run quickly, and may still

identify some useful results (Figure 7). Particularly when one expects a small number of signif-

icant interactions, increasing the number of projections beyond
√
n may improve performance

here (see Appendix, Figure 15c).

2.6. Effects in real data. Following the recommendation we have arrived at in Section 2.5,

we apply glinternet (followed by a linear regression analysis) to estimate epistatic effects

from a real data set. We use the perturbation data from (Rämö et al. 2014), containing siRNA

screens targeting kinases of five bacterial pathogens and two viruses, and apply the routine as

described in Section 1.2 to identify pairwise kinase-kinase interactions. Specifically, we restrict

the data to siRNAs that target kinases from the Qiagen Human Kinase siRNA Set V4.1, and the

off-target effects within this set, resulting in an input matrix containing 11 214 perturbations

× 667 genes. Using f = log2(
Cells after
Cells before

) as a fitness measure, we found 1662 effects, 116 of

which had a p-value less than 0.05. Since we have assumed that perturbations are binary

in our simulations, we continue to do so here. As a result, all non-zero predicted off-target

effects are given a value of 1. The ten most significant predicted effects are shown in Table 1.
1 Interestingly, the most significantly associated pair of genes, CDK5R1 and RPS6KA2, are

both related to a common pathway. Specifically, CDK5R1 activates CDK5, which, along with

RPS6KA2, is part of the IL-6 signalling pathway (Kandasamy et al. 2010). Searching both the

1The full set of results, significant or otherwise, can be found at https://github.com/bioDS/xyz-simulation/
blob/master/real_data_results_sorted.csv
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ConsensusPathDB database (Kamburov et al. 2009), and STRING database (Szklarczyk et al.

2017) for relations between the found pairs, we find that a number of the interactions suggested

here could be the result of existing known interactions. We each of the identified pairs of genes,

we searched for common neighbours (a third gene with which both interact), shared pathways,

and whether the produced proteins are found in the same protein complexes, and found the

following known relationships:

CDK5R1 and RPS6KA2 share a common neighbour, and are present in four of the same

enriched pathway-based sets. TTK and RPS6KA2 share nine common neighbours. RIPK4 and

GRK3 share one neighbour,and homologs were found interacting in other species. TNIK and

PANK4 share one neighbour, as do MAPK4 and TRPM7, MAP2K6 and UCK1, and HIPK1

and NUAK2. As we could not locate the other identified pairs in the database, we hypothesise

that they might constitute novel interactions.

Gene i Gene j Type Estimated Effect P-value

CDK5R1 RPS6KA2 interaction 12.52 0.0047

RIPK4 GRK3 interaction -3.24 0.0056

PHKB GUK1 interaction -7.47 0.0061

MAP2K6 UCK1 interaction -40.89 0.0094

TNIK PANK4 interaction -37.41 0.0115

RPS6KB2 TTK interaction 172.04 0.0118

MAPK4 TRPM7 interaction 9.49 0.0120

HIPK1 NUAK2 interaction -13.17 0.0126

CDK19 NA main 3.80 0.0136

C17orf75 MAPK8IP3 interaction 21.74 0.0136

Table 1. Ten most significant predicted effects of siRNA perturbation screens,
targeting all human kinases.

For comparison we also fit a linear model including all genes, but no interactions. Comparing

the R2 values for each, we find that individual gene effects explain ≈ 15% of the variance

(R2 = 0.150) Including the interactions chosen by glinternet, and removing the main effects

it sets to zero, we have R2 = 0.392, more than doubling the fraction of explained variance.

This highlights the importance of accounting for interactions in large-scale genotype-phenotype

analyses, and relevance of bioinformatic tools with this capability.

3. Discussion

To the best of our knowledge, the presented model is the first approach that leverages the

combinatorial nature of RNAi knockdown data resulting from sequence-dependent off-target
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effects for the large-scale prediction of epistasis between pairs of genes. To do this, we take

the second-order approximation of the fitness landscape, including only individual and pairwise

effects, and attempt to infer the parameters of this model. Since glinternet is able to find

pairwise interactions among p = 1, 000 genes, we speculate that searching for three-way inter-

actions is feasible among
3
√

1, 0002 = 100 genes. We are not aware of any software currently

able to do this, however.

For the majority of our tests, we simulate the presence of a strong hierarchy. This constraint

would imply that for the inference of non-zero epistatic effects between gene i and j, βi,j, we

penalise cases where the main effects for both single genes, βi and βj, are zero. This constraint

significantly decreases the complexity of the search space of interactions. However, in biology

there are many examples of epistasis where the marginal effects of individual genes are very

small, for instance if both genes redundantly execute the same function within the cell (Puchta

et al. 2016). Costanzo et al. (2010) found in their study of experimental double knockouts in

yeast that single mutants with decreasing fitness phenotypes tended to exhibit an increasing

number of genetic interactions. This observation is reassuring for glinternet, which can pick

up the interaction as long as the true single-mutant effects are not exactly zero. Moreover, Lim

and Hastie showed in a simulation study that the model is in fact flexible enough to also identify

pairwise interactions violating the strong hierarchy constraint (Lim and Hastie 2015). For the

detection of strong interactions, specifically synthetic lethal pairs, we have also demonstrated

that the strong hierarchy constraint is not required.

In a simulation study, we sampled perturbations for n = 1000 siRNAs and p = 100 genes, and

n = 10000 siRNAs with p = 1000 genes. As a consequence of high-throughput genome-wide

screening platforms, the setting of n = 10× p, i.e. ten perturbations with different siRNAs per

gene, is realistic even for higher order organisms with tens of thousands of genes (Rämö et al.

2014; Schmich et al. 2015). Sampling the perturbations directly from commercially available

RNAi libraries allows us to translate results from the simulation study to applications on real

data. We observe that increasing SNRs, as expected, results in an overall increase of the number

of successfully identified gene pairs with true epistasis.

Nevertheless, we found that even for a moderate SNR of only 2, the model identifies interac-

tions with acceptable performance using glinternet (F1 > 0.5 for 50 true interactions), when

we observed each double knockdown over 40 times (Figure 2a) or the effect size of epistasis is

larger than 1, i.e. |βi,j| > 1 (Figure 4a). For an SNR of 5 and across all tested numbers of

additional gene pairs and epistatic effect sizes, the performance of the model is approximately

constant at around F1 = 0.5, independent of the number of true epistatic gene pairs (Fig-

ure 11b).

Performance in our simulations also suggests that xyz is unable to accurately identify interac-

tions in large data sets. Although xyz has a consistently short run time, and appears capable
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of running on genome-scale data, we see a significant drop in all other performance measures

beyond p = 1000 genes.

The results when using glinternet, however, suggest that the general approach is able to

accurately identify pairwise epistasis from large-scale RNAi data sets, given that the SNR of

measured fitness phenotypes is larger than 2 and the effect size of epistasis is larger than 1. It

is challenging to compare the performance of these models to approaches that estimate genetic

interactions from other data, such as for instance from double knockout experiments (Costanzo

et al. 2010), due to different scales of the epistatic effect size, however, the high precision of

glinternet seems quite competitive. Moreover, our simulations demonstrated that if true

epistatic effects between pairs of genes are identified, the model identifies both the direction

of epistasis (positive and negative) as well as the magnitude of the epistatic effect with high

accuracy (Figures 5 and 14).

In detecting lethal interactions specifically, the high precision of glinternet after testing for

significant deviations is particularly promising. Using this as a method to detect likely synthetic

lethal interactions from RNAi data sets, we could propose candidates for further investigation

as anticancer drug targets (Chan and Giaccia 2011)(Ashworth, Lord, and Reis-Filho 2011).

While the run time may prevent glinternet from being used as such a method in genome-

scale applications, we can recommend it for use with smaller data sets, or where the number

of potential interactions can be significantly reduced prior to running glinternet. As the

precision does not appear to suffer with larger input, only the run time, we believe combining

linear regression with a perturbation matrix is a promising method for further investigation, and

work to improve the performance sufficiently for use in genome-scale applications is ongoing.

Finally, it is worth noting that this approach is not limited to siRNA perturbation matrices,

or to synthetic lethal detection. Any method of suppressing gene expression, combined with an

affected proxy for fitness, could be used to find likely candidates for epistasis.
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24 APPENDIX

Appendix A. Number of epistatic gene pairs

For n = 10×p = 1000 siRNAs, 87% of the
(
p
2

)
= 4950 gene pairs are simultaneously perturbed

by at least one siRNA.
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Figure 10. Simulation of perturbation matrices for n = 1000 siRNAs and
p = 100 genes based on four commercial genome-wide siRNA libraries from
Qiagen. (A) The number of times each pair of genes is simultaneously
perturbed in the simulated matrix. (B) Heat map of the number of
simultaneous perturbations for each gene pair. Darker colour indicates higher
numbers of observations. 87% of the

(
p
2

)
pairs are simultaneously perturbed at

least once.

An increase in the number of pairs of genes (i, j) : βi,j > 0, i.e. pairs of genes with true

conditional epistasis greater than zero, generally leads to an increase in precision and decrease

in recall which results in a subtle increase in F1 when searching with glinternet (Figure 11a).

The only exception being when there are no additional main effects, in which case interactions

are more reliably found from among a small set (between 5 and 20 depending on the SNR) than

a large one (50 or more). When we select estimates β̂i,j with a magnitude significantly different

from zero (Figure 11b), we observe a more than 3-fold increase of precision but steeper decrease

of recall for increasing numbers of pairs of genes with true conditional epistasis. This results in

approximately 2-fold increase of the F1 measure, which in addition shows a weaker dependency

on the number of gene pairs with true conditional epistasis. With an increasing number of

additional main effects, the performance generally decreases. The effect is more subtle for high

numbers of true epistatic gene pairs, both with and without selecting β̂i,j significantly different

from zero. As expected, higher SNRs leads to better performance, where this effect is stronger

when we perform the significance test. The trade-off between precision and recall resulting from
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the significance test is shown in Figure 13a. The increase in precision and decrease of recall

is stronger for higher number of true epistatic gene pairs. For small numbers of true epistatic

gene pairs (5, 20) we observe a dependency of the strength of increase of precision and decrease

of recall to the number of additional main effects. Overall, the ratio of increase in precision

and decrease of recall is approximately 3, suggesting that the test in general led to an increase

in performance. Figures without this test may be found in Appendix D.

It should be noted that the expected precision of random guessing of interactions is q
p(p−1) .

This is at most ≈ 1%, when q = 100, p = 100, as in our simulations.
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Figure 11. Identification of epistasis for increasing numbers of true
interactions using glinternet. Panel rows show precision, recall, and the F1
measure and panel columns depict results for signal-to-noise ratios (SNR) 2, 5,
and 10. Colour indicates the number of additional main effects not overlapping
with the set of interacting genes. (a) Results for all conditional epistasis
βi,j > 0; (b) Results for the subset of conditional epistasis βi,j that significantly
deviate from zero (q-value < 0.05).

Using the same number of genes and main effects and searching with xyz, we see similar

precision, albeit with significantly lower recall (Figure 12). As with glinternet, performance

improved with higher SNRs. Selecting estimates that significantly deviate from zero (q-value

< 0.05) results in as much as a 2-fold improvement in precision in the best case, however

improvements are generally smaller with xyz than with glinternet. In this case, the effect on

recall is minimal, the trade-off is shown in Figure 13b.
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Figure 12. Results for xyz as in Figure 11. Note that this format is reused in
all such figures. (a) Without significance test. (b) With significance test.
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Figure 13. Trade-off between precision and recall for selecting the subset of
interactions significantly deviating from zero versus all interactions. Top and
bottom panels depict gain of precision and loss of recall, respectively. (a)
glinternet; (b) xyz.
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Appendix B. Magnitude

Comparing the estimated magnitude of epistasis to the ground truth, we find the glinternet

results typically deviate less than 5%, and are only larger with a large number of true inter-

actions, and a low signal to noise ratio. Using xyz we can see some significant variation in

accuracy. The deviation is, however, typically below 10%.
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Figure 14. Concordance between the magnitude of true and estimated
epistasis. The fraction of incorrectly identified signs between true and estimated
epistasis for (a) glinternet and (b) xyz. Results are for the subset of
interactions that significantly deviate from zero (q-value < 0.05).

Appendix C. Number of xyz Projections

To ensure the correct xyz parameters are chosen, we compare precision, recall, and F1 for

varying numbers of projections. Fixing the signal to noise ration to SNR = 5, and using the

same parameters as the main p = 1000 simulations above, we run xyz with L = 10, 100, and

1000.

While there is a clear advantage to running at least L =
√

(n) = 100 projections, there

are no significant gains in overall performance, as indicated by F1, beyond that. In fact, we

can see in Figure 15c that increasing the number of projections beyond that merely reduces the

number of interactions returned, without improving accuracy.
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Figure 15. Precision, recall, and F1 as a result of increasing the number of
projections. We use p = 1000 genes with a signal to noise ratio of five. 15a:
Results considering all identified conditional epistasis. 15b: Results considering
only the subset of conditional epistasis that significantly deviate from zero. 15c:
Number of interactions reported, note that the scale above differs from the one
below for readability.
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Appendix D. Results without Significance Test

The results used above are using R’s lm linear regression, including only those with significant

q-values (q < 0.05). Here we perform the same tests with all found effects included, significant

or otherwise, or comparison.
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Figure 17. Precision, recall, and F1 performance measures for xyz. 17a:
Results for all identified epistasis on p = 100, n = 100 simulation using
glinternet. 17b: Results for all identified epistasis on p = 100, n = 100
simulation using xyz. 17c: Results for all identified epistasis on p = 1000,
n = 10000 simulation using xyz.
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Figure 18. Identification of epistasis for increasing numbers of observations of
the pairwise double knockdown. Results are for all identified conditional
epistasis βi,j > 0. (a) Results using glinternet. (b) Results using xyz on small
(p = 100, n = 1000) simulations. (c) Results using xyz on large
(p = 1000, n = 10000) simulations.
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Figure 19. Identification of epistasis for varying effect size. Results are for all
identified conditional epistasis βi,j > 0. (b) Small (p = 100, n = 1000)
simulations, using glinternet. (b) Small (p = 100, n = 1000) simulations,
using xyz. (c) Large p = 1000, n = 10000 simulations, using xyz.
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Figure 20. Identification of epistasis for varying effect size. Results are for all
identified conditional epistasis βi,j > 0. (b) Small (p = 100, n = 1000)
simulations, using glinternet. (b) Small (p = 100, n = 1000) simulations,
using xyz. (c) Large p = 1000, n = 10000 simulations, using xyz. Note that in
this test there are no incorrect results
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Figure 21. Concordance between the magnitude of true and estimated
epistasis. Results are for all identified conditional epistasis βi,j > 0. (a) Small
(p = 100, n = 1000) simulations, using glinternet. (b) Small
(p = 100, n = 1000) simulations, using xyz. (c) Large p = 1000, n = 10000
simulations, using xyz.
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Figure 22. The performance of (a) glinternet and (b) xyz on increasingly
large data sets. Results are for all identified conditional epistasis βi,j > 0.
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