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Abstract 

HMGB1 is a key molecule that both triggers and sustains inflammation following infection or 

injury, and is involved in a large number of pathologies, including cancer. HMGB1 participates to 

the recruitment of inflammatory cells forming a heterocomplex with the chemokine CXCL12 

(HMGB1•CXCL12), herewith activating the G-protein coupled receptor CXCR4. Thus, 

identification of molecules that disrupt this heterocomplex can offer novel pharmacological 

opportunities to treat inflammation related diseases. To identify new HMGB1•CXCL12 inhibitors 

we have performed a study on the ligandability of the single HMG boxes of HMGB1 followed by 

a virtual screening campaign on both HMG boxes using Zbc Drugs and three different docking 

programs (Glide, AutoDock Vina, AutoDock 4.2.6). The best poses in terms of scoring functions, 

visual inspection and predicted ADME properties were further filtered according to a 

pharmacophore model based on known HMGB1 binders and clustered according to their 

structures. Eight compounds representative of the clusters were tested for HMGB1 binding by 

NMR. We identified 5,5'methylenedi2,3cresotic acid (2a) as binder of both HMGB1 and 

CXCL12; 2a also targets the HMGB1•CXCL12 heterocomplex. In cell migration assays 2a 

inhibited the chemotactic activity of HMGB1•CXCL12 with IC50 in the subnanomolar range, the 

best documented up to now. These results pave the way for future structure activity relationship 

studies to optimize the pharmacological targeting of HMGB1•CXCL12 for anti-inflammatory 

purposes. 
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Introduction 

 

Cell recruitment is a fundamental event in the establishment of both acute and chronic 

inflammatory responses1. Chemokines and their receptors organize leukocyte trafficking and 

migration to the tissues both in healthy and pathological conditions2. Chemokines bind to and 

activate seven-transmembrane G-protein-coupled receptors (GPCRs), a receptor superfamily 

involved in many different diseases3. The different chemokines and their receptor are object of 

intense drug-discovery studies4. Increasing evidences show that chemokines usually require 

interactions with additional players that modulate the inflammation signaling cascade triggered by 

their receptors5–7; hence, the identification of molecules that disrupt the interactions of chemokines 

with their modulators might offer new and selective pharmacological opportunities against 

inflammation related diseases8. A prototype of functional synergic heterophilic interaction is 

represented by the heterocomplex formed by High Mobility Group Box 1 (HMGB1) and the 

chemokine CXCL12, the 9 kDa ligand of the GPCR chemokine CXCR4 receptor9. The 

CXCL12/CXCR4 axis is crucial for chemotaxis, cell arrest, angiogenesis, cell survival and homing 

of hematopoietic progenitor cells in the bone marrow and their mobilization into the periphery 

both in physiological and pathological conditions10–12. The HMGB1•CXCL12 complex has been 

shown to trigger specific CXCR4 homodimer rearrangements9, ERK activation and calcium 

fluxes, along with enhanced CXCR4-dependent monocyte migration and tissue regeneration13,14. 

HMGB1 is a highly conserved, abundant non-histone nuclear protein (215 amino acids) that 

behaves as a DNA chaperone. Upon extracellular release, it acts as a DAMP (Damage Associated 

Molecular Pattern) and triggers cytokine-like proinflammatory and chemoattractant effects 13,15. 

HMGB1 is structurally organized in two independent L-shaped tandem domains (~80 amino acids 

each), BoxA and BoxB, followed by a 30 amino acid long acidic C-terminal tail16,17. Its modular 

organization, flexibility, different oxidation states13,18 along with its intracellular and extracellular 

localization confer to HMGB1 the ability to interact with many different partners, including 

nucleic acids, heparansulphates, lipopolysaccharides and proteins, thus exerting different functions 

spanning from architectural chromatin-binding activity19 to the modulation of innate immunity20. 

The cytokine-like function of HMGB1 upon inflammatory stimuli after infection or injury relies 

on the interaction of its reduced form with CXCL12, which promotes CXCR4-dependent 

recruitment of inflammatory cells to injured tissues9 and exacerbates the immune response in 

pathological conditions5,21. Thus, the disruption of the HMGB1•CXCL12 heterocomplex with 

small molecules might offer new and selective strategies against inflammation related diseases22,23.  

Interference with this heterophilic interaction is attractive but challenging for several reasons: i. 

the three-dimensional structure of the complex is still unknown, ii. the interaction surface is 

expected to be large and dynamic, thus difficult to be targeted by small molecules 9,24,25. Previous 

work has shown that it is possible to interfere with the pro-inflammatory properties of HMGB1 

using small molecules including glycyrrhizin26, salicylic acid (SA) and its derivative amorfrutin27. 

Moreover, we have recently shown that diflunisal, an aspirin-like nonsteroidal anti-inflammatory 

drug, is able to selectively interfere in vitro and in vivo with the HMGB1/CXCL12/CXCR4 
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inflammatory axis by disrupting the interaction between HMGB1 and CXCL1224. This work has 

introduced the concept that the HMGB1•CXCL12 heterocomplex is a pharmacological target, 

herewith opening new perspectives for the rational design of novel inhibitors. While CXCL12 

alone has been object of structure-based drug design studies and virtual screening campaigns 

aiming at inhibiting its direct activation effect on CXCR428,29, systematic studies on the 

ligandability of HMGB1 and on the pharmacophoric requirements of HMGB1 ligands are still 

missing. This is in part ascribable to the L-shaped boxes of HMGB1, which do not appear to have 

clearly druggable pockets30,31, and to the absence of high resolution structures of HMGB1 in 

complex with known inhibitors. 

In the present work we have explored the ligandability of HMGB1 and performed a structure-

based virtual screening. The results were refined according to the pharmacophoric features of 

known HMGB1 ligands and tested for binding by NMR. This pipeline resulted in the identification 

of 5,5'methylenedi2,3cresotic acid (2a) as a potent inhibitor of the chemotactic activity of 

HMGB1•CXCL12, with an IC50 in the subnanomolar range, and one of the best ligands identified 

up to now. 

 

Material and Methods 

Protein Structure Preparation. 

 

The structures of HMG boxes (BoxA, residues G3-Y77; BoxB, residues A93-G173) and CXCL12 

(residues K1-K68) used for ligandability assessment, virtual screening (VS) and HADDOCK 

calculations were extracted from 2YRQ (first structure of the NMR bundle) and 4UAI, 

respectively24. 

 

In silico assessment of HMGB1 ligandability 

 

Hot spots identification was performed using the FTMap computational map server 

(www.ftmap.bu.edu). The structures of BoxA and BoxB were uploaded into the FTMap server and 

ran according to instructions32. The server uses 16 organic molecules as probes and defines as 

consensus sites (CSs) the regions of the protein where several different probes clusters bind. The 

results were visually inspected using PyMol33.  

Ligandability of HMGB1 boxes was further assessed using DoGSiteScorer (https://proteins.plus/). 

BoxA and BoxB structures were uploaded to the DoGSite server and scrutinized for binding sites, 

and their corresponding DrugScores were calculated according to the published protocol34. Pocket 

Size and DrugScores (the closest the score to 1, the higher the ligandability) were extracted for all 

identified sites and annotated to pocket numbers.  
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Structure Based Virtual Screening 

Library preparation 

 

The Zbc Drugs subset (http://zinc12.docking.org/browse/subsets/special) containing 101746 

biogenic drug-like compounds selected according to the Lipinski’s rule of five was chosen for 

virtual screening (VS) studies. The Zbc subset was prepared with the Ligand Preparation wizard 

available in the Schrödinger Suite, by adding hydrogens, minimizing and optimizing the molecules 

with OPLS_2005 force field. The ligands generated were ready for docking with GLIDE; for 

docking with AutoDock Vina35 and AutoDock 4.2.636 they were converted to pdbqt-formatted file 

by in-house scripts. Ligands used to generate the training set for the pharmacophoric model 

(section 2.3.5) were prepared with the same procedure. 

 

VS Docking studies 

 

Protein-based VS studies were performed with three different programs: Glide (Schrödinger), 

AutoDock Vina35 and AutoDock 4.2.636. Ligands were docked onto BoxA and BoxB. 

GLIDE: BoxA and BoxB were prepared with the Protein Preparation Wizard available in the 

Schrödinger Suite: water molecules were removed, hydrogen atoms were added, the protonation 

states were adjusted according to neutral pH, finally the structures were minimized and optimized 

using OPLS2005 force field. For BoxA we generated a grid centered at 31.63, 27.3, 33.8 Å in 

correspondence of R23, the residue at the center of the experimentally validated binding pocket 24. 

The size of the inner box, that is the ligand diameter midpoint box, was left at the default values 

of 10 Å edges; the outer box, that is the box within which all the ligand atoms must be contained, 

was enlarged to 46 Å edges to allow ligands to find unusual or asymmetric binding modes in the 

active site. The grid for BoxB was centered on 27.22, 12.96, 7.84 Å in correspondence of R109 

(the equivalent position of R23), the inner box was set at 10 Å edges, the outer box was set at 29 

Å edges and the option to ‘dock ligands with length ≤19 Å’ was flagged. Glide High-Throughput 

Virtual Screening (HTVS) workflow was used for VS.  

 

AutoDock VINA and AutoDock 4.2.6: BoxA and BoxB, prepared as described for Glide, were 

converted to pdbqt-formatted file. Charges and non-polar hydrogen atoms were added using the 

prepare_receptor4.py script from MGLTools. The binding site was defined by AutoGrid. The 

BoxA grid size consisted in 40 points in each direction; the grid point spacing was set at 0.458 Å 

and was centered on 31.6, 27.3, 30.70 on x, y, z axes, respectively. BoxB grid size was 40 Å in 

each direction, grid point spacing 0.531 Å and was centered on 20.5, 12.5, 3.0 on x, y, z axes, 

respectively. 2500000 max number of energy evaluations, 27000 max number of generations, 10 

hybrid genetic algorithm-local search GA-LS runs were performed 
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Hits selection 

 

The hit candidates emerging from Glide, AutoDock Vina and AutoDock 4.2.6 were selected 

according to energy ranking, distance filtering, visual inspection and absorption, distribution, 

metabolism, and excretion (ADME/Tox) descriptors through the QikProp module available in the 

Schrödinger Suite. In total, 34 properties and descriptors as defined in the Qikprop module were 

used to filter out the compounds outside the 95% of the value range reported for known drugs.  

 

Pharmacophore model 

 

The pharmacophore model (PhMOD) was generated using the automatic pharmacophore 

generation protocol in LigandScout337 from Inte:Ligand. To generate the pharmacophore model 

we took advantage of a training set (TS) (Supplementary Figure S1A-B) composed by 7 known 

active HMGB1-interacting molecules from the literature, i.e. glycyrrhizin26, carbenoxolone38, 

salicylic acid (SA)27, amorfrutin27, acetyl-3-aminoethyl-SA Ac3AESA27, diflunisal24, 

inflachromene39 and 11 decoy HMGB1 ligands with an activity >50 M as tested in-house in cell 

migration experiments (acetaminophen, ibuprofen, naproxen, nimesulide, ketoprofen, folic acid, 

tetrahydro methotrexate, cortisol, cortisone, prostaglandin E2) (Supplementary Figure S2). We 

superimposed the negatively charged moiety of the 3D-structures of the 7 active members of the 

TS and the following 4 pharmacophore features were generated: 5 hydrophobic moieties, 3 

aromatic ring, 4 H-bonding acceptor and 1 H-bonding donor. The model was next refined 

maintaining only those features that previous structural studies on glycyrrhizin26 and diflunisal24 

have indicated as relevant (Supplementary Figure S3A). The resulting PhMOD consisted of two 

H-bonding acceptor (HBA1 and HBA2) and two hydrophobics (H1 and H2). The tolerance sphere 

of HBA1-2 and H1 was increased by 0.15 Å and 0.3 Å, respectively, and H2 was set as optional 

feature to decrease the stringency of the PhMOD. The sensitivity of the PhMOD was measured by 

the ability to select among the TS the HMGB1 inhibitors in the first ranking positions, whereas 

specificity was measured by the ability of the PhMOD to identify HMGB1 inhibitors only. 

Sensitivity and specificity were represented in a receiver operating characteristic (ROC) curve to 

visualize the performance of the PhMOD (Supplementary Figure S3B). The ROC plot was 

calculated and visualized using LigandScout 3.02 and the AUC value (area under the ROC curve) 

was used to evaluate the ROC curve, with values between 0 (lowest) and 1 (highest) performance. 

The PhMOD was able to select active compounds significantly better than random (AUC=0.89) 

and with sufficient sensitivity and specificity for screening procedures (Supplementary Figure 

S3B). The Screening Perspective in LigandScout was used to filter the hit molecules resulting from 

the three VS programs against the three-dimensional PhMOD. Only molecules that fulfilled at 

least three out of four pharmacophore features were retained. 
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Hits clustering 

 

The screened subsets were pooled together and clustered using Canvas 3.9 software (Schrödinger, 

LLC, New York, NY, 2020)40. The chemical fingerprint of each compound was first calculated 

using binary 2D linear fingerprint. Hierarchical clustering was then performed using the linear 

fingerprints with the average linkage method, which considers the average distance between all 

inter-cluster pairs. We obtained 20 clusters and analyzed only those with a compound population 

>10 molecules. We obtained 6 main clusters visualized using Hierarchical Clustering Dendrogram 

panel in Canvas. The clusters were numbered from the highest to the lowest populated: cluster 1 

(148 molecules), cluster 2 (65 molecules), cluster 3 (47 molecules), cluster 4 (40 molecules), 

cluster 5 (25 molecules) and cluster 6 (20 molecules). The chemical scaffold representative of each 

cluster was calculated using CanvasMCS, the maximum common substructure facility. We set the 

fraction of molecules that must match the MCS as at least half the population of each cluster.  

 

Protein expression and purifications 

 

Recombinant HMGB1 constructs, including BoxA (residues 1–89), BoxB (residues 90–175), 

wildtype protein (Accession code P63158, residues 1-214), and mutant HMGB1 (R23A/R109A) 

in labelled and unlabeled forms were produced as described24. After expression and purification, 

proteins were dialyzed against NMR buffer, containing 20 mM phosphate buffer pH 7.3, 150 mM 

NaCl, 1 mM DTT.  

Recombinant human CXCL12 (Accession code P48061, and residues M1-K69) was cloned into 

pET30a vector with restriction enzymes NdeI and BamHI. The resulting plasmid was transformed 

into E.coli BL21(DE3) and cells were grown at 37°C in Luria-Bertani medium. CXCL12 

expression was induced by the addition of isopropyl-beta-D-thiolgalactopyranoside (IPTG) at a 

final concentration of 1 mM when cultures reached an optical density of 0.6-0.8 at 600 nm. Induced 

cultures were grown for additional 4 hours at 37°C, harvested by centrifugation at 6000 rpm and 

stored at -20°C until further processing. The cell pellets were resuspended in 20 ml buffer 

containing 50 mM TrisHCl (pH 8), 100 mM NaCl, 1 mM EDTA, 5 mM DTT, 0.1 mg DNAse, 0.1 

mg RNAse and 5 mg lysozyme. The resuspended cells were lysed by sonication pulsed 1 second 

on and 1 second off for 2 minutes at 60% power. The inclusion bodies were washed twice with 

buffer containing 50 mM TrisHCl (pH 8), 100 mM NaCl, 1 mM EDTA, 5 mM DTT and finally 

with 50 mM TrisHCl (pH 8), 100 mM NaCl, 1 mM EDTA, 5 mM DTT, 0.1% Triton X100, 

followed by solubilization in buffer supplemented with 6M Guanidinium HCl and 50 mM HEPES 

pH 6.5 overnight at room temperature. The solubilized fraction was cleared by centrifugation at 

18000 rpm at 4°C for 30 min and diluted dropwise into 250 ml refolding buffer containing 50 mM 

TrisHCl pH 7.4, 50 mM NaCl, 0.1 mM reduced glutathione, 0.1 mM oxidized glutathione and kept 

overnight at 4°C with stirring. Prior to chromatography, the protein solution was centrifuged at 

18000 rpm for 30 min. CXCL12 was purified by cation-exchange chromatography using a SP 

Sepharose resin (SP Sepharose HP, GE Healthcare Bioscience AB, Uppsala, Sweden). The protein 
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was washed with buffer A supplemented with 50 mM TrisHCl (pH 7.4) and 50 mM NaCl and 

eluted with buffer B containing 50 mM TrisHCl pH 7.4 and 1 M NaCl. CXCL12 was finally 

dialyzed against a buffer containing 20 mM phosphate buffer pH 6, 20 mM NaCl. 

Protein concentrations were determined considering molar extinction coefficients at 280 nm of 

21430 and 8700 M-1 cm-1 for HMGB1 and CXCL12, respectively. 

Proteins used for cell-based assays were provided by HMGBiotech (Milan). 

 

Reagents 

 

ZINC4060879 (1a), ZINC2107574 (1b), ZINC12901682 (1c), ZINC4258914 (3), ZINC40310303 

(4a), ZINC79188434 (4b), ZINC4215351 (5) were purchased from MCule (Budapest, Hungary). 

ZINC4028795/5,5'methylenedi2,3cresotic acid (2a), ZINC57310 (2b) and 

ZINC988970/rosmarinic acid (6) were purchased from Sigma-Aldrich.  

 

NMR Measurements 

 

NMR spectra were recorded at 298 K on a Bruker Avance 600 MHz spectrometer (Karlsruhe, 

Germany) equipped with a triple-resonance TCI cryoprobe with an x, y, z-shielded pulsed-field 

gradient coil. Spectra were processed with TopspinTM 3.2 (Bruker) and analyzed with CcpNmr 

Analysis 2.341. 1H-15N-HSQC assignments of HMGB1 and CXCL12 were taken from the BMRB 

databank (HMGB1 accession numbers: 15148, 15149; CXCL12 accession number 16143)42 and 

confirmed via acquisition of 3D HNCA, CBCA(CO)NH experiments.  

 

Saturation Transfer Difference and Water-Ligand Observed via Gradient Spectroscopy. STD and 

waterLOGSY experiments have been performed on 0.5 mM compounds (1a, 1b, 2a, 2b, 4a, 4b, 

5, 6) in the presence of 0.05 mM HMGB1 in NMR buffer. STD experiments were acquired using 

a pulse scheme (Bruker pulse sequence: stddiffesgp.3) with excitation sculpting with gradients for 

water suppression and spin-lock field to suppress protein signals. The spectra were acquired using 

128 scans, a spectral width of 9600 Hz, 64K data points for acquisition. For protein saturation, a 

train of 60 Gaussian shaped pulses of 50 ms was applied, for a total saturation time of 3 s. 

Relaxation delay was set to 3 s. On-resonance irradiations were set at 10 ppm for 1a, 1b, 4b, 5 and 

at 0 ppm for 2a, 2b, 4a, 6. Off-resonance was always set at 107 ppm. STD spectra were obtained 

by internal subtraction of the on-resonance spectrum from the off-resonance spectrum. 

WaterLOGSY experiments were acquired using a pulse scheme as described43 with excitation 

sculpting and flip-back for water suppression. The spectra were acquired using 128 scans, 32K 

data points for acquisition, mixing time was set to 1 s. 

Ligand-based competition experiments were performed comparing STD and waterLOGSY spectra 

acquired on a sample containing 0.5 mM diflunisal and 0.05 mM CXCL12 with and without 1 mM 

2a. 
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Titrations: For NMR titrations, at each titration point a 2D water-flip-back 1H-15N-edited HSQC 

spectrum was acquired with 2048 (160) complex points for 1H (15N), respectively, apodised by 90° 

shifted squared (sine) window functions and zero filled to 256 points for indirect dimension. 

Titrations of 2a and 6 into 15N HMGB1 were performed adding 0.5, 1, 2, 3, 5, 10 equivalents of 

ligand into the labelled protein. In order to minimize dilution and NMR signal loss, titrations were 

carried out by adding small aliquots of concentrated ligands (10 mM in 20 mM phosphate buffer, 

pH 7.3, 150 mM NaCl) to the 15N labelled protein samples (0.1 mM). Titration of 2a on 0.1 mM 

15N CXCL12 (20 mM phosphate buffer, pH 6, 20 mM NaCl) was performed adding 0.5, 1, 2, 3, 5, 

10 equivalents of ligand to the labelled proteins using a 10 mM stock solution (20 mM phosphate 

buffer, pH 7.3, 150 mM NaCl). Assignment of the labelled proteins in the presence of the ligands 

(2a, 6) was obtained following individual cross-peaks through the titration series. For each residue 

the weighted average of the 1H and 15N chemical shift perturbation (CSP) was calculated as CSP 

= [(2HN + 2N/25)/2]1/2 44. NMR-based antagonist-induced dissociation assays45 were 

performed by adding 0.5,1, 1.5, 2, 3, 5, 10 equivalents of 2a on the 15N-HMGB1•CXCL12 

heterocomplex (ratio 1:2) . 

 

Dissociation constant estimation: The apparent dissociation constants of 2a-15N-HMGB1, 2a-

15BoxA, 2a-15N-BoxB, 2a-15N-CXCL12 and 6-15N-HMGB1 interactions were estimated from 

least-squares fitting of CSPs as a function of total ligand concentration according to the equation: 

 

i = 
𝒃−√𝒃𝟐−𝟒𝒂𝒄

𝟐𝒂
  

 

with a=(Ka/b) [Pt], b= 1+Ka([Lti]+[Pt]), and c=bKa[Lti], where i is the absolute change in 

chemical shift for each titration point, [Lti] is the total ligand concentration at each titration point, 

[Pt] is the total protein concentration, Ka =1/Kd is the association constant, and b is the chemical 

shift of the resonance in the complex. The Kd of 2a-15N-HMGB1, 2a-15BoxA, 2a-15N-BoxB, 2a-

15N-CXCL12 and 6-15N-HMGB1 interactions were the average of 4, 3, 12, 3 and 4 residues, 

respectively, plus the standard deviation. For titrations of 2a with HMGB1, based on previous data 

obtained on glycyrrhizin26 and diflunisal24, we assumed a stoichiometry of 2:1. Fitting the data of 

2a with the aforementioned equation yielded apparent Kd of 0.9, 1.2 and 1.1 mM for HMGB1, 

BoxA and BoxB respectively, thus supporting the presence of equivalent binding sites with similar 

apparent affinity (i.e., similar Kd values)46. Kd and b were used as fitting parameters using the 

Xmgrace program (http://plasma-gate.weizmann.ac.il/Grace/).  

1H resonance assignments of 2a and 6 (1 mM dissolved in NMR buffer) were obtained analyzing 

2D TOCSY (Total correlation spectroscopy) (mixing time 50 ms) and NOESY (Nuclear 

Overhauser effect spectroscopy) (mixing time 400ms) experiments. 

Intermolecular nuclear Overhauser effect (nOes) between 2a and BoxA were obtained from 3D 

13C-NOESY-HSQC with no evolution on 13C dimension (2048 x 1 x 256 increments) experiments 
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with 15N/13C filter in F1 (mixing time 200 ms); protein and ligand concentration were 0.8 mM and 

1.6 mM, respectively, in D2O. 

 

MST experiments 

 

MST experiments were performed at 24°C on a NanoTemper® Monolith NT.115 instrument with 

red filters, using 40% LED power and 60% MST power. Binding experiments were carried out 

using 6His-tagged HMGB1 and 6His-tagged CXCL12, non-covalently labelled with the NT647 

fluorescence dye 47.  

For binding assays 2a was titrated (16-points) on 6His-tagged CXCL12 (MST buffer containing 

20 mM phosphate buffer pH 7.3, 20 mM NaCl, 0.05% Tween). The ligand dilutions were generated 

as a 1:2 dilution of the stock solution using MST buffer; a constant amount of labelled proteins 

(50 nM) was added to all dilution steps. Maximum concentration of 2a in the titration series was 

5 mM. Complex samples were incubated for 15 minutes before loading into NanoTemper premium 

capillaries. 

Competition experiments were carried out pre-forming a complex between labelled 6His-tagged 

HMGB1 (50 nM) and unlabeled CXCL12 (10 μM, i.e. 2 times the estimated Kd)48. For 16-points 

titration series of 2a, serial 1:2 dilutions of the 2a stock solution were made into MST buffer, and 

a constant amount of pre-formed heterocomplex was added to all dilution steps. All samples were 

incubated for 15 minutes and centrifuged at 15,000 g for 10 minutes before measurements. 

Maximum concentration of 2a in the titrations series was 5 mM. Addition of 2a induced the 

recovery of the MST signal of HMGB1 towards the unbound state value. 

For all MST experiments data points were the average of three measurements (error bars 

correspond to standard deviation). All data analyses were carried out using NanoTemper analysis 

software using the Kd model fitting for the binding assay and Hill model for competition 

experiment.  

 

Data Driven Docking models 

 

Molecular docking of 2a on BoxA (residues G3-Y77), BoxB (A93-G173) (coordinates obtained 

as described in 2.1) were performed using the data-driven software HADDOCK 2.249,50 following 

the classical three-stage procedure which includes: (1) randomization of orientations and rigid 

body minimization, (2) simulated annealing in torsion angle space, and (3) refinement in Cartesian 

space with explicit water. Ambiguous interaction restraints (AIRs) were defined as follows: 

residues with CSP > Avg + sd were used to define active residues, whose solvent accessible surface 

neighbors were set as passive (Supporting Table S1). In the case of CXCL12, only the residues 

located around the diflunisal binding site24 were set as active (Supporting Table S1), as STD 

competition experiments of 2a in the presence of diflunisal demonstrated that they both compete 

for the same site. In the case of BoxA, intermolecular nOes were included as unambiguous 
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restraints in the calculations only in the semi-flexible refinement stage, setting the maximum 

distance of the nOe H pairs to 5 Å (Supporting Table S1). 

Optimized parameters for liquid simulation (OPLS) were used for the protein (protein-allhdg5-4 

and protein-allhdg5-4-caro). The geometric coordinates and parameters for 2a were calculated and 

optimized using the PRODRG server51. Calculations generated 1000, 1000, 500 structures for the 

rigid body docking (it0), the semi-flexible refinement (it1) and the explicit solvent refinement 

(water), respectively. The final 500 structures obtained after water refinement were scored with 

HADDOCK (HADDOCKscore = 1.0 EvdW + 0.2 Eelec + 1.0 Edesolv + 0.1 EAIR) for a weighted 

combination of van der Waals (vdW) and electrostatic energy terms (Lennard–Jones and Coulomb 

potentials), empirical desolvation term52 and ambiguous interaction restraint energy term, which 

reflects the accordance of the model to the input restraints.  

HADDOCK models were clustered53 based on their interface root mean square deviation (rmsd), 

setting the cutoff and the minimum number of models in a cluster to 1.8 Å and 10 for the boxes, 

and 2.5 Å and 10 for CXCL12, respectively. Proteins were aligned and fitted on the backbone of 

active residues reported Supplementary Table S1. The rmsd of 2a was calculated only on the heavy 

atoms of the entire scaffold. 

To remove any bias of the cluster size on the cluster statistics, the final overall score of each cluster 

was calculated on the four lowest HADDOCK scores models in that cluster. For each protein the 

cluster with the best fitting relative to the experimentally-driven restraints (lowest number of 

violations) and the best HADDOCK score (cluster 1 for BoxA and BoxB, cluster 3 for CXCL12) 

was selected (Supplementary Figure S4A-C). 

The analysis of the docking calculations was performed applying in-house python and tcl scripts.  

Molecular images were generated by PyMOL Molecular Graphics System, Version 2.0 

Schrödinger, LLC and 3D Protein Imagining online server54. 

 

Cell migration experiments 

 

For fibroblast chemotaxis, modified Boyden chambers were used with filters (pore diameter 8 µm; 

Neuro Probe) coated with 50 µg/mL fibronectin (Roche). Mouse 3T3 cells (50,000 in 200 µL) 

were added to the upper chamber. Serum-free DMEM as negative control, HMGB1 and/or other 

molecules were added to the lower chamber at the indicated concentration, and then cells were left 

to migrate for 3 hours at 37°C. Cells were fixed with ethanol and stained with Giemsa Stain 

(Sigma), then non-migrating cells were removed with a cotton swab. All assays were done at least 

in biological triplicate. The migrated cells were acquired with Zeiss Imager M.2 microscope at 10x 

magnification, then evaluated with an automated counting program. All assays were done at least 

in biological triplicate and were repeated at least twice. 
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Results 

In silico assessment of HMGB1 ligandability 

 

We first searched for potential druggable hot spots on HMGB1 surfaces using the computational 

solvent mapping programs FTMap32 and Dogsite34. FTMap docks in silico small organic probes 

onto the surface of the protein and samples a large number of probe conformations, whereby 

contiguous areas of multiple probes clustering together might be considered as ligandable. FTMap 

identified 7 total consensus sites (CSs) on BoxA. CS2 CS3, CS5 and CS7 were within a distance 

of 8 Å, defining the highest density hot spot (39 probes), located at the interface of the two helices 

forming the short arm of the L-shaped fold (Figure 1A). Nine CSs were identified on BoxB; CS2 

was the highest populated site, but did not have any other CS within 8 Å, thus could not be 

considered a hot spot. Conversely, CS1, CS8 and CS9, that were within 8 Å distance, created 

between the short helices of the BoxB the most populated hot spot (30 probes) (Figure 1B). The 

two hotspot regions identified on the two HMG boxes are characterized by small patches of 

partially solvent exposed hydrophobic residues including A16, F17, A19, F37 and F101, F102, 

F104, C105 in BoxA and BoxB, respectively. The ligandability of HMGB1 was further assessed 

by Dogsite, a web-based open-access algorithm that interrogates rigid protein structures for 

binding hotspots. The same regions identified by FTMap were the ones with the highest probability 

to be liganded, with a probability score DrugScore > 0.5 (DS = 0.58 for Box A and 0.73 for Box 

B) (Figure 1C-D). Collectively, both FTMap and Dogsite suggest that both HMG boxes are 

ligandable. 

 

 
Figure 1. Ligandability assessment of HMG boxes by FTMap and Dogsite. FTMap predicts 7 Consensus Sites 

(CS) on BoxA (A) and 9 CS on BoxB (B). The probes (in sticks) populating the different CSs are colored accordingly. 

HMG boxes are represented in grey (cartoon and surface). The ligand binding pocket volumes with the highest 

DrugScores as predicted by Dogsite are represented by magenta and blue mesh surfaces on BoxA (C) and BoxB (D), 

respectively. HMG boxes are represented in grey (cartoon). 
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Virtual Screening  

 

We next screened the Zbc Drugs subset (101746 compounds) on BoxA and BoxB using three 

different docking programs, i.e. Glide, AutoDock Vina and AutoDock 4.2.6, and their results were 

combined (Figure 2). The three programs rely on distinct empirical scoring functions55,56 and 

differently weighted electrostatic and hydrophobic interactions. Thus, merging of their outputs was 

expected to mitigate the possible biases towards hydrophobic or electrostatic contributions 

characteristic for AutoDock Vina, AutoDock 4.2.6 and Glide, respectively.  

The Virtual Screening (VS) workflow implemented in Glide (High Throughput Virtual Screening, 

HTVS; single precision, SP; extra precision XP docking) retrieved 105 compounds for BoxA and 

109 for BoxB, ranked according to the scoring function assigned to the poses. For this subset the 

ADME descriptors were predicted, and molecules with ADME values outside the 95% range 

calculated for known drugs were discarded, yielding 100 and 105 hits for BoxA and for BoxB, 

respectively. Filtering according to ADME descriptors excluded molecules with low octanol/water 

partition coefficient (logPoct/wat), low predicted binding affinity to human serum albumin, high 

dipole moment, high electron affinity and low brain/blood partition coefficient (logBB), all 

properties in line with the known bias of Glide towards charged and hydrophilic molecules57. 

For the VS performed with AutoDock Vina and AutoDock 4.2.6 the first 50000 top ranked poses 

were filtered retaining the ones in which the ligand was at a distance ≤ 6 Å from R23 in BoxA and 

R109 in BoxB. These arginines are crucial for ligand binding both for glygcyrrhizin26 and 

diflunisal24. Next, visual inspection of the AutoDock Vina/AutoDock 4.2.6 poses yielded 160/243 

molecules for BoxA and 70/220 molecules for BoxB (Figure 2).  
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Figure 2. VS workflow. Scheme of the filtering steps adopted during the docking procedures computed with 

AutoDock Vina, and AutoDock 4.2.6 on BoxA (left) and BoxB (right). The filtering criteria and the number of hits 

selected at each filtering step are explicitly indicated. The red and the yellow spheres of the PhMOD represent the H-

bonding acceptors (HBA1 and HBA2) and the hydrophobic (H1 and H2) moieties, respectively 

 

The molecules were next filtered according to ADME descriptors, retaining 98/110 molecules for 

BoxA and 68/100 molecules for BoxB (Figure 2). The characteristics of the discarded molecules 

reflected the bias of both AutoDock Vina/AutoDock 4.2.6 towards the selection of hydrophobic 

hits. In fact they were predicted to be or to generate metabolites with a high aromatic component 

of the solvent accessible surface area (SASA), low aqueous solubility (log S), and low values of 

H-bond acceptor moieties, hydrophilic SASA, dipole moment, water/gas partition coefficient.  

Overall, VS using the three different programs yielded three sets for BoxA and three for BoxB for 

a total of 581 possible hits. This merged set was further interrogated using a pharmacophore model 

(PhMOD) generated considering known active HMGB1 inhibitors as described in Materials and 

Methods. The PhMOD consisted in two H-bonding acceptors (HBA1, HBA2) and two 

hydrophobic moieties (H1, H2) (Figure 2). Pharmacophore screening of the 581 possible hits 

resulted in 380 structures fulfilling at least 3 out of the 4 pharmacophoric requirements. These 

structures were then subjected to fingerprint calculation and hierarchical clustering and were 

finally grouped in 6 highly populated structural clusters (i.e. containing more than 10 molecules 

each) with distinct chemical scaffolds (Figure 3). Finally, out of these clusters, based on visual 

inspection of docking poses, logP and vendor availability, we shortlisted for experimental 

validation by NMR spectroscopy 21 compounds representative of the 6 clusters (Table 1). 
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Figure 3. Cluster analysis. Dendrogram (obtained with Canvas 3.9) representing the hierarchical clustering based on 

chemical 2D fingerprint. 20 clusters were obtained, only those with a compound population with more than 10 

molecules were considered, yielding 6 main clusters: cluster 1 (148 molecules, violet), cluster 2 (65 molecules 

magenta), cluster 3 (47 molecules, yellow), cluster 4 (40 molecules, orange), cluster 5 (25 molecules, pink), cluster 6 

(20 molecules, light blue). For each cluster the chemical scaffold representative of the cluster, the ZINC code of the 

selected molecules for experimental validation and their corresponding IDs are reported. 
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Table 1. List of selected hits for experimental validation  

Structure Molecule ID ZINC code LogP Solubility1 

 

1a ZINC4060879 2.41 YES 

 

1b ZINC2107574 3.05 YES 

 

1c ZINC12901682 4.51 NO 

 

2a ZINC4028795 4.05 YES 

 

2b ZINC57310 3.54 YES 

 

3a ZINC4258914 2.24 NO 

 

3b ZINC4237053 3.1 NO 

 

4a ZINC40310303 3.31 10% DMSO 

 

4b ZINC79188434 2.93 10% DMSO 

 

5a ZINC4215351 3.6 10% DMSO 

 

6 ZINC899870 1.63 YES 

1Solubility in Sodium phosphate buffer 20 mM and 150 mM NaCl or in 10% DMSO were 

explicitly indicated. NO indicates no solubility even in 10% DMSO 
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NMR validation of VS hits identifies 5,5'methylenedi2,3cresotic acid (2a) as a ligand of 

HMGB1 

 

Of the 21 compounds selected for experimental validation only 8 turned out to be soluble (> 0.1 

mM) in water or in maximum 10% DMSO (Table 1). The binding to HMGB1 of the soluble 

molecules was next tested using ligand-based NMR spectroscopy methods. To this aim we 

prepared samples containing 50 μM HMGB1 and a 10-fold excess of ligand on which we 

performed saturation transfer difference (STD)58 and water-ligand observed via gradient 

spectroscopy (waterLOGSY) experiments59 (Figure 4 and Supplementary Figure S5). Of the 

compounds tested only 2a (5,5'methylenedi2,3cresotic acid) (Figure 4A) and 6 (rosmarinic acid) 

(Figure 4B) appeared to interact with HMGB1 as shown by STD effects and inversion of the sign 

in waterLOGSY experiments, whereby the strongest effects were observed for 2a (Figure 4A). 

 
Figure 4. Ligand-based NMR binding assays performed on molecules 2a and 6 in the presence of HMGB1. For 

2a (A) and 6 (B) are represented: the chemical structure and the assigned 1H spectrum (top), the overlays of the STD 

spectra at 3s saturation (middle) and the waterLOGSY spectra (bottom). Experiments were performed on the ligand 

alone (1 mM) (black line) and in the presence of 0.05 mM HMGB1 (red line). 

 

We further validated the interaction of these two ligands by protein-based NMR experiments60 

using 1H-15N labelled HMGB1. Indeed, upon stepwise addition of 6 or 2a we observed chemical 
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shift perturbations (CSPs) in the HMGB1 Heteronuclear Single Quantum Coherence (HSQC) 

spectra (Figure 5A,B).  

 

 
Figure 5. Interactions of 2a and 6 with HMGB1. Histogram showing the CSPs of 15N-labeled HMGB1 amides 

(~0.1 mM) upon addition of 10-fold excess of 2a (A) and 6 (B). Missing residues are prolines or amides exchanging 

with the solvent, red stars indicate residues disappearing upon ligand binding. Elements of secondary structure are 

depicted on the top. BoxA and BoxB residues with CSP > Avg + SD are represented in magenta and blue, respectively. 

Inset: selected region of the superimposition of 1H-15N HSQC spectra of HMGB1 during the titration with the 

molecules (0.5, 1, 2, 3, 5 and 10 equivalents) showing the displacement of the peak associated to R23 during the 

titration. (C) Weighted average of R23 amide 1H and 15N chemical-shift changes as a function of increasing 

concentration of 2a (circle) and 6 (square). Nonlinear curve fitting yields Kd = 0.9 ± 0.1 mM and >10 mM, respectively. 

(D) In grey surface and cartoon representations of BoxA and BoxB 3D structures, residues showing significant CSP 

(CSP > Avg + SD) upon 2a binding are mapped in magenta and blue, respectively. 

 

For molecule 2a the interaction occurred on the fast-intermediate exchange regime on the NMR 

time scale with the disappearance of few peaks on BoxB (Figure 5A). On the other hand, the CSPs 

induced by 6 were in fast exchange regime and were by far smaller as compared to 2a, and mainly 

involved BoxA (Figure 5B). Linear fitting of the chemical shifts as a function of added ligand 

indicated an apparent Kd of 0.9 mM and >10 mM for 2a and 6, respectively (Figure 5C). 

Interestingly, 6, a polyphenolic component of the leaves of Perilla frutescens with general 

antinflammatory properties61, is known to attenuate inflammatory responses elicited by 

HMGB1/TLR4/NF-κB signaling62,63. This axis relies on the oxidized form of HMGB1, where 

Cys22 and Cys44 located on BoxA form a disulphide bond. On the other hand, the pattern of 

chemical shift perturbations (CSPs) (Figure 5A) clearly indicated that 2a recognized both HMG 
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boxes in full-length HMGB1. Similarly to both glycyrrhizin26 and diflunisal24, 2a bound 

independently the two domains, and the pattern of CSPs observed for the isolated HMG boxes was 

comparable to the one in the full length protein (Supplementary Figure S6A-B). When mapped on 

the structures of the two HMG boxes, HMGB1 residues with significant CSP upon 2a addition 

(F17, Q20, R23, E24, S41 on BoxA, F102, F104, C105, R109, K111, I121, D123, V124, A125, 

K127, L128, G129, E130, M131 and W132 on BoxB) defined a small surface between the first 

and the second helix (Figure 5D), in agreement with the computational analysis that identified this 

area as a putative hotspot (Figure 1). Indeed, this region on both boxes is characterized by a small 

solvent-exposed hydrophobic surface well suited for favorable van der Waals (vdW) interactions 

with the aromatic rings of 2a (Figure 5D). 

 

3D model of the interactions of 2a with HMGB1 boxes 

 

CSPs data were next used to generate HADDOCK49 data-driven docking models of 2a in complex 

with BoxA and BoxB. 2a accommodates between the two short helices of the HMG boxes 

establishing favorable vdW interactions with the hydrophobic side chains of V19 and F37 in BoxA 

and of F102, V124 and A125 in BoxB (Figure 6A,B). For each box, the models suggest also the 

presence of stabilizing electrostatic interactions between one carboxylate of 2a and the R23 and 

R109 sidechains of BoxA and BoxB, respectively (Figure 6A,B). 

 

 
Figure 6. Three-dimensional models of 2a in complex with BoxA and BoxB. HADDOCK models of the interaction 

of 2a (CPK representation) with BoxA (A) and Box B (B), residues with CSP > Avg + SD are colored in magenta and 

blue, respectively. In the insets HMGB1 residues (sticks) involved in hydrophobic and electrostatic interactions with 

2a are explicitly labelled. Fitting of 2a structure with PhMOD. 2a fulfils 3 out 4 pharmacophoric features, consisting 

in two hydrophobic (H1 and H2, the latter being optional) and two H-Bonding acceptor features (HBA1 and HBA2), 

shown in yellow and red, respectively. 

 

Indeed, in NMR titrations performed on a 15N-HMGB1 mutant, where both R23 and R109 were 

substituted by alanines (R23A/R109A), we observed reduced chemical shift displacements, 

indicative of reduced interaction, thus supporting the involvement of these arginines in binding to 

2a (Supplementary Figure S7). The second aromatic ring and the associated carboxylic group of 
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2a establish π-π and polar interactions with F37 and S41, respectively (Figure 6A). Conversely, in 

BoxB the second salicylate moiety does not seem to be involved in stabilizing interactions (Figure 

6B). Collectively, these 3D models indicate that the steric and electronic features of 2a, which 

fulfill the predicted pharmacophoric model (Figure 6C), are indeed appropriate to interact with 

both HMG boxes. In particular, the two major interactions between the ligand and the target consist 

in i. a salt-bridge between the carboxylate of 2a and the guanidinium groups of the conserved R23 

and R109, and ii. hydrophobic interactions between the phenyl groups of 2a and the hydrophobic 

patch at the interface of the two helices forming the short arm of the L shaped HMG boxes. 

 

2a breaks the HMGB1•CXCL12 heterocomplex 

 

NMR titrations and HADDOCK calculations indicate that 2a targets in part the region that has 

been shown to be involved in the interaction with CXCL1224,25,64. We therefore asked whether 2a 

was able to interfere with the HMGB1•CXCL12 heterocomplex (Figure 7A). To this end we 

performed MST experiments, whereby increasing concentrations of 2a were added to a preformed 

HMGB1•CXCL12 complex. During the titration we observed a sharp transition at 0.31 ± 0.04 

mM, consistent with the detachment of fluorescently labelled HMGB1 from the heterocomplex 

(Figure 7A). These results were further confirmed by NMR-based Antagonist Induced 

Dissociation Assay (AIDA)45. In this experiment a 15N HSQC spectrum was first acquired on free 

15N HMGB1 (Figure 7B), then on a preformed complex composed by 15N labelled HMGB1 (0.1 

mM) and unlabeled CXCL12 (0.2 mM). The spectrum appearance was characterized by 

broadening of HMGB1 resonances (Figure 7C), ascribable to the intermediate regime on the NMR 

time scale and to the increased relaxation time upon complex formation24. Addition of 2a (0.2 

mM) to the preformed 15N-HMGB1•CXCL12 heterocomplex resulted in a drastic line broadening 

of the 1H-15N HSQC spectrum that caused the disappearance of the majority of HMGB1 peaks 

(Figure 7D). We interpreted this strong line broadening as an effect associated to multiple 

equilibria involving free HMGB1, HMGB1 bound to 2a, HMGB1 bound to CXCL12. Upon 

addition of ten-fold excess of 2a we observed the narrowing of 1H-15N signals providing direct 

evidence of complex dissociation (Figure 7E). Taken together both MST and AIDA experiments 

indicate that 2a impairs the HMGB1•CXCL12 heterocomplex. 
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Figure 7. 2a breaks HMGB1•CXCL12 heterocomplex. MST curve of HMGB1•CXCL12 heterocomplex 

(preformed using 50 nM HMGB1 and 10 M CXCL12) in the presence of increasing concentrations of 2a. Decreasing 

MST signal (from ~965 to ~935 a.u.) upon 2a addition indicates that CXCL12 has been displaced from HMGB1. n = 

3; data represent Avg  SD. 1H-15N HSQC HMGB1 (0.1 mM) spectrum (B) without (black), (C) with 0.2 mM 

CXCL12 and upon addition of (D) 0.2 mM and (E) 1 mM of 2a. 

 

2a binds to CXCL12 

 

Recent work on the inhibition of HMGB1 chemotactic activity by diflunisal has revealed a peculiar 

mechanism of action in which the breakage of HMGB1•CXCL12 interaction occurs through the 

dual binding of the ligand to both proteins24. In the same study we also demonstrated that 

glycyrrhizin, the first chemical probe identified to bind and inhibit HMGB1 chemotactic activity26, 
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was a binder of CXCL12 and an inhibitor of the HMGB1•CXCL12 heterocomplex. We thus asked 

whether 2a was also able to bind CXCL12. Indeed, NMR titrations of 2a on 15N labelled CXCL12 

confirmed a direct interaction (Figure 8A). Binding occurred in the fast exchange regime, in line 

with the 200 μM affinity, as measured by MST (Supplementary Figure S8A) and by NMR 

(Supplementary Figure S8B). The highest CSPs upon ligand binding involved residues located on 

the β1 strand (V23, H25, K27) and on the so called CXCR4 sulfotyrosine (sulfoY21) binding site65 

(N45, Q48, V49) (Figure 8A). Indeed STD and waterLOGSY competition experiments performed 

adding 1 mM 2a to a preformed CXCL12:diflunisal complex (1:10) indicated that 2a competes 

with diflunisal for the same binding site, as assessed by the reduction of both STD and 

waterLOGSY signals of diflunisal upon 2a addition (Figure 8B). 

 

 
Figure 8. 2a binds to CXCL12. (A) Histogram showing the CSPs of 15N-labeled CXCL12 amides (~0.1 mM) upon 

addition of 10-fold excess of 2a. Missing residues are prolines. Elements of secondary structure are depicted on the 

top. (B) Top: 1H spectra of 2a (black) and of diflunisal (blue). Middle: superimposition of STD spectra (3s saturation) 

obtained on 0.5 mM Diflunisal with 0.05 mM CXCL12 (black line) and upon addition of 1 mM of 2a (red line). 

Bottom: waterLOGSY spectra obtained for 0.5 mM diflunisal with 0.05 mM CXCL12 (black line) and upon addition 

of 1 mM of 2a (red line). The decrease of signal intensities of diflunisal upon 2a addition indicates that the two ligands 

compete for the same binding site (C) Left: HADDOCK model of the interaction of 2a (CPK representation) with 

CXCL12 (grey surface and cartoon). CXCL12 residues with CSP > Avg + SD located around the sY21 binding site 

on the 1 strand are represented in red and orange, respectively. Right: Zoom in of the binding site, CXCL12 residues 

(sticks) involved in hydrophobic and polar interactions with 2a (sticks) are explicitly labelled. 

 

As for diflunisal, we hypothesized that CSPs affecting residues of the β1 strand were due to 

allosteric effects induced by ligand binding. A HADDOCK model of the 2a-CXCL12 complex 

indicated that 2a, in analogy to diflunisal24, accommodates in the CXCR4 sulfoY21 binding site, 

whereby the two salicylate moieties of 2a establish polar interactions with R47, N44 and N45 
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sidechains and with the backbone carbonyl of Q48 and the amide of C50, respectively. Both 

aromatic rings are involved in hydrophobic interactions with V18, V49, L42 (Figure 8C).  

Taken together these data show that 2a is also a ligand of CXCL12 and targets the CXCR4 

sulfoY21 binding site. 

 

2a inhibits the chemotactic activity elicited by HMGB1•CXCL12 heterocomplex 

 

Finally, having assessed the ability of 2a to simultaneously bind HMGB1 and CXCL12 and to 

break the HMGB1•CXCL12 heterocomplex, we asked whether 2a affected the chemotactic 

activity of the HMGB1•CXCL12 heterocomplex. Indeed, 2a inhibited the chemotaxis of mouse 

3T3 fibroblasts in a dose-dependent manner, with an IC50 close to 10 pM, the lowest documented 

so far for inhibitors of HMGB1–induced cell migration. Importantly, 2a did not influence the 

general motility of fibroblasts, as it did not affect chemotaxis toward fMLP (Figure 9), indicating 

that 2a targets selectively the chemotactic activity of the HMGB1•CXCL12 heterocomplex. 

 

 
Figure 9. 2a inhibits HMGB1•CXCL12 heterocomplex-induced chemotaxis, Mouse 3T3 fibroblasts were 

subjected to chemotaxis assays in Boyden chambers, 0.25 nM HMGB1, 1.5 nM of CXCL12 or no chemoattractant 

was added in the lower chamber, together with the indicated concentrations of 2a. 2a does not inhibit fMLP-induced 

chemotaxis at the highest concentrations tested for HMGB1•CXCL12 induced chemotaxis. Data points with average 

 standard deviation (Avg  SD; n = 3, each point represents a biological replicate) in a representative experiment. 

Statistics: one- way ANOVA (P < 0.0001), followed by Dunnett’s post-tests. ****P < 0.0001 relative to no 2a 

addition. 

 

Discussion  

Recent studies investigating the functional synergism of chemokine-based heterodimers have 

shown that hampering heterophilic interactions interrupts inflammation8. Thus, the targeting of 

these PPIs is emerging as a valuable strategy for the development of new selective antagonists 

suitable for the tailored modulation of specific inflammatory responses. In this sense a very 

promising example is represented by CCL5-derived peptides that inhibited the atherogenic 

CCL5•CCL17 interaction and hampered CXCL12-driven platelet activity8. However, the 

development of PPI antagonists, either peptidomimetics or small organic molecules, poses 

incredible challenges when the three-dimensional structure of the complex is unknown. This is the 
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case for HMGB1•CXCL12 heterocomplex, a master-regulator of the recruitment of inflammatory 

cells via the CXCR4 axis, and therefore a valuable target for the development of selective anti-

inflammatory compounds. However, high-resolution atomistic descriptions of this interaction are 

still elusive, thus making structure-based drug discovery studies extremely difficult. One 

reductionist strategy that can be adopted to cope with this problem is to target the isolated 

components of the heterocomplex. While CXCL12 as direct interactor of CXCR4 is a popular 

target for drug development, as shown by several structure-based drug designs studies29,66, no 

systematic structure-based small-molecule screening has been reported until now for HMGB1. 

This is probably due to the structural features of both the HMG boxes, that do not present clearly 

targetable pockets. Still, computational analysis of their structures through the mapping servers 

FTMap32 and Dogsite34 performed in this work highlighted a binding hot spot at the interface of 

helix I and helix II of both HMG boxes. Interestingly, the same region is recognized by several 

known HMGB1 binders, including DNA67, small ligands glycyrrhizin26,38 and diflunisal24), 

peptides68 or proteins such as p5369, speaking in favor of virtual screening approaches targeting 

this area. Prompted by these results we screened the Zbc library with three different ligand docking 

programs that rely on different search algorithms and scoring functions, with the aim to 

compensate for their individual weaknesses55,56. The ligands of the best docking poses emerging 

from these three docking programs were i. scrutinized and filtered according to a pharmacophoric 

model based on known HMGB1 binders, ii. clustered according to structural similarity and iii. 

subsequently validated through ligand-based and protein- based NMR methods. Interestingly, at 

the end of this pipeline rosmarinic acid (6) emerged as a weak ligand of HMGB1. Indeed, this 

molecule has been already reported to be an attenuator of the HMGB1/TLR4/NF-B‐dependent 

inflammatory response 62,63, supporting the validity of our virtual screening approach. We then 

focused on the novel hit stemming from our pipeline, 5,5'methylenedi2,3cresotic acid (2a). 2a 

was previously reported to have modest DNA demethylase inhibition activity70. We demonstrated 

that 2a interacts with high micromolar affinity with the predicted hotspot of the single boxes in a 

way similar to what observed with diflunisal, targeting the surface directly involved in the 

formation of the heterocomplex with CXCL1224. Accordingly, NMR and MST competition 

experiments demonstrated that 2a is able to disrupt the interaction of HMGB1 with CXCL12, with 

an EC50 of 0.3 mM. Moreover, cell migration experiments showed that 2a is able to inhibit the 

chemotactic activity of HMGB1•CXCL12 heterocomplex, with an IC50 of 10 pM, the most potent 

inhibition activity documented until now, and 2 orders of magnitude larger than that of diflunisal. 

Intriguingly, NMR CSP and MST data indicate that 2a binds also to CXCL12, as does diflunisal. 

It targets with high micromolar affinity the CXCR4 sulfotyrosine binding pocket and induces CSPs 

on CXCL12 β1 strand, likely ascribable to allosteric effects71 contributing to the destabilization of 

the interaction with HMGB1. The dual binding ability to HMGB1 and CXCL12 seems to be a 

common theme in inhibitors of HMGB1•CXCL12 chemotactic activity, as observed for 

glycyrrhizin and diflunisal24. Results emerging from this and previous studies strongly suggest that 

salicylate derivatives are well suited for the interaction with HMGB1, with the carboxylic and 

hydroxylic group of the aromatic rings fulfilling the predicted pharmacophoric characteristics 
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required for HMGB1 ligands. Intriguingly, these pharmacophoric features seem in part to satisfy 

also the chemical requirements for CXCL12 ligands. In fact, previous structure-based design 

studies aiming at identifying CXCL12 inhibitors have suggested that a carboxylic group, 

preferentially combined to an aromatic group, is a good mimic of the negatively charged CXCR4 

sulfotyrosine29,66. Thus, we speculate that some known CXCL12 inhibitors might be also ligands 

of HMGB1, conceivably exerting a synergic inhibition effect on the disruption of the 

HMGB1•CXCL12 heterocomplex and as direct inhibitors the interaction of CXCL12 with 

CXCR4. 

The double targeting action of 2a, diflunisal and glycyrrhizin only in part reconciles the 

discrepancy existing between their high micromolar ability to disrupt the HMGB1•CXCL12 

complex and their nanomolar or picomolar chemotactic inhibition efficacy. Chemotaxis relies on 

many different signaling cascades at the cell membrane, where the local concentration of both 

HMGB1 and CXCL12 might increase through their direct interaction with cell surface 

glycosaminoglycans (GAGs)72,73. Additional mechanisms and cooperative binding phenomena 

among multiple actors at the cell surface might occur74 herewith synergistically and/or 

allosterically contributing to complex destabilization. We posit that the inhibition activity of these 

ligands might rely on multistep dynamic processes that, besides the interaction with both CXCL12 

and HMGB1, also include the direct binding to a high affinity binding pocket at the heterocomplex 

interface. Once targeted, this site might cooperate to heterocomplex dissociations and/or induce 

allosteric changes that affect heterocomplex binding to CXCR4 and the related signaling. As long 

as the three-dimensional structure of the heterocomplex is unknown and the molecular and 

functional details of its interaction with CXCR4 remain underexplored, the details of the 

mechanisms dictating the inhibitory potency of 2a and of other ligands of the 

HMGB1/CXCL12/CXCR4 axis will be unresolved. Nevertheless, our reductionist approach 

showed that small solvent-exposed clefts of HMGB1 boxes, traditionally viewed as a barrier to 

the success of in silico ligand screening, can actually serve as legitimate sites for drug discovery. 

Even more interestingly, cytokine heterocomplexes that appeared undruggable are actually 

promising drug targets.  

 

Conclusions 

In summary, the combination of VS and experimental validation proved successful in identifying 

2a as the best molecule documented until now in terms of inhibition of in vitro chemotaxis activity 

of the HMGB1•CXCL12 heterocomplex. These results pave the way for future structure activity 

relationship studies for the optimization of the pharmacological targeting of this heterophilic 

interaction for anti-inflammatory purposes. 
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