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ABSTRACT 

Pancreatic ductal adenocarcinoma (PDAC) remains a treatment-refractory disease. Characterizing 

PDAC by mRNA profiling remains particularly challenging. Previously identified bulk expression 

subtypes were influenced by contaminating stroma and have not yet informed clinical 

management, whereas single cell RNA-seq (scRNA-seq) of fresh tumors under-represented key 

cell types. Here, we developed a robust single-nucleus RNA-seq (snRNA-seq) technique for frozen 

archival PDAC specimens and used it to study both untreated tumors and those that received 

neoadjuvant chemotherapy and radiotherapy (CRT). Gene expression programs learned across 

untreated malignant cell and fibroblast profiles uncovered a clinically relevant molecular 

taxonomy with improved prognostic stratification compared to prior classifications. Moreover, in 

the increasingly-adopted neoadjuvant treatment context, there was a depletion of classical-like 

phenotypes in malignant cells in favor of basal-like phenotypes associated with TNF-NFkB and 

interferon signaling as well as the presence of novel acinar and neuroendocrine classical-like 

states, which may be more resilient to cytotoxic treatment. Spatially-resolved transcriptomics 

revealed an association between malignant cells expressing these basal-like programs and higher 

immune infiltration with increased lymphocytic content, whereas those exhibiting classical-like 

programs were linked to sparser macrophage-predominant microniches, perhaps pointing to 

susceptibility to distinct therapeutic strategies. Our refined molecular taxonomy and spatial 

resolution can help advance precision oncology in PDAC through informative stratification in 

clinical trials and insights into differential therapeutic targeting leveraging the immune system. 
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INTRODUCTION 

Pancreatic ductal adenocarcinoma (PDAC) is projected to become the second leading cause of 

cancer death in the United States by 2030 (1, 2). Despite advancements in systemic therapy, many 

patients cannot receive post-operative chemotherapy and/or radiotherapy (CRT) due to the 

morbidity often associated with surgery (3, 4). Neoadjuvant therapy has been increasingly adopted 

to aggressively address the risk of micrometastatic spread and to circumvent concerns of treatment 

tolerance in the postoperative setting. Recent clinical trials support the use of preoperative 

treatment over upfront surgery (5, 6). Nonetheless, tumor resistance to CRT remains a profound 

challenge for PDAC. In particular, there is an urgent need to understand how preoperative 

treatment impacts residual tumor cells to identify additional therapeutic vulnerabilities that can be 

exploited in combination with neoadjuvant CRT. 

 

Unlike many other common cancers, molecular subtyping of pancreatic cancer remains in its 

nascent stages and does not currently inform clinical management or therapeutic development (7). 

Bulk RNA profiling of PDAC (8–13) identified two consensus subtypes: (1) classical-pancreatic, 

encompassing a spectrum of pancreatic lineage precursors, and (2) basal-like/squamous/quasi-

mesenchymal, characterized by loss of endodermal identity and aberrations in chromatin modifiers 

(7). Basal-like tumors were associated with worse survival and poorer responses to chemotherapy 

in the metastatic setting (14), but attempts to refine this classification (beyond basal-like vs. 

classical) have failed to further stratify patient survival (7). Additional identified subtypes, such as 

exocrine, aberrantly-differentiated endocrine exocrine (ADEX), and immunogenic, are associated 

with lower tumor purity and may represent stromal contributions rather than neoplastic cell-

intrinsic programs (8, 10, 11). Bulk profiling studies attempted to address this challenge by 
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enriching for neoplastic content by either specimen selection or microdissection (8–11), but these 

introduced bias and precluded the assignment of transcripts to specific cell types. Thus, it remains 

unclear if genes expressed in ‘normal’ differentiated pancreatic tissue have a role in cancer or 

represent non-malignant tissue contamination. Furthermore, most studies have been performed in 

the untreated setting and do not offer insights into optimal treatment approaches after CRT. 

 

The importance of distinguishing the relationships among malignant, stromal and immune cells, 

is further emphasized by how the therapeutic effect of cytotoxic treatments may be mediated 

through their impact on the immune system (15, 16) or cancer-associated fibroblasts (CAFs). 

Specifically, CRT can stimulate the production of type I interferons (IFN), which favor a cDC1-

polarized phenotype with improved capacity for cross-presentation (17–22). However, interferon 

signaling can also hinder anti-tumor responses in a dose- and cancer-type-dependent manner (23, 

24), by diminishing antigen processing and upregulating nonclassical MHC class I molecules that 

suppress NK- and T-cell killing (23). These effects can negatively impact native anti-tumor 

immunity and immunotherapy (23). Activated CAFs in PDAC can also contribute to tumor growth, 

therapeutic resistance and immune cell exclusion (25–27). This has led to therapeutic interest in 

inhibiting certain CAF subpopulations, such as myofibroblasts, though surprisingly, deletion of 

αSMA+ CAFs correlated with reduced survival in transgenic mice (28). Such studies, however, 

were performed in the untreated context, and it remains unclear whether such observations would 

persist after neoadjuvant CRT. 

 

Single cell RNA-seq (scRNA-seq) can help tackle these questions by distinguishing the diversity 

of malignant and non-malignant cells in the tumor (29–32), and elucidating the impact of therapy 
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on each compartment and their interactions. However, scRNA-seq in PDAC has lagged behind 

other cancer types due to high intrinsic nuclease content and dense desmoplastic stroma (33–36), 

resulting in reduced RNA quality, low numbers of viable cells, preferential capture of certain cell 

types at the expense of others, and challenges with dissociating treated tumors. Single nucleus 

RNA-seq (snRNA-seq) provides a compelling alternative for difficult-to-dissociate specimens or 

frozen archival samples (37–40), and can better recover malignant cells and stroma while reducing 

stress signatures (introduced by dissociation) and maintaining the same spectrum of cell states 

(41–43). 

 

Here, we optimized snRNA-seq for frozen archival PDAC specimens, largely circumventing the 

challenges that have hampered scRNA-seq in PDAC. We successfully applied snRNA-seq to 

tumors from untreated patients and from those who received neoadjuvant CRT prior to 

resection(5), including archival samples stored for up to seven years before processing, with 

comparable quality for untreated and treated tumors. The recovered cellular composition closely 

matched the tumor composition as determined by a gold standard of multiplex protein profiling in 

situ. This allowed us to discover treatment-associated remodeling of the malignant, fibroblast, and 

immune compartments; identify changes in expression programs in malignant cells and fibroblasts 

associated with treatment; and refine the molecular taxonomy of PDAC in a clinically relevant 

manner. Combining these expression programs with spatially-resolved transcriptomics, we 

associated neoplastic- and fibroblast-intrinsic programs with different local immune 

microenvironments, highlighting how immunomodulatory strategies may be better selected and 

deployed. Our work provides a window into treatment selection pressures and the changes they 
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may induce in the molecular composition of tumors and provides a blueprint for exploring 

therapeutic strategies tailored for the reprogrammed tumor. 

 

RESULTS 

Single-nucleus RNA-seq Accurately Represents the Malignant and Non-Malignant 

Compartments of Human PDAC Tumors 

We performed snRNA-seq on flash frozen, histologically-confirmed, primary PDAC specimens 

from patients (n = 26) with resectable or borderline-resectable disease, who underwent surgical 

resection with (n = 11) or without (n = 15) neoadjuvant CRT (Figure 1A; Table S1), and analyzed 

138,547 high quality single nucleus profiles (Methods). We separately grouped single nucleus 

profiles by treatment status from all patients by unsupervised clustering and annotated cell subsets 

using known cell type-specific gene signatures (Figures 1B, S1; Methods). The identity of 

malignant cells was confirmed by inferred Copy Number Aberrations (CNAs) (Figure S2A) (29). 

The frequencies of inferred chromosome arm-level somatic CNAs in the malignant cells of these 

patient samples were comparable to those in The Cancer Genome Atlas (TCGA) pancreatic 

adenocarcinoma cohort as assessed by single nucleotide polymorphisms and whole-exome 

sequencing (Figure S2B) (11). Among non-malignant cells, we identified all major cell types 

known to compose exocrine pancreatic tumors (Figures 1B-C). We noted the presence of a subset 

of atypical ductal-like cells (CFTRhigh;KRT19high;CNAlow) (Figure 1B) that are unlikely to be 

doublets based on their typical number of unique molecular identifiers, and could be further 

explored in future studies as possible precursors to invasive cancer cells. 
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Examining treatment-naïve and neoadjuvant-treated specimens separately (Figure 1C) (44), non-

malignant cell subsets primarily partitioned by cell type with substantial inter-patient mixing, 

whereas malignant cells partitioned by patient, as we previously reported for other tumor types 

(29, 31, 32, 45, 46). Among non-malignant cells, we readily annotated diverse immune, endocrine, 

and acinar cells, and their cell subsets by known gene signatures (Figures 1B-C) (40, 47–49). 

While earlier scRNA-seq studies in PDAC did not fully capture the stromal milieu with marked 

underrepresentation of cancer-associated fibroblasts (CAFs) (50–52), they are well-represented in 

all our samples (Figures 1B-C, S1). 

  

To further assess if our method captured representative cell type proportions, we compared it to 

estimates from Multiplexed Ion Beam Imaging (MIBI), using a 27-plex epithelial oncology panel 

on formalin-fixed paraffin-embedded (FFPE) sections derived from tumor specimens in a subset 

of seven individuals (Figure 1A; Methods) (53, 54). This confirmed that snRNA-seq captures a 

representative distribution of the major cell types present in PDAC, both in aggregate across all 

tumors (Figure 1D), and individually (Figure S3). 

 

Compartment-Specific Remodeling of Cell Composition and Intrinsic Programs following 

Neoadjuvant Treatment has Implications for Anti-Tumor Immunity 

We compared the snRNA-seq cell type proportions for the treated and untreated cohorts (Figures 

2A, S4). As expected, the proportion of malignant cells was significantly lower in the treated 

cohort, which we confirmed by histology (p < 5 x 10-5, Fisher’s exact test). In contrast, within the 

non-malignant compartment, there were proportionally more acinar cells (p < 5 x 10-5, Fisher’s 

exact test), endocrine cells (p < 5 x 10-5), and Schwann cells (p < 5 x 10-5) associated with 
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neoadjuvant CRT (Figures 2A, S4). This was consistent with the higher density of regenerating 

pancreatic tissue and the previously described resistance of some of these cell types to cytotoxic 

therapy (55). Interestingly, after removal of malignant cells, there were proportionally fewer 

fibroblasts in the CRT cohort (relative to immune and other cells) compared to the untreated group 

(Figure S4), suggesting that the histologically-apparent enhanced desmoplastic reaction after 

treatment may not be dependent on CAF proliferation but rather an enrichment in CAF phenotypes 

that contribute to the desmoplastic reaction (e.g., myofibroblasts) (56). There were substantially 

more Schwann cells in the CRT cohort despite their known radiosensitivity (57), which could be 

due to an active repopulation or recruitment of Schwann cells and their associated nerves to the 

site of treatment-induced injury. Notably, we also detected a population of regenerating acinar 

cells (REG3Ahigh;REG3Ghigh;SYCNhigh) in the treated specimens (Figure 1C), which have been 

associated with acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasia (40, 48, 58, 

59). 

 

The immune compartment from treated tumors was distinct from that of the untreated tumors: 

there were significantly lower proportions of B cells (Fisher’s exact p < 5 x 10-5), plasma cells (p 

< 5 x 10-5),  and regulatory T cells (p < 5 x 10-5) but higher proportions of CD4+ T cells (p = 1 x 

10-4) and macrophages (p < 5 x 10-5) (Figures 2A, S4). We also observed a marked difference in 

dendritic cell (DC) subsets. First, conventional type 2 dendritic cells (cDC2), plasmacytoid 

dendritic cells (pDC) and mature regulatory dendritic cells (mregDCs) (60–62), which can 

suppress anti-tumor immunity in certain contexts, were prominent DC subtypes in treatment-naïve 

samples, but absent from CRT specimens (Figure 2A) (63). In contrast, conventional type 1 

dendritic cells (cDC1), which activate cytotoxic lymphocytes critical for anti-tumor immunity, was 
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the only DC subset detected in post-CRT tumors (Figure 2A). Second, receptor-ligand analysis 

inferred enhanced interactions between CD40LG+ CD4+ T cells and CD40+ DCs in the CRT cohort 

(Figure 2B; Methods). These results are consistent with pre-clinical and clinical reports that CRT 

can induce immunogenic cell death, which increases tumor antigen availability, and stimulates the 

production of type I interferons, in turn activating DCs away from regulatory/suppressive cDC2, 

pDC and mregDC states towards improved capacity for cross-presentation (17–22),. Moreover, 

combinations of agonistic CD40 antibodies with chemotherapy and PD-1 inhibition has substantial 

benefit in some patient groups (64). 

 

Intrinsic gene expression levels in immune cells differed as a function of treatment status 

(Methods), even in subsets whose proportions were comparable.  For example, following CRT, 

CD8+ T lymphocytes expressed markers of altered differentiation (e.g., SLAMF6, CD69, STAT4, 

IL7R, shift from ITGAE to ITGA4) and TCR signaling (e.g., ITK and FYN) (Figures 2D, S5A; 

Table S2). While most well-established immune checkpoint receptors were not differentially 

expressed, ENTPD1 (CD39) was marginally lower in the treated group (Table S2). In contrast, 

both inhibitory (CD96) and activating (CD226) members of the TIGIT/CD155 immune checkpoint 

family (65) were higher in the post-treatment context. In macrophages, there was a treatment-

associated lower expression of genes for the uncommitted state M0 (47, 66) (e.g., MARCO, AQP9, 

CYP27A1, NCF2; Figures 2D, S5B; Table S2), and higher expression of macrophage polarization 

markers representing both the classical “pro-inflammatory” state M1 (CD86, TNFSF8, 

TNFRSF1B, IFI44L, LILRB2) and alternative “tissue repair” program M2 (CD163, MRC1, 

TGFB1, TGFBI, TGFBR2, SIGLEC1, MS4A6A, FES) (47, 67–69). CRT was also associated with 

higher expression of MHC class II (MHC-II) (CD74, HLA-DPA1, HLA-DPB1) and TGF-β 
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pathway genes in macrophages (Figures 2D, S5B). Concomitantly, the lower expression of the 

TGF-β pathway in CAFs from treated tumors (Figure S11A) suggests a potential myeloid-specific 

immunosuppressive mechanism and may partly explain the efficacy of the TGF-β modulator, 

losartan, in combination with neoadjuvant CRT (6, 70).  

 

Interferon Signaling and Immune-Promoting Responses in Malignant Cells after Treatment  

Analysis of genes differentially expressed by malignant cells in untreated vs. treated tumors 

(Figure 2C) revealed elevated expression of type I and II interferon (IFN) response genes 

following neoadjuvant CRT. This was detected even when cells from the two patients with 

germline BRCA2 mutations were removed from the treated group (PDAC_T_1, PDAC_T_2; 

Figure S5C; Table S1). This phenomenon could be due to a release of damage associated 

molecular patterns (DAMPs) and pattern recognition receptors (PRRs) by CRT that converge on 

interferon signaling (71–73). 

 

Notably, the IFN-γ pathway genes that are elevated in the malignant cells post treatment (Figure 

2C) appear to be associated with immune-promoting rather than immune suppressive programs. 

None of the nonclassical MHC class I (MHC-I) genes that are thought to be immunosuppressive 

were differentially overexpressed post-treatment; the classical HLA-B was the only MHC-I 

molecule that was higher in the post-treatment context (Figure 2C) (23, 74). Furthermore, inferred 

interactions between HLA-A, -B, or -C on malignant cells and CD3G on CD8+ T-cells were higher 

post-treatment (Figure 2B). These data suggest that the addition of type I interferons may improve 

PDAC outcomes, although adjuvant CRT plus interferon alpha 2b did not improve survival 
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compared to chemotherapy (75, 76). Overall, these results are consistent with reports that CRT 

may enhance MHC-I expression for recognition by cytotoxic immune cells (77). 

 

Subtype-Specific Treatment Response in Malignant Cells suggests that Basal-like Malignant 

Cells are more Resistant to CRT than Classical-like Cells 

The differentially expressed genes in malignant cells suggest a relative increase in basal-like cells 

and a decrease in classical-like cells in treated vs. untreated tumors. Genes differentially 

overexpressed in malignant cells from post-treatment tumors were enriched in the basal-like 

signature (9, 78) (p = 2.05 x 10-6, hypergeometric test), and included TP63, a master transcription 

factor for the PDAC squamous subtype (79) (Figure 2C). Conversely, differentially 

underexpressed genes were enriched for the classical-like signature (p = 4.46 x 10-24), including 

the hallmark transcription factor GATA6 (7, 9, 78, 80) (Figure 2C). Consistently, human PDAC 

cell lines become enriched for the basal-like subtype after FOLFIRINOX (14, 81). These 

observations could reflect either cell state changes following CRT, differential sensitivity to CRT, 

or both. Notably, the response to first-line combination chemotherapy for advanced PDAC is 

significantly better in patients with GATA6-expressing classical subtype tumors, supporting a 

model of increased sensitivity of classical-like cells to CRT. 

 

Furthermore, genes differentially expressed within the treated cohort between malignant cells from 

patients with high (>10%) vs. low residual neoplastic content (Figure S5D; Tables 1-2) were also 

associated with the basal-like vs. classical-like distinction. Specifically, genes elevated in the high 

residual group were enriched for the basal-like signature (p = 8.34 x 10-8, hypergeometric test), 

and those underexpressed were enriched for the classical-like subtype (p = 1.65 x 10-51) (Figure 
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S5D). Interestingly, MUC16, a source of neoantigens when mutated, and a potential target for 

chimeric antigen receptor (CAR) T cell therapy (82), was elevated in high-residual tumors. This 

may provide rationale for testing immunomodulatory neoadjuvant strategies to complement CRT. 

Overall, this analysis supports a model of a subtype-dependent response to CRT, such that basal-

like neoplastic cells are more resistant to cytotoxic therapy than classical-like neoplastic cells. 

Future studies of matched pre- and post-treatment tumors will help distinguish direct selection on 

existing cell states from treatment-induced state changes.  

 

In malignant cells, treatment was also correlated with distinct expression of genes needed to 

maintain the Wnt/β-catenin niche, which is crucial to treatment resistance, and can be mediated by 

either paracrine interactions with CAFs or autocrine signaling by malignant cells (83). The 

expression of the Wnt family receptor LRP5 was sustained in surviving malignant cells post-

treatment, but there appeared to be shifts in the source of Wnt signaling. CRT was associated with 

a concomitant differential underexpression in WNT5A by CAFs and overexpression in autocrine 

WNT7B signaling by malignant cells (Figures 2B-C), which has previously been shown to drive 

anchorage-independent growth and worse disease-specific survival in PDAC (84). 

 

Novel Malignant Cell Programs Reveal a Refined Molecular Classification 

Next, we sought to better characterize expression states within the malignant cells across patients. 

Consistent with recent reports of intra-tumoral subtype heterogeneity, nearly every untreated 

tumor contained both basal-like and classical-like cells (Figure S7; Methods) (78, 85), with the 

two states being largely mutually exclusive. In the treated cohort, bulk signatures overlapped in 

the same nucleus, suggesting that the basal-like and classical-like signatures derived in the 
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treatment-naïve setting may be less relevant in the neoadjuvant treatment context. This further 

supports the possibility of state changes and highlights the need to identify de novo molecular 

subtypes following CRT. 

 

Despite substantial inter-tumor heterogeneity (Figures 1C, S1), we learned recurrent gene 

expression programs across malignant cells of different tumors by consensus non-negative matrix 

factorization (cNMF). We performed cNMF separately for the untreated and treated malignant 

cells and focused on the programs shared between patients that were biologically distinct (Figures 

3A-B; Tables S3-4; Methods) (86). We annotated each program based on its top 200 weighted 

genes (Methods). In both untreated and treated tumors, we identified nine malignant programs 

that reflected either their lineage or cell state, though there was partial overlap among them 

(Figures 3A-B).  

 

In untreated tumors, there were five lineage-specific programs: three spanned basal-like 

phenotypes involving the epithelial-mesenchymal transition (87, 88) (squamous, mesenchymal 

cytoskeletal, mesenchymal matrisomal), with the squamous program closely overlapping the basal-

like A subtype (78); two spanned classical-like phenotypes (classical progenitor, classical 

activated) (Figure 3A) with the classical progenitor program containing transcription factors 

(TFs) involved in endoderm lineage development (HNF1A, DLX2, PRDM6, and FOXO4) and the 

classical activated program also containing genes involved in secretion, cell polarization, and 

cytoskeletal remodeling. The remaining four cell state programs were cycling, hypoxic, TNF-NFkB 

signaling, and interferon signaling. In treated tumors, there were six lineage-specific programs 

(squamous, mesenchymal, induced basal-like, classical progenitor, classical acinar-like, classical 
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neuroendocrine-like) and three cell state programs (cycling, TNF-NFkB signaling, interferon 

signaling) (Figure 3B). 

 

Programs varied in the extent to which they co-occurred within the same cell and associated with 

one another. In both untreated and treated tumors, IFN signaling and squamous program scores 

were correlated across nuclei (Figure S8), as were those of mesenchymal with TNF-NFkB 

signaling. TNF-NFkB signaling was also correlated with the induced basal-like and classical 

neuroendocrine-like programs in the post-treatment context. Thus, basal-like cells may be more 

inflammatory/immunogenic overall than classical-like cells. Taken together, the increase in 

expression of basal-like genes, interferon signaling, and immune response promoting genes 

(Figure 2C) in treated vs. untreated samples may reflect coupled programs in the same individual 

cells (Figure S8), which could in turn drive immune cell state changes (Figures S5A-B). One 

possibility is that these are driven through the effects of p63, especially the ΔNp63 isoform, though 

this remains an area of controversy in the field (11, 89, 90). 

 

A Shift from Classical-like to Induced Basal-like or Terminally-Differentiated Pancreatic 

Cell Programs may Contribute to Resistance Following Treatment 

Compared to the untreated group, post-treatment malignant cells scoring highly for basal-like 

programs were enriched, while those scoring highly for classical-like programs were depleted 

(66% vs 19%; p = 0.0001, Fisher’s exact test; Figures 3C, S7). This was consistent with our 

differential expression analysis (Figure 2C). Despite the overall reduction of classical-like cells 

post-treatment, the classical-like programs present in residual cells spanned a broader range of 

pancreatic cell lineages: classical progenitor (GATA6 TF), classical acinar-like (endoderm lineage 
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TFs and characteristic digestive enzymes), and classical neuroendocrine-like (enriched for neural 

genes and target genes of pancreatic neuroendocrine TFs such as HNF3 and NKX6). This suggests 

that neoadjuvant CRT either selects for or drives cells towards a state of increased pancreatic 

differentiation (Figure 3B) and mirrors the relative enrichment in non-neoplastic acinar and 

endocrine cells after CRT (Figures 2A, S4).  

 

In addition, the post-treatment induced basal-like program shared features of both classical-like 

(classical activated) and basal-like (squamous) programs, along with MUC16 (also a member of 

the untreated interferon signaling program, Figure 3A) and genes associated with chemoresistance 

(MUC13, CEACAM6, MUC5, FGF19, ABCC3, TNFAIP2, KLK11, DUSP1, OLFM4, AQP5)(91–

101) (Figure 3B). This induced basal-like post-treatment program may reflect a phenotypic shift 

from the more therapeutically vulnerable classical-like subtype to the more resistant basal-like 

state reminiscent of recent ex vivo observations (81).  

 

More generally, these programs may reflect a shift towards either basal-like or terminally-

differentiated pancreatic cell states that are advantageous for surviving CRT compared to a less 

differentiated classical-like phenotype (Figure 3D). This model is consistent with in vitro and in 

vivo evidence for lineage plasticity in normal pancreatic ductal progenitor cells (102) and 

differentiated pancreatic cells—including a role for MYT1/MYT1L, a member of the classical 

neuroendocrine-like program, in ductal-neuroendocrine reprogramming (Figure 3B; Tables S3-

4) (103–108). 
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Treatment-Associated Contractile Phenotype in Cancer-Associated Fibroblasts 

Because fibroblasts have emerged as a key instigator of tumor-immune evasion and therapeutic 

target (109), we leveraged the successful capture of fibroblasts in our data to assess their subsets, 

programs, and response to treatment. Although three signatures were recently reported in a 

scRNA-seq study of human and murine PDAC (myofibroblastic CAFs (myCAF), inflammatory 

CAFs (iCAF), and antigen-presenting CAFs (apCAF)) (51), these did not adequately segregate our 

snRNA-seq data, likely reflecting the substantial underrepresentation of CAFs in earlier scRNA-

seq studies (51) (Figure S10). We thus separately applied cNMF to learn four snRNA-seq 

programs each for the untreated and treated CAFs (Figure S11B; Table S5; Methods).  

 

Three of the programs were shared between untreated and treated CAFs: myofibroblast, 

neurotropic, and secretory, while a mesodermal progenitor program (mesodermal developmental 

genes and TFs) was discovered only in untreated CAFs, and a neuromuscular program (muscle 

development, contractility, synapse, and action potential genes) was only learned in treated CAFs 

(Figure S11B). The myofibroblast program included extracellular matrix, motility, and wound 

response genes; the neurotropic program featured neural development, synaptic, and axonal 

guidance genes; and the secretory program encompassed protein targeting, secretory vesicle, 

exocytosis, and cytokine signaling genes including modulators of diverse immune functions (e.g., 

CXCL14, LGALS1, CST3, PPIA, LGALS3BP, CD59, CD81, and IFITM3) (110–115). In untreated 

CAFs, the myofibroblast and mesodermal progenitor programs were positively correlated (Figure 

S11C). 
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The marked enrichment of the myofibroblast phenotype after neoadjuvant CRT (Figure S11D) 

may be consistent with an induction of genes associated with muscle development and contraction 

after CRT seen in differential expression analysis (Figure S11A). BCL2, an anti-apoptotic protein, 

was also expressed at a higher level in post-CRT myofibroblasts (Figure S11A). BCL2 inhibition 

with Navitoclax (ABT-263) induced apoptosis of myofibroblasts and impeded tumor growth in a 

xenograft mouse model of hepatocellular cancer (116), and could thus be a relevant therapeutic 

strategy in the neoadjuvant setting. Conversely, the expression of FAP, a member of the 

mesodermal progenitor program, was significantly reduced after CRT, suggesting that depletion 

of CAFs by blocking FAP may not confer added value, despite prior studies showing promising 

anti-tumor effects in some model systems (27, 117) (Figure S11A). Treatment was also associated 

with higher CXCL12 expression in CAFs (Figure S11A) and increased predicted CXCL12-CXCR4 

interactions between CAFs and CD8+ T-cells (Figure 2B), which has been linked to inhibition of 

T-cell migration to the TME (118). Moreover, CXCR4 inhibition improves PDAC sensitivity to 

anti-PD-1/PD-L1 immunotherapy (119, 120). Thus, modulating this axis may further improve 

clinical outcomes associated with neoadjuvant CRT. 

 

Clinically Relevant Molecular Taxonomy Based on Malignant and Fibroblast Programs 

Improves Prognostication 

Prior survival analyses that stratified patients by bulk expression subtypes only discerned binary 

prognostic differences between basal-like and classical-like tumors (7, 10), but finer subsets, such 

as three non-basal bulk subtypes (10) (pancreatic progenitor, immunogenic, ADEX) were 

indistinguishable. We used our de novo snRNA-seq programs for untreated malignant cells and 

fibroblasts to stratify bulk RNA-seq profiles from untreated, resected primary PDAC in the TCGA 
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(11) and PanCuRx (78) cohorts (n = 307; Methods). To account for the effects of different cell 

types on survival, we considered both malignant and fibroblast untreated programs, separately and 

in combination, to assign patients to risk categories (Methods). Briefly, we scored each untreated 

tumor by the five lineage malignant programs and four fibroblast programs. Each tumor was 

characterized by (1) its top scoring program (primary program) and (2) the number of highly 

expressed programs (heterogeneity score) and assigned by these two criteria to one of 15 possible 

malignant classes (Figure 3E, rows) and 8 possible fibroblast classes (Figure 3E; columns). Next, 

we inspected the survival curves associated with each class (Figure S9) and aggregated them into 

three putative risk categories (separately for malignant or fibroblast): low, intermediate, and high 

(Figure 3E, red and blue color bars). Finally, we also assigned tumors to four combined risk strata 

by integrating the malignant and fibroblast risk groups: low (both low), high (both high), high-

intermediate (one high, one intermediate), low-intermediate (all others) (Figure 3E, internal grid, 

purple color code).  

 

Kaplan-Meier (KM) analyses of overall survival (OS) stratified by either primary program, 

heterogeneity score, or both were separately prognostic for malignant cells and fibroblasts 

(Figures S9A-F). Among the malignant programs, mesenchymal matrisomal and classical 

progenitor were associated with the best OS, classical activated was associated with intermediate 

OS, and squamous and mesenchymal cytoskeletal were associated with the worst OS (Figure 9A). 

Notably, the basal-like mesenchymal matrisomal program had survival outcomes comparable to 

classical progenitor. Moreover, we identified the classical activated program as a classical-like 

subset with worse outcomes than the classical progenitor program. Among fibroblast programs, 

the secretory and neurotropic programs were associated with longer survival while the 
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myofibroblast and mesodermal progenitor programs were associated with shorter survival (Figure 

S9D). These findings were consistent with prior work associating myofibroblasts and 

mesenchymal stem-like cells with poor prognosis in a range of solid cancers (121–123). For both 

malignant cells and CAFs, an increasing number of highly scoring programs in one tumor 

(heterogeneity score) was associated with worse OS (Figures S9B,E), consistent with the known 

association between intratumoral heterogeneity, treatment resistance, and poor outcomes (29, 

124). When combining the malignant and fibroblast risk groups into a four-tier risk stratification 

(Figure 3E), there was a significant prognostic difference among the combined strata (log-rank p 

< 0.00005; Figure 3H) with a greater dynamic range (median survival: 11.2 to 44.7 months) than 

seen with prior classifications (10). 

 

Digital Spatial Profiling Reveals Malignant- and Fibroblast-Intrinsic Programs May 

Modulate Local Immune Microniches 

Our snRNA-seq analysis highlighted multiple potential inter-compartmental interactions among 

malignant, stromal and immune cells, including those associated with CRT. Identifying cancer 

cell- and fibroblast-intrinsic programs that may govern local immune microniches remains an open 

question in PDAC research, with prior studies disagreeing on whether the basal-like or classical-

like subtype is correlated with immune exclusion (11, 89, 90). Moreover, elucidating the 

relationships between our newly-identified neoplastic, lineage-specific programs (81, 102–108) 

and local immune infiltration will be critical in guiding therapeutic development. 

 

To address this challenge, we performed digital spatial profiling (DSP) with the GeoMx platform 

(NanoString) and a cancer transcriptome atlas (CTA) probe set. In this method, UV-
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photocleavable barcode-conjugated RNA ISH probes against 1,412 target mRNAs were used to 

capture and profile mRNA from user-defined regions of interest (ROI) (Figure S12A; Methods) 

(125). A four-color immunofluorescence slide scan for each specimen (Figure 4A) showed intra-

tumoral diversity in tissue architecture, allowing us to profile three distinct classes of ROIs 

encompassing neoplastic cells with either (1) immune and CAF infiltration, (2) immune infiltration 

only, or (3) CAF infiltration only (Figure 4B). We then used custom illumination masks to 

separately capture RNA from areas of illumination (AOI) enriched for one cell type within the 

ROI, collected RNA ISH barcodes from each AOI in a spatially-indexed manner, and counted 

transcripts by sequencing (Figure S12A; Methods).  

 

We used our snRNA-seq cell type signatures to deconvolve the spatial profiles. The malignant, 

CAF, and immune AOIs clustered appropriately by cell type, demonstrating the coherence and 

complementarity of the two platforms (Figure S12B). We also mapped the expression of each 

malignant and CAF program onto the spatial data (Figures 3A-B, S11B). Consistent with the 

snRNA-seq results, within the malignant compartment, CRT was associated with a higher basal-

like score (mixed effect model p = 0.0035) but not classical-like score (mixed effect model p > 

0.2) compared to untreated specimens (Figure 4C). Because only 269 genes were shared between 

the 1,412 gene CTA panel and the 2,037 program genes, we also profiled three untreated specimens 

using a whole transcriptome atlas (WTA; 18,269 genes; one probe per gene; 1,918 of the program 

genes) (Figure 4D; Methods). Programs from untreated patients had concordant expression within 

the WTA and CTA data (Spearman’s ρ = 0.54-0.999; Figure S12E) and mapped to locally-defined 

architecture within the tumor in a comparable manner (Figure 4D).  
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Relating the expression of each malignant and CAF program (Figures 3A-B, S11B) to the physical 

architecture of the tumor (Methods), the CAF myofibroblast program was associated with immune 

exclusion in treated samples (mixed effect model p = 0.021), consistent with the role of 

myofibroblasts in mediating an immunosuppressive TME (126) (Figure S11B). Immune-excluded 

ROIs (class 3) were also associated with higher untreated classical activated malignant program 

expression (mixed effect model p = 0.020), while the untreated mesenchymal matrisomal 

malignant program was associated with immune infiltration (mixed effect model p = 0.0035) 

(Table S6). The association between the classical activated program and immune exclusion may 

be related to the poorer prognosis we found for this program in untreated patients compared to 

other classical-like programs (Figure 3E-F). Similarly, the association between the mesenchymal 

matrisomal program and immune infiltration may be related to the longer survival we found for 

this program in untreated patients compared to other basal-like programs (Figure 3E-F).   In post-

treatment tumors, the classical neuroendocrine-like, squamous, and induced basal-like malignant 

programs associated with or trended towards an association with immune-infiltrated ROIs (mixed 

effect p = 0.029, 0.074, 0.091, respectively). These spatially resolved findings support an overall 

association between basal-like programs and immune infiltration and conversely, between specific 

classical-like programs and immune exclusion with certain exceptions. Despite these overall 

trends, some ROIs that contained high classical scoring epithelial segments also featured an 

immune infiltrate, which warranted further exploration. 

 

There were also differences in the types of immune infiltrates surrounding basal-like or classical-

like malignant cells. We observed the association between immune infiltrates with malignant cell 

subtype by unsupervised clustering of immune cell type-specific and functional module genes 
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measured within immune AOIs (p = 0.0339, 2 test; Figure 4E; Methods). Moreover,  immune 

AOIs in classical-like segments had higher expression of clusters of macrophage-rich genes (p = 

0.0341, t-test), while those from basal-like segments had higher expression of clusters of T 

lymphocyte, B lymphocyte and dendritic cell genes (and depleted of macrophage genes) (p = 6.74 

x 10-5 and 0.047, t-test, for macrophage-depleted gene clusters A and B, respectively, Figure 4E; 

Figure S12C). Moreover, at the individual gene level, epithelial AOI subtype (classical-like vs 

basal-like) was associated with expression of distinct immune lineage-restricted and modulatory 

genes (Figure 4F; Table S7): basal-like segments had immune AOIs with higher expression of 

IFNG-induced chemokines (CXCL9, CXCL10, CXCL11), markers of cytotoxic T lymphocytes and 

NK cells (CD8A, CD3E, CD247, GZMA, GZMB, GZMK, PRF1, NKG7, NCAM1), immune 

checkpoints/markers of cytotoxic T lymphocyte exhaustion (PDCD1, CD274, LAG3, ENTPD1, 

TIGIT, IDO1), and markers of regulatory T cells (NT5E, FOXP3) (Figure 4F). In contrast, 

classical-like segments had immune AOIs with higher expression of MHC-II (HLA-DQA1/2, HLA-

DOA, HLA-DMA, HLA-DPA1) and macrophage markers (CD68, CD163, CSF1R). Taken together, 

these analyses suggest distinct immune niches associated with basal-like and classical-like 

malignant cells. 

 

DISCUSSION 

Leveraging single-nucleus RNA-seq of frozen archival PDAC, we comprehensively identified 

common biological programs among untreated and post-CRT malignant cells and cancer-

associated fibroblasts. This refined molecular taxonomy of PDAC (Figure 3D) allowed us to 

stratify patients from bulk RNA-seq profiles of their tumors into prognostic risk groups defined 

by malignant cell and fibroblast program scores. We detected differences in malignant and stromal 
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cell composition and programs following treatment, including an enrichment of basal-like and 

differentiated states in malignant cells and contractile phenotypes in CAFs. Integrating the snRNA-

seq and spatial profiling data from the same tumors, we demonstrated how these differences 

associate with distinct immune microniches. 

 

Although our study does not include matched pre- and post-treatment specimens and the treated 

cohort size is modest and cannot be stratified by treatment regimen, our data refine and clarify the 

overarching distinction between basal-like and classical-like programs and how they are affected 

by CRT. We identified squamous and mesenchymal subclasses within the basal-like subtype in 

both the untreated and treated contexts, as well as bi-lineage differentiated classical-pancreatic 

states and an induced basal-like phenotype that arise in the treated setting. Collectively, our 

analysis suggests that CRT may drive a shift towards basal-like and differentiated classical 

phenotypes and away from classical progenitor states, which may be due to a combination of direct 

selection on pre-existing states and induced plasticity (Figures 2C,3D). The basal-like programs 

are also intimately connected to immune-activating interferon and TNF-NFkB programs in the 

malignant cells (Figure S8), and their enrichment in the CRT context may be conducive to a more 

activated, immunogenic environment. Thus, at least some of the CRT-resistant cell states enriched 

or induced by CRT may yield a tumor microenvironment that is more susceptible to some 

immunotherapies. 

 

Our spatially-resolved transcriptomics analysis further supported the hypothesis that basal-like 

malignant cell programs may facilitate a greater degree of immune infiltration compared with 

classical-like programs (89). Moreover, the immune infiltrates associated with basal-like and 
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classical-like malignant cells were distinct, suggesting potential strategies for differentially 

targeting these phenotypes, with immune checkpoint inhibitors for the former and myeloid-

directed therapies such as CD40 agonists and TGF-beta modulators (e.g., losartan) for the latter. 

Similar phenomena have been observed in other cancer types such as breast, in which the triple-

negative subtype has enhanced basal-like features compared to others and is similarly associated 

with elevated immune cell infiltration that correlates with greater response to immune checkpoint 

inhibitors (127, 128). 

 

Our snRNA-seq data also helps address the open question of whether the previously identified 

exocrine-like and ADEX subtypes of PDAC truly exist or if they represent normal tissue 

contamination (7, 8, 10, 11, 129–131). We confirmed the existence of both exocrine- and 

endocrine-like cancer cells (with inferred CNAs) in post-treatment but not untreated tumors. Thus, 

it is plausible that endoderm-differentiated cancer cell phenotypes are only prevalent enough to be 

detected under treatment selection pressure, and may alternatively reflect normal cell 

contamination in treatment-naïve bulk studies.  

 

The presence of relatively resistant neuroendocrine- and exocrine-like cancer cells after 

neoadjuvant CRT is also clinically important. Neuroendocrine cells in PDAC and precursor lesions 

have been shown to promote tumorigenesis via neuronal cross-talk, and may thus be partly 

responsible for the enrichment in Schwann cells associated with treatment (Figure 2A) (130, 132). 

Moreover, primary PDAC cell lines from xenografts featuring the HNF1A-expressing exocrine 

subtype (130) are relatively resistant to small molecule tyrosine kinase inhibitors (TKIs), in a 

manner dependent on an inducible CYP3A5 that oxidizes and inactivates the TKIs. Notably, 
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CYP3A5 is a member of some of the classical-like topics in our cohort, but CYP3A5 and its 

regulator HNF4A were repressed in both the post-CRT cohort and its high-residual post-CRT 

subgroup (Figures 2C, S5D; Table S2). NF1I2, which modulates drug-induced CYP3A5 

upregulation is also repressed in the high-residual post-CRT subset. Taken together, these results 

suggest that CRT may sensitize residual basal-like cancer cells to TKIs and warrants further 

investigation. 

 

Overall, our study provides a high-resolution molecular framework for understanding the intra-

tumoral diversity of pancreatic cancer and treatment-associated changes, spatial associations 

among malignant/fibroblast-intrinsic programs and both quantitative and qualitative differences in 

immune microniches, and clinically-relevant prognostication. These findings can be harnessed to 

augment precision oncology efforts in pancreatic cancer.  
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METHODS 

Human Patient Specimens 

For inclusion in this study, patients had non-metastatic pancreatic ductal adenocarcinoma and went 

to surgical resection with or without neoadjuvant radiotherapy and/or chemotherapy. Some 

patients received additional neoadjuvant therapy in the form of immune checkpoint inhibitors or 

losartan, an angiotensin II receptor type 1 antagonist. All patients were consented to protocol 

2003P001289 (principal investigator: CFC; co-investigators: ASL, WLH), which was reviewed 

and approved by the Massachusetts General Hospital (MGH) Institutional Review Board. Resected 

primary tumor samples were examined to confirm neoplastic content by a board-certified 

pathologist (MMK) and then snap frozen and stored at -80°C for up to 7 years prior to processing. 

Specimens were screened for an RNA integrity number (RIN; Agilent RNA 6000 Pico Kit, cat. 

No. 5067-1513) greater than an empirically determined threshold of 6; only specimens with RIN 

> 6 were processed further. 

 

Nucleus Isolation from Frozen Samples 

We have recently published a toolbox for snRNA-seq of tumors spanning a broad range of nucleus 

isolation techniques for various tissue/tumor types (43), but not PDAC. The following protocol is 

an adaptation and optimization of this prior work specifically for the unique tissue requirements 

of pancreatic tumors. A 2x stock of STc buffer in nuclease-free water was prepared with a final 

concentration of 292 mM NaCl (ThermoFisher Scientific, cat. no. AM9759), 40 mM Tricine 

(VWR, cat. no. E170-100G), 2 mM CaCl2 (VWR, cat. no. 97062-820), and 42 mM MgCl2 (Sigma 

Aldrich, cat. no. M1028). For each specimen, 2 mL of NSTcPA buffer was prepared by combining 

1 mL of 2x STc buffer, 40 µL of 10% Nonidet P40 Substitute (Fisher Scientific, cat. no. 
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AAJ19628AP), 10 µL of 2% bovine serum albumin (New England Biolabs, cat. no. B9000S), 0.3 

µL of 1M spermine (Sigma-Aldrich, cat. no. S3256-1G), 1 µL of 1M spermidine (Sigma-Aldrich, 

cat. no. S2626-1G), and 948.7 µL of nuclease-free water. For each specimen, 3 mL of 1x working 

STc buffer was made by diluting 2x STc 1:1 in nuclease-free water. 

 

NSTcPA buffer (1 mL) was pipetted into one well of a 6-well plate (Stem Cell Technologies, cat. 

no. 38015) on ice. The frozen tumor specimen was removed from -80°C and placed in a petri dish 

on dry ice. Using a clean razor blade, the desired regions of the tissue were cut while the specimen 

remained frozen (at least 10-20 mg). The remainder of the specimen was returned to -80°C for 

subsequent use. The selected tissue was transferred into the NSTcPA buffer and manually minced 

with fine straight tungsten carbide scissors (Fine Science Tools, cat. no. 14568-12) for 8 minutes. 

The homogenized tissue solution was then filtered through a 40 µm Falcon cell filter (Thermo 

Fisher Scientific, cat. no. 08-771-1) into a 50 mL conical tube. An additional 1 mL of NSTcPA 

buffer was used to rinse the well and filter. The total volume was brought up to 5 mL with 3 mL 

of 1x STc buffer and transferred into a 15 mL conical tube. The sample was spun for 5 min at 

500xg, 4°C and the supernatant was removed. The pellet was resuspended in 100-200 µL 1x STc 

and then filtered through a 35 µm Falcon cell strainer (Corning, cat. no. 352235). Nuclei were 

quantified using a C-chip disposable hemocytometer (VWR, cat. no. 82030-468) and diluted in 1x 

STc as necessary to achieve a final concentration of 300-2,000 nuclei/µL. 

 

Single-Nucleus RNA-seq (snRNA-seq) 

Approximately 8,000 nuclei per sample were loaded into each channel of a Chromium single-cell 

3’ chip (V2 or V3, 10x Genomics) according to the manufacturer’s instructions. Single nuclei were 
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partitioned into droplets with gel beads in the Chromium Controller to form emulsions, after which 

nucleus lysis, barcoded reverse transcription of mRNA, cDNA amplification, enzymatic 

fragmentation, and 5’ adaptor and sample index attachment were performed according to 

manufacturer’s instructions. Up to four sample libraries were sequenced on the HiSeq X Version 

2.5 (Illumina) with the following paired end read configuration: read 1, 26-28 nt; read 2, 96-98 nt; 

index read, 8 nt. 

  

snRNA-seq Data Pre-Processing  

BCL files were converted to FASTQ using bcl2fastq2-v2.20. CellRanger v3.0.2 was used to 

demultiplex the FASTQ reads, align them to the hg38 human transcriptome (pre-mRNA) and 

extract the UMI and nuclei barcodes. The output of this pipeline is a digital gene expression (DGE) 

matrix for each sample, which has quantified for each nucleus barcode the number of UMIs that 

aligned to each gene.  

 

We filtered low-quality nuclei profiles by baseline quality control measures. First, we discarded 

profiles with fewer than 400 genes expressed or with greater than 20% of reads originating from 

mitochondrial genes. Additionally, we performed doublet detection over all nuclei profiles by 

using Scrublet (133) and removed all profiles with a Scrublet score greater than 0.2. To account 

for differences in sequencing depth across nuclei, UMI counts were normalized by the total number 

of UMIs per nucleus and converted to transcripts-per-10,000 (TP10K) as the final expression unit.  
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Dimensionality Reduction, Clustering and Annotation 

Following these quality control steps, treatment-naïve and neoadjuvant-treated specimens were 

aggregated into two separate datasets. The log2(TP10K+1) expression matrix for each dataset was 

used for the following downstream analyses. For each dataset, we identified the top 2,000 highly 

variable genes across the entire dataset using the Scanpy (134) highly_variable_genes function 

with the sample id as input for the batch. We then performed a Principal Component Analysis 

(PCA) over the top 2,000 highly variable genes and identified the top 40 principle components 

(PCs) beyond which negligible additional variance was explained in the data (the analysis was 

performed with 30, 40, and 50 PCs and robust to this choice). Subsequently, we built a k-nearest 

neighbors graph of nuclei profiles (k = 10) based on the top 40 PCs and performed community 

detection on this neighborhood graph using the Leiden graph clustering method (135). Distinct 

cell populations were identified and annotated using known cell type-specific gene expression 

signatures (40, 47–49). Individual nuclei profiles were visualized using the uniform manifold 

approximation and projection (UMAP) (44).  

 

Inferring Copy Number Aberrations from Single-Nucleus Profiles 

InferCNV v3.9 (136) was run on all nuclei profiles for each tumor separately with a common set 

of high confidence non neoplastic cells used as the reference. We used a 100 gene window in sub-

clustering mode and an HMM to predict the copy number aberration (CNA) count in each nucleus.  

 

Multiplexed Ion Beam Imaging (MIBI) 

Formalin-fixed paraffin-embedded pancreatic tissue sections were cut onto gold MIBI slides 

(IONpath, cat. no. 567001) and stained at IONpath (Menlo Park, CA) with the internal Epithelial 
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i-Onc isotopically-labelled antibody panel (IONpath): dsDNA_89 [3519 DNA] (1:100), β-

tubulin_166 [D3U1W] (3:200), CD163_142 [EPR14643-36] (3:1600), CD4_143 [EPR6855] 

(1:100), CD11c_144 [EP1347Y] (1:100), LAG3_147 [17B4] (1:250), PD-1_148 [ D4W2J] 

(1:100), PD-L1_149 [E1L3N] (1:100), Granzyme B_150 [D6E9W] (1:400), CD56_151 [MRQ-

42] (1:1000), CD31_152 [EP3095] (1:1000), Ki-67_153 [D2H10] (1:250), CD11b_155 [D6X1N] 

(1:500), CD68_156 [D4B9C] (1:100), CD8_158 [C8/144B] (1:100), CD3_159 [D7A6E] (1:100), 

CD45RO_161 [UCHL1] (1:100), Vimentin_163 [D21H3] (1:100), Keratin_165 [AE1/AE3] 

(1:100), CD20_167 [L26] (1:400), Podoplanin_170 [D2-40] (1:100), IDO1_171 [EPR20374] 

(1:100), HLA-DR_172 [EPR3692] (1:100), DC-SIGN_173 [DCN46] (1:250), CD45_175 [2B11 

& PD7/26] (3:200), HLA class 1 A, B, and C_176 [EMR8-5] (1:100), Na/K-ATPase_176 

[D4Y7E] (1:100).  

 

Quantitative imaging was performed using a beta unit MIBIscope (IONpath) equipped with a 

duoplasmatron ion source. This instrument sputters samples with O2
+ primary ions line-by-line, 

while detecting secondary ions with a time-of-flight mass spectrometer tuned to 1-200 m/z+ and 

mass resolution of 1000 m/Δm, operating at a 100 KHz repetition rate. The primary ion beam was 

aligned daily to minimize imaging astigmatism and ensure consistent secondary ion detection 

levels using a built-in molybdenum calibration sample. In addition to the secondary ion detector, 

the MIBIscope is equipped with a secondary electron detector which enables sample identification 

and navigation prior to imaging.  

 

For data collection, three fields of view were acquired for each sample by matching the secondary 

electron morphological signal to annotated locations on sequential H&E stained slides. The 
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experimental parameters used in acquiring all imaging runs were as follows: pixel dwell time (12 

ms), image size (500 μm2 at 1024 x 1024 pixels), primary ion current (5 nA O2
+), aperture (300 

μm), stage bias (+67 V). 

 

MIBI Image Processing, Segmentation and Quantification 

Mass spectrometer run files were converted to multichannel tiff images using MIB.io software 

(IONpath). Mass channels were filtered individually to remove gold-ion background and spatially 

uncorrelated noise. HLA Class 1 and Na/K-ATPase signals were combined into a single membrane 

marker. These image files (tiff) were used as a starting point for single cell segmentation, 

quantification and interactive analysis using histoCAT (v1.76) (137). We followed a similar 

approach for segmentation as proposed for Imaging Mass Cytometry data (137–139). Briefly, we 

used Ilastik (140)  to manually train three classes (nuclei, cytoplasm and background) to improve 

subsequent watershed segmentation using CellProfiler (141). Finally, the tiff images and masks 

were combined for histoCAT loading with a script optimized for MIBI image processing. All code, 

classifiers and configuration files are available at https://github.com/DenisSch/MIBI 

 

Differential Gene Expression Analysis 

For each annotated cell type detected in both untreated and treated tumors, a differential gene 

analysis was performed between cells in the two populations to identify upregulated and 

downregulated genes. A Wilcoxon statistical test was used to compute the p-values for each gene 

and Bonferroni correction was applied to correct for multiple testing. 
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Scoring Gene Signatures for Each Nucleus Profile 

A signature score for each nucleus profile was computed as the mean log2(TP10K+1) expression 

across all genes in the gene signature. Subsequently, to identify statistically significant gene 

expression patterns, we computed the mean log2(TP10K+1) expression across a background set of 

50 genes randomly selected with matching expression levels to those of the genes in the signature 

iterated 25 times. The gene signature score was defined to be the excess in expression found across 

the genes in the gene signature compared to the background set.    

 

Cell-cell Interaction Analysis by Receptor-Ligand Pair Expression 

To characterize potential cell-cell interactions, we attempted to identify pairs of cell types where 

one expresses a receptor gene and the other expresses its cognate ligand. First, we identified known 

receptor ligand pairs defined in the FANTOM5 receptor ligand database (142). Next, we computed 

a log fold change and p-value for the expression of each gene in each cell type vs. profiles from all 

other cell types to identify genes differentially expressed in each cell type (separately for untreated 

and treated data). We discarded receptor ligand pairs where either receptor or ligand have a log 

fold change below 1.5. We then calculated a Receptor-Ligand (RL) score by multiplying the log2 

fold change of the receptor (in cell type i) and ligand (in cell type j) to give higher priority to 

receptor ligand pairs that were highly specific to the respective cell types. 

 

Consensus Non-Negative Matrix Factorization 

We formulated the task of dissecting gene expression programs as a matrix factorization problem 

where the input gene expression matrix 𝑋𝑛,𝑚 is decomposed into two matrices 𝑋𝑛,𝑚 =
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𝑊𝑛,𝑝 × 𝐻𝑝,𝑚 𝑠. 𝑡. 𝑊, 𝐻 > 0. The solution to this formulation can be identified by solving the 

following minimization problem: 

𝑎𝑟𝑔𝑚𝑖𝑛 {
1

2
‖𝑋𝑛,𝑚 − 𝑊𝑛,𝑝 × 𝐻𝑝,𝑚‖

𝐹

2

+ (1 − 𝛼)
1

2
‖𝑊𝑛,𝑝‖ 

+
1

2
(1 − 𝛼)‖𝐻𝑛,𝑝‖ + 𝛼‖𝑣𝑒𝑐(𝑊𝑛,𝑝)‖

1
+ 𝛼‖𝑣𝑒𝑐(𝐻𝑛,𝑝)‖

1
} 

We utilized the non-negative matrix factorization implemented in sklearn to derive the tumor and 

CAF expression programs. Because the result of NMF optimization can vary between runs based 

on random seeding, we repeated NMF 50 times per cell type category and computed a set of 

consensus programs by aggregating results from all 50 runs and computed a stability and 

reconstruction error. This consensus NMF was performed by making custom updates to the cNMF 

python package. To determine the optimal number of programs (p) for each cell type and condition, 

we balanced between maximizing stability and minimizing error of the cNMF solution, while 

ensuring that the resulting programs were as biologically coherent and parsimonious as possible. 

Each program was annotated utilizing a combination of GSEA (143) and comparison to bulk 

expression signatures. 

 

Survival Analysis of Bulk RNA-seq Data 

Bulk RNA-seq data from two previously published resected primary PDAC cohorts with overall 

survival annotated were obtained (The Cancer Genome Atlas, n = 139; PanCuRx, n = 168) (11, 

78). Patients with metastases or those that received neoadjuvant therapy were excluded from this 

analysis. Gene expression levels from RNA-seq data was estimated using RSEM (144). 
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To score untreated malignant and fibroblast programs in each tumor, we calculated cNMF-

weighted expression scores for each program and normalized the expression scores by calculating 

z-scores. Notably, for malignant programs we scored the five lineage programs (due to the overlap 

between cell state and lineage programs and to reduce complexity). For fibroblasts, we scored all 

four programs.   

 

For the malignant only analysis, we scored each tumor for the five untreated malignant lineage 

cNMF programs (normalized by z-scores), and identified the top scoring program (primary 

program) as well as the number of highly-expressed programs defined as expression greater than 

the mean of the cohort (heterogeneity score, H). Patients with 0 or 1 highly-expressed programs 

were assigned H = 0, those with 2 highly-expressed programs were assigned H = 1, and those with 

3 or more highly-expressed programs were assigned H = 2. We then stratified each tumor into one 

of 15 groups based on the combination of the primary program (5) and heterogeneity score (3) 

(Figure 3E, row labels). Analogously, for the fibroblast only analysis, we scored each tumor based 

on primary program (4) and heterogeneity score (2) to stratify each tumor into one of 8 groups 

(Figure 3E, column labels). For the fibroblasts, there was one fewer program than the malignant 

cells so we scored patients with 0 or 1 high-expressed programs with H = 0 and those with 2 or 

more high-expressed programs with H = 1.  

 

Next, we partitioned the tumors in the malignant- and fibroblast-only analyses into three risk 

groups: low, intermediate, high. To this end, we performed preliminary Kaplan-Meier (KM) 

analyses for overall survival (OS) based on each individual primary program, heterogeneity score, 

and both (Figures S9A-F). We inspected the survival curves to consider any prognosis trends and 
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used this information to assign combinations of primary programs and heterogeneity score values 

into low, intermediate and high risk groups pre-hoc (i.e., prior to the KM analyses of Figures 3F-

G). This was done separately for the malignant cells (Figure 3E, left vertical red color bar) and 

the fibroblasts (Figure 3E, top horizontal blue color bar). 

 

To assign tumors into risk strata based on both malignant and fibroblast program scores and 

heterogeneity indices, we used the tumor assignment to malignant and fibroblast risk groups above, 

which defined nine combinations (matrix entries in Figures 3E, S9G). We then grouped possible 

combinations into four risk strata: both low (“low”), both high (“high”), one high and one 

intermediate (“high-intermediate”), and all other combinations (“low-intermediate”) (color grid 

inside matrix in Figure 3E, purple color legend). 

 

Finally, we performed survival analyses for the risk stratified data based on three malignant risk 

groups (Figure 3F), three fibroblast risk groups (Figure 3G), and four combined risk groups 

(Figure 3H). Survival analysis was performed using the Kaplan-Meier estimate and the survival 

distributions for each patient strata were compared using the log-rank test for equality of survivor 

functions (Stata/SE 15.1).  

 

Digital Spatial Profiling (DSP) 

We followed published experimental methods (125) with modifications as noted below. Briefly, 

formalin-fixed paraffin-embedded (FFPE) sections (5 µm) of 12 specimens (8 untreated, 4 treated) 

were prepared by the MGH Histopathology Core on the IRB-approved protocol (2003P001289). 

Slides were baked at 37°C overnight, deparaffinized, rehydrated, antigen-retrieved in pressure 
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cooker for 20 min at 100°C and low pressure, proteinase-K digestion for 15 min, post-fixed in 

neutral-buffered formalin for 10 min, hybridized to UV-photocleavable barcode-conjugated RNA 

in situ hybridization probe set (cancer transcriptome atlas/CTA with 1,412 targets or whole 

transcriptome atlas/WTA) overnight, washed to remove off-target probes, and then counterstained 

with morphology markers for 2 hours. The morphology markers consisted of: 1:10 SYTO13 

(ThermoFisher Scientific, cat. no. 57575), 1:40 anti-panCK-Alexa Fluor 532 (clone AE-1/AE-3; 

Novus Biologicals, cat. no. NBP2-33200AF532), 1:40 anti-CD45-Alexa Fluor 594 (clone 2B11 + 

PD7/26; Novus Biologicals, cat. no. NBP2-34528AF594), and 1:100 anti-αSMA-Alexa Fluor 647 

(clone 1A4; Novus Biologicals, cat. no. IC1420R). These four morphology markers allowed 

delineation of the nuclear, epithelial, immune, and fibroblast compartments, respectively. 

Immunofluorescence images, region of interest (ROI) selection, segmentation into marker-specific 

areas of interest (AOI), and spatially-indexed barcode cleavage and collection were performed on 

a GeoMx Digital Spatial Profiling instrument (NanoString) using either the pre-commercial 

Cancer Transcriptome Atlas (CTA) probe set or a whole transcriptome atlas assay (NanoString). 

Approximately 8-10 ROIs and 23-25 AOIs were collected per specimen. Library preparation was 

performed according to the manufacturer’s instructions and involved PCR amplification to add 

Illumina adapter sequences and unique dual sample indices. Up to 96 AOIs were pooled and 

sequenced on a NextSeq High Output v2.5 (75 cycles, 2x38 bp; Illumina, cat. no. 20024906). 

 

Computational Analysis of DSP Data 

FASTQ files for DSP were aggregated into count matrices as described previously (125). Briefly, 

deduplicated sequencing counts were calculated based on UMI and molecular target tag sequences. 

Outlier probes were removed per target when multiple probes were available, and target expression 
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values were calculated as the geometric mean of the remaining probes. Single probe genes were 

reported as the deduplicated count value. The limit of quantitation (LOQ) was estimated as the 

geometric mean of the negative control probes plus 2 geometric standard deviations of the negative 

control probes. Targets were removed that consistently fell below the LOQ, and the datasets were 

normalized using upper quartile (Q3) normalization. 

 

Statistical analysis was performed using R. For DSP analysis of individual data points, when 

feasible, linear mixed effect models (145) were used to control for multiple sampling within a 

slide, using Satterthwaite's approximation (146) for degrees of freedom for p-value calculation. 

When replication was insufficiently powered for mixed effect models, Student’s t-test was used to 

test associations with subtype classification. All analyses were two-sided and used a significant 

level of p-value ≤0.05 and were adjusted for multiple testing where appropriate using the false 

discovery rate (147). Programs were scored for each DSP sample within each region of interest 

using single-sample gene set enrichment analysis (ssGSEA) (148). To further align our malignant 

programs with the conventional classification, comparisons between classical-like and basal-like 

subtypes were performed after mean-centering the various cNMF program scores within these 

aggregate categories as described previously. 

 

DATA AVAILABILITY 

Raw data will be available in the controlled access repository Data Use Oversight System (DUOS) 

at the Broad Institute: https://duos.broadinstitute.org/ under its Data Access Committee.  Processed 

annotated datasets is provided in the Single Cell Portal. The treatment-naïve data is at: 
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https://singlecell.broadinstitute.org/single_cell/study/SCP1089/human-treatment-naive-pdac-

snuc-seq and the post-treatment data is at:  

https://singlecell.broadinstitute.org/single_cell/study/SCP1096/human-treated-pdac-snuc-seq 

 

CODE AVAILABILITY 

All code will be available upon publication in Github at https://github.com/karthikj89/humanpdac. 
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FIGURE LEGENDS 

Figure 1. Single-nucleus RNA-seq of PDAC Captures Representative Cell Type Distributions 

across Malignant, Epithelial, Immune and Stromal Compartments. (A) Experimental 

workflow of human PDAC tumors for snRNA-seq, Multiplex Ion Beam Imaging (MIBI), and/or 

digital spatial profiling (NanoString GeoMx). (B,C) snRNA-seq captures diverse malignant, 

epithelial, immune and stromal cell subsets. (B) Mean expression (color bar) selected marker genes 

(columns) across annotated cell subsets (rows) of different compartments (labels, left) from 

untreated (left) and treated (right) tumors. (C) UMAP embedding of single nucleus profiles (dots) 

from untreated (top) and treated (bottom) tumors colored by post hoc cell type annotations (color 

legend). Insets: UMAP re-embedding of single nucleus profiles from specific subsets of interest. 

(D) snRNA-seq captures representative cell types distributions compared to in situ assessment. 

Top: Proportion of cells (y axis) in each of the four major compartments (color legend) as estimated 

by snRNA-seq or MIBI (x axis) in aggregate across all untreated (left; n = 5) or treated (right,  n 

= 2) tumors. Bottom: Representative MIBI images and segmentation showing staining with 

antibodies against cytokeratin (green), vimentin (blue), CD45 (red), CD31 (purple) and double-

stranded DNA (gray). 

 

Figure 2. Neoadjuvant Chemoradiotherapy Remodels Cellular Subsets, Programs and 

Interactions in Compartment-Specific Manner. (A) CRT remodels cell type composition across 

compartments. Proportions (y axis) of cell subsets (x axis) in untreated (n = 15) vs. treated (n = 

11) patients of all cells in the tumor (left) and of immune cell only (right). * p < 0.05, Fisher’s 

exact test. (B) Treatment impact on putative cell interactions. Selected putative interactions 

between cell subsets (y-axis, color code) differentially impacted by treatment status based on 
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expression of the receptor (left) in one cell subset, and its cognate ligand (right) in another 

(Methods), distinguishing the expression level (color bar) and proportion of expressing cells (x 

axis) in untreated (solid borders) and treated (dashed borders) tumors. * p <0.05, † p < 0.1; Fisher’s 

exact test or chi-square test with Yates correction. (C) Interferon signaling and basal-like genes 

induced in malignant cells from CRT-treated tumors. Top: differential expression (log2(fold-

change), x axis) and its significance (-log10(adjusted p-value), y axis, DESeq2 R package) of genes 

in malignant cells between treated and untreated tumors. Names of selected significant genes are 

marked. Bottom: Gene Set Enrichment Analysis (GSEA(143, 149, 150)) terms (y axis) ranked by 

increasing significance (-log10(FDR q-value)) of enrichment for induction in treated tumors. (D) 

Summary of compartment specific effects of CRT. 

 

Figure 3. Refined Molecular Taxonomy of PDAC Improves Clinical Prognostication and 

Highlights a Shift from Classical-like to Basal-like and Differentiated-like Programs in 

Malignant Cells. (A,B) A consensus NMF (cNMF) expression program dictionary in untreated 

and treated tumors. UMAPs of single nucleus profiles (dots) from untreated (A) and treated (B) 

tumors, colored by patient (top left) or by the score derived for each cell-cNMF program pair 

(Methods). (C) Shift towards basal-like programs in CRT treated tumors. Proportion of malignant 

cells primarily expressing each lineage-specific malignant cell cNMF program within untreated 

(left) and treated (right) tumors. (D) Refined PDAC molecular taxonomy with proposed model of 

transcriptional programs and their relationships. (E-G) Refined molecular taxonomy of malignant 

and fibroblast cells has prognostic value. (E) Tumor assignment to risk categories defined by 

primary snRNA-seq program (first letter) and heterogeneity score (second number) for malignant 

cells (rows) and fibroblasts (columns) separately (red and blue shades, Methods) and by their 
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combination (purple shades, Methods) for bulk RNA-seq classification of patients with untreated 

resectable PDAC (n = 307). The number of tumors in each stratification is listed. For malignant 

programs: P = classical progenitor, A = classical activated, M = mesenchymal matrisomal, C = 

mesenchymal cytoskeletal, S = squamous. For fibroblast programs: N = neurotropic, S = secretory, 

P = mesodermal progenitor, M = myofibroblast. For heterogeneity score: 0 = fewer than two 

highly-expressed programs, 1 = two highly-expressed programs (malignant) or two or more high-

expressed programs (fibroblast), and 2 = three or more highly-expressed programs (malignant). 

(F-H) Kaplan-Meier survival analysis of bulk RNA-seq cohort (n = 307) based on risk groups from 

malignant (F), fibroblast (G) and combined (H) strata, as defined in (E). Survival distributions are 

compared by the log-rank test. Number of patients at risk at the beginning of each time interval is 

shown in the table. 

 

Figure 4. Basal-like and Classical-like Programs are Associated with Spatial Niches with 

Distinct Quantity and Quality of Immune Infiltration. (A,B) Definition of distinct regions of 

interest (ROIs) with GeoMx DSP. (A) Immunofluorescence images (left, GeoMx DSP) and 

matched consecutive hematoxylin and eosin (H&E)-stained FFPE sections (5 µm thickness, right) 

of three patients (labeled, top), showing the selected ROIs (circles). (B) Top: GeoMx DSP 

immunofluorescence images with selected ROIs (circles, 600 µm diameter) representing three 

classes of epithelial niches infiltrated with either both immune cells and CAFs (left), only with 

CAFs (middle), or only with immune cells (right). Bottom: Segmentation masks on the ROIs, used 

to enrich for the epithelial, CAF, and immune compartments. Gray = SYTO13 (nuclear stain), 

green = anti-panCK, magenta = anti-CD45, cyan = anti-αSMA. (C) Increased basal-like programs 

in treated tumors in situ. Aggregate basal-like and classical-like signature scores (y axis) for each 
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epithelial area of interest (AOI) from untreated (grey) and treated (black) tumors, rank-ordered by 

score as determined from the GeoMx Cancer Transcriptome Atlas (CTA). (D) GeoMx Whole 

Transcriptome Assay (WTA) also detected intra-tumoral heterogeneity in untreated malignant and 

CAF programs. Magnitude of expression (amplitude) for each gene (position in circle plot) in each 

malignant or CAF program (segment in circle plot, schematic on left) in three ROIs selected and 

segmented as for the CTA in (B) on specimen PDAC_U_7. (E) Basal-like and classical-like 

malignant programs associate with immune niches with distinct characteristics. Expression (z-

score of normalized counts across AOIs; color bar) of immune cell signature genes (rows) from 

diverse cell types and signatures (E, color legend and left bar) across immune AOIs (columns) 

from untreated (grey) and treated (black) tumors in ROIs with either basal-like (yellow) or 

classical-like (green) malignant cells. HLA = human leukocyte antigen module, ISG = interferon-

stimulated gene module. (F) Expression (z-score of the normalized counts across AOIs; color bar) 

of subtype-associated immune cell type genes (rows) across immune AOIs (columns) from 

untreated (grey) and treated (black) tumors in ROIs with either basal-like (yellow) or classical-like 

(green) malignant cells. 
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SUPPLEMENTAL TABLES 

Supplemental Table 1. Patient cohort and clinicopathologic data. 

 

Supplemental Table 2. Select differentially expressed genes in treated vs. untreated tumors, or 

high vs. low residual post-treatment tumors. 

 

Supplemental Table 3. Weighted gene lists for cNMF malignant and CAF programs 

corresponding to Figures 3, S11. 

 

Supplemental Table 4. Gene Set Enrichment Analysis results for malignant cell programs ranked 

by decreasing -log10(FDR q-value). Threshold FDR q-value < 0.05. 

 

Supplemental Table 5. Gene Set Enrichment Analysis results for CAF programs ranked by 

decreasing -log10(FDR q-value). Threshold FDR q-value < 0.05. 

 

Supplemental Table 6. Associations between malignant cell and fibroblast programs and the 

presence or absence of immune cells or fibroblasts in the same region of interest (ROI) based on 

the DSP cancer transcriptome atlas data. Statistical tests based on mixed effects model. 

 

Supplemental Table 7. Associations between individual immune cell-type genes and epithelial 

AOI subtype (classical-like vs. basal-like) corresponding to Figure 4F. Statistical tests based on 

Student’s t-test. 
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SUPPLEMENTAL FIGURE LEGENDS 

Supplemental Figure 1. Cell Type Composition across PDAC Tumors. (A) UMAP 

embeddings of single nucleus profiles (dots) from individual tumors (panels) from untreated (left) 

and treated (right) patients colored by post hoc cell type annotations (color legend). (B,C) Cell 

type compositions across tumors. Proportion of nuclei (y axis) of each cell type (color legend) in 

each tumor (x axis) from untreated (left) and treated (right) patients, out of all cells (B) or when 

considering only non-malignant cells (C). 

 

Supplemental Figure 2. Inferred CNAs Recover Common Aberrations based on PDAC 

Genome Studies. (A) Example inferCNV analysis. Inferred amplifications (red) and deletions 

(blue) based on expression (color bar) in 100-gene window in each locus (columns) from each cell 

(rows) labeled by its annotated expression type (color code) in reference cells from matched 

adjacent normal tissue (top) and cells from the tumor (bottom). (B) Inferred CNA frequencies in 

our cohort agree with PDAC genome studies. Frequency (y axis) of CNAs on each chromosome 

arm (x axis) as inferred across the patients in our cohort (light green bars) and from genome 

analysis of PDAC (dark green bars) and prostate adenocarcinoma (PRAD) (grey bars) from TCGA 

cohorts. 

 

Supplemental Figure 3. snRNA-seq Captures Representative Cell Types Distributions 

Compared to in situ Assessment by MIBI. Proportion of cells (y axis) in each of the four major 

compartments (color legend) as estimated by snRNA-seq or MIBI (x axis) in each untreated (top; 

n = 5) or treated (bottom;  n = 2) tumor measured by MIBI (2-3 fields of view per slide).  
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Supplemental Figure 4. CRT remodels cell type composition across compartments. 

Proportions (y axis) of cell subsets (x axis) in untreated (n = 15) vs. treated (n = 11) patients out of 

all non-malignant cells in the tumor (A) or out of all stromal cells only (B). * p < 0.05, Fisher’s 

exact test. 

 

Supplemental Figure 5. Treatment Impact of Gene Expression in Different Cell Subsets. (A-

C) Differential expression (log2(fold-change), x axis) and its significance (-log10(adjusted p-value), 

y axis, DESeq2 R package) between treated and untreated tumors (A), CD8+ T lymphocytes, (B), 

macrophages, (C), malignant cells omitting two treated tumors with germline BRCA2 mutations 

(PDAC_T_1,2)) or (D), of genes in malignant cells from treated tumors with high (>10%, 

PDAC_T_5,7,10,11) vs. low (PDAC_T_1,2,3,4,6,8,9) residual neoplastic content. Names of 

selected significant genes are marked.  

 

Supplemental Figure 6. Bulk-Derived Tumor Subtype Signatures Across Single Nuclei in the 

PDAC Cohort. UMAP embeddings of single nucleus profiles (dots) from all tumor nuclei (top 

two panels) or only malignant cells (bottom two panels) separately for untreated and treated 

patients colored by expression score (color bar, Methods) of signatures derived from the Bailey 

(10), Collisson (7), Moffitt (9), and COMPASS/PanCuRx (78) studies. 

 

Supplemental Figure 7. cNMF Program Distributions across Malignant Cells in Individual 

Tumors. Proportion of cells (y axis) assigned with highest scoring program (color legend) in 

individual tumors (x axis) in the untreated (left) and treated (right) groups. 
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Supplemental Figure 8. Association between Basal-like and Interferon, TNF-NFkB 

Programs. Normalized correlation (color bar) of the gene weights for each cNMF program (rows, 

columns) in untreated (left) or treated (right) tumors. 

 

Supplemental Figure 9. Survival Analysis of Bulk RNA-seq PDAC Cohort Based on 

Malignant Cell and Fibroblast Programs and Heterogeneity Score. (A-G) Kaplan-Meier 

survival analyses of PDAC cohort (n = 307) from TCGA (11) and PanCuRx (78), stratified by 

primary malignant program (A), malignant heterogeneity score (B), combined primary malignant 

program and heterogeneity score (C), primary fibroblast program (D), fibroblast heterogeneity 

score (E), combined primary fibroblast program and heterogeneity score (F), and combined 

primary malignant program and heterogeneity score with combined primary fibroblast program 

and heterogeneity score (G). Survival distributions for each patient strata were compared using the 

log-rank test. 

 

Supplemental Figure 10. Previous CAF Subset Signatures across Single Fibroblast Profiles 

in the PDAC Cohort. UMAP embeddings of single nucleus profiles (dots) from fibroblast nuclei 

from untreated (top) and treated (bottom) patients colored by expression score (color bar, 

Methods) of three signatures previously reported by Tuveson and colleagues (51). 

 

Supplemental Figure 11. Differences in Fibroblast Gene Expression, Composition and 

Programs in Treated Tumors. (A) Cell intrinsic expression differences in fibroblasts from CRT-

treated tumors. Left: differential expression (log2(fold-change), x axis) and its significance (-

log10(adjusted p-value), y axis, DESeq2 R package) of genes in fibroblasts between treated and 
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untreated tumors. Names of selected significant genes are marked. Right: GSEA (143, 149, 150) 

terms (y axis) ranked by increasing significance (-log10(FDR q-value)) of enrichment in treated 

tumors. (B) cNMF expression program dictionary in fibroblasts from untreated and treated tumors. 

UMAP embeddings of single nucleus profiles (dots) from untreated (top) and treated (bottom) 

tumors, colored by patient (left panel) or by the score derived for each cell-cNMF program pair 

(color bar, Methods). (C) Normalized correlation (color bar) of the gene weights for each cNMF 

program (rows, columns) in untreated (top) or treated (bottom) tumors. (D) Higher proportion of 

myofibroblast and neuromuscular programs in CRT treated tumors. Proportion of fibroblasts 

primarily expressing each fibroblast cNMF program within untreated (left) and treated (right) 

tumors, in aggregate across all tumors (top) or in individual tumors (bottom, x axis).  

 

Supplemental Figure 12. Assessing PDAC Programs by Digital Spatial Profiling. (A) 

Experimental workflow for digital spatial profiling on the GeoMx platform (NanoString). (B) 

Spatial resolution of cell types across ROIs and AOIs. Expression (z-score of normalized counts 

across AOIs; purple/yellow color bar) of signature genes (rows) from diverse cell types (color 

legend (4) and left bar) across AOIs (columns, color legend and horizontal bar (3)) profiled by 

1,412-gene cancer transcriptome atlas or CTA, capturing epithelial (green), fibroblasts (blue) and 

immune (red) cells, from ROIs characterized by presence or absence of immune (color legend and 

horizontal bar (1)) and fibroblast (color legend and horizontal bar (2)) infiltration. Both columns 

and rows are clustered by unsupervised hierarchical clustering. (C) Box-plots comparing mean 

normalized gene expression by cluster for basal-like vs. classical-like epithelial AOIs. * p < 0.05, 

Student’s t-test. (D) Coverage of PDAC snRNA-seq programs by CTA and WTA digital spatial 

profiling. Number of genes (y axis) from each untreated malignant cell program (x axis) captured 
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by CTA only (white), WTA only (black), or both (grey). (E) Impact of gene panel on program 

scores. Spearman correlation coefficient () between the scores for different untreated malignant 

programs (x axis) obtained with WTA using the full gene panel vs. the gene subset shared with the 

CTA assay. 
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