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Abstract 30 

The current experiment investigated the extent to which perceptual categorization of 31 

animacy, i.e. the ability to discriminate animate and inanimate objects, is facilitated by image-32 

based features that distinguish the two object categories.  We show that, with nominal training, 33 

naïve macaques could classify a trial-unique set of 1000 novel images with high accuracy.  To 34 

test whether image-based features that naturally differ between animate and inanimate objects, 35 

such as curvilinear and rectilinear information, contribute to the monkeys’ accuracy, we created 36 

synthetic images using an algorithm that distorted the global shape of the original 37 

animate/inanimate images while maintaining their intermediate features (Portilla and Simoncelli, 38 

2000).  Performance on the synthesized images was significantly above chance and was 39 

predicted by the amount of curvilinear information in the images.  Our results demonstrate that, 40 

without training, macaques can use an intermediate image feature, curvilinearity, to facilitate 41 

their categorization of animate and inanimate objects. 42 

 43 

 44 

Keywords: categorization, animate, curvilinearity, animacy, curvature patches. 45 

 46 

  47 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 26, 2020. ; https://doi.org/10.1101/2020.08.25.267393doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.267393


3 
 

Introduction 48 

Primates can recognize objects with remarkable speed and accuracy—an ability that is 49 

crucial for avoiding predators, identifying food sources, and otherwise surviving in their natural 50 

habitat. Though seemingly effortless, decades of research in visual neuroscience and computer 51 

vision have shown that the ability to extract an object from a visual scene and categorize it is far 52 

from trivial (e.g. Pinto et al., 2008). The primate brain is equipped to deal with this 53 

computational problem by exploiting a vast array of features to classify objects into categories. 54 

Some distinctions are made based on knowledge or experience with the object, such as how it 55 

can be used (Bovet & Vauclair, 1998; Träuble & Pauen, 2007), whether it is threatening (Lipp, 56 

2006; LoBue & DeLoache, 2011), or what contexts it is often found in (Kalénine et al., 2009, 57 

2014; Blake et al., 2007), while others are determined based on the appearance of the object 58 

alone, by using its visual features such as color, size, global shape, and texture, etc.  59 

The relative contribution of knowledge- and image-based information to object 60 

categorization varies across situations due to a number of factors.  A crucial factor is the extent 61 

to which image-based features are predictive of a meaningful category or object class—a 62 

reasonable prerequisite for a visual system to rely on visual cues for object classification. 63 

Furthermore, the category or object class itself might influence the relative contribution of image 64 

information and prior experience needed to perform categorization. A long-standing line of 65 

research in evolutionary psychology has suggested that the primate visual system is highly tuned 66 

for the detection and recognition of animacy (Nairne et al., 2017; Meyerhoff et al., 2014; 67 

Calvillo et al., 2016; Long et al., 2019), even as early as 3 months old (Heron-Delaney et al., 68 

2011; Opfer & Gelman, 2011; Rakison, 2003). A number of biological processes and key image 69 

feature differences have been proposed to explain how this discriminative ability might emerge 70 

so early in development. For example, some researchers have argued that innate processing 71 

biases interact with crude image-based biological templates to produce a sensitivity to faces from 72 

birth (Chiara et al., 2008; Sugita, 2008). Others have argued for a greater emphasis on the role of 73 

experience, through which persistent social exposure to faces early in life leads to a preference 74 

for face stimuli via more domain-general neural mechanisms (Livingstone et al., 2017; Srihasam 75 

et al., 2014). Yet another line of research has shown that human infants might develop concepts 76 

of animacy based on differences between biological and non-biological motion (Simion et al. 77 

2008; Mandler, 1992).  78 
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That the animate-inanimate distinction might be special to our visual system, and that 79 

these two categories differentially covary with a number of image features, suggests a plausible 80 

mechanism by which the primate visual system evolved to exploit image feature covariances, 81 

such as those listed above, to make animate-inanimate categorization judgments. One such 82 

feature is curvilinearity, or the extent to which the image of an object is composed of curved 83 

lines and textures. Animate objects tend to be more curvilinear than inanimate objects (Kurbat, 84 

1997; Levin et al., 2001). A recent study by Zachariou et al. (2018) demonstrated that, when 85 

deprived of global shape cues, humans were able to categorize animate and inanimate objects 86 

using just curvilinear information. Further, curvilinear information was positively correlated with 87 

performance on images of animate objects and negatively correlated with performance on 88 

inanimate objects. Given the lack of object shape information in the stimuli used and the lack of 89 

relationship between subjects’ confidence ratings and their accuracy, it appears that this 90 

categorization ability is driven by an implicit, primarily bottom-up process.  91 

If the human visual system can implicitly rely on curvilinear information to perform 92 

animate-inanimate categorization, it is possible that this may be a property of the primate visual 93 

system more broadly. To test this hypothesis, the current study sought to establish the 94 

contribution of image-based information to animate-inanimate categorization in a non-human 95 

primate, the rhesus macaque, by: (1) testing the ability of macaques to categorize a large trial-96 

unique set of animate and inanimate intact images that were unfamiliar to them; and (2) testing 97 

whether the macaques could use curvilinearity, without training, to categorize the objects when 98 

global shape information was removed.    99 

 100 

  101 
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Materials and Methods 102 

Subjects: 103 

Three male rhesus macaques (5 - 8 kg) were used in two behavioral experiments.  All 104 

experimental procedures were approved by the National Institute of Mental Health Animal Care 105 

and Use Committee.  106 

 107 

Visual stimuli: 108 

The first experiment included 500 images of animate objects and 500 images of 109 

inanimate objects which were downloaded from open-source repositories on the internet. The 110 

animate images were comprised of mammals, birds, fish, reptiles, and insects (Figure 1a). The 111 

inanimate images included human-made objects such as tools, vehicles, buildings, various 112 

household items, and natural objects, such as rocks and flowers (Figure 1b). All object images 113 

were digitally processed (see Supplementary Materials for a detailed description of this process) 114 

to match size, background, mean luminance and root-mean-square (RMS) contrast.  All images 115 

were resized to 200 x 200 pixels.  116 

For the second experiment, we used an algorithm, described in detail in Portilla and 117 

Simoncelli (2000), to generate synthesized images of animate and inanimate objects (Figure 1c 118 

and 1d) that abolished the global shape of the original images but maintained their intermediate 119 

visual features (see Supplementary Materials).  1000 synthesized images were generated using 120 

the testing set of 500 animate and 500 inanimate intact images used in Experiment 1. 121 
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 122 
Figure 1: Examples of stimuli: (a) animate images; (b) inanimate images; (c) synthesized 123 

animate images; (d) synthesized inanimate images. 124 

 125 

Experimental procedures: 126 

The monkeys sat in a primate chair inside a darkened, sound-attenuated testing chamber. 127 

They were positioned 57 cm from a computer monitor (Samsung 2233RZ, Wang and Nikolic 128 

2011)) subtending 40o × 30o of visual angle. The design and control of task timing and visual 129 

stimulus presentation were executed with networked computers running custom written (Real-130 

time Experimentation and Control, REX (Hays, Richmond et al. 1982)) and commercially 131 

available (Presentation, Neurobehavioral Systems) software.  132 

Training for Experiment 1: 133 

Monkeys were initially trained to grasp and release a touch sensitive bar to earn water 134 

rewards. After this initial shaping, a red/green color discrimination task was introduced.  135 

Red/green trials began with a bar press, and 100 ms later a small red target square (0.5°) was 136 

presented at the center of the display (over-laying a white noise background). Animals were 137 

required to continue grasping the touch bar until the color of the target square changed from red 138 

to green, this occurred randomly between 500–1,500 ms after bar touch. Rewards were delivered 139 

if the bar was released between 200–1,000 ms after the color change; releases occurring either 140 
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before or after this epoch were counted as errors. All correct responses were followed by visual 141 

feedback (target square color changed to blue) after bar release and reward was delivered 142 

between 200–400 ms after visual feedback. There was a 2 second inter-trial interval (ITI), 143 

regardless of the outcome of the previous trial. 144 

After each monkey reached criterion in the red/green task (two consecutive days with 145 

>85% correct performance) a visual categorization task was introduced. Each trial began when 146 

the animal grasped the touch bar.  Next, an image (14o x 14o) appeared at the center of the 147 

screen, followed by a red cue over the center of the image.  When the image presented was 148 

animate, the monkey had to release the bar before the red cue turned green to receive a liquid 149 

reward.  When it was an inanimate trial, the monkey had to continue to hold the bar until the red 150 

cue turned green and then release the bar to receive a liquid reward (Figure 2).  The red cue was 151 

displayed on the screen for 1-3 seconds before turning green in inanimate trials. If the monkey 152 

released during the red target and an inanimate image was presented, no reward was delivered, 153 

and the image was displayed on the screen for a 4–6 second time-out.   If the monkey did not 154 

release during the inanimate image presentation within 1000 ms after the red target turned green, 155 

no reward was delivered and there was a 3 second time-out.   156 

If an equal drop size was used as reward for both conditions, monkeys would tend to 157 

favor a release on red because of the delay discounting effect when waiting for green.  Therefore, 158 

the number of reward drops delivered for correct responses to red or green was adjusted during 159 

the training phase to reduce the bias in responding to each category for each animal. As such, the 160 

drop ratio for correct animate vs. correct inanimate trials was 1: 7 for monkey 1(M1), 1: 6 for 161 

monkey 2 (M2), and 1: 9 for monkey 3 (M3).  Each monkey was trained on a repeated set of 20 162 

animate and 20 inanimate images for several days until their choice accuracy reached above 85% 163 

accuracy for two consecutive days. 164 

Testing for Experiments 1 and 2: 165 

During the testing phase of Experiment 1, monkeys were tested on trial-unique sets of 166 

100 novel animate and 100 novel inanimate intact images for 3 (M1) or 5 days (M2 and M3).  167 

After the third testing day on classifying intact images into animate and inanimate categories, 168 

M1 reached an accuracy of 91%. Due to this clear demonstration of high performance 169 

categorizing intact images, we stopped testing M1 on intact images and moved onto testing 170 

classification of synthesized images. Crucially, the training images were never shown in the 171 
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testing sets, and on each testing day, monkeys were presented with a new set of unfamiliar 172 

images. Immediately after Experiment 1, monkeys were moved to Experiment 2, in which they 173 

were tested on trial-unique sets of 100 synthesized animate and 100 synthesized inanimate 174 

images (Figure 1c and 1d) for 5 days (M1, M2, M3).  175 

 176 
Figure 2: Experimental procedure.  Each trial began when the animal grasped the touch bar.  An 177 

image appeared at the center of the screen, followed by a red cue over the center of the image.  178 

When the image presented was animate, the monkey had to release the bar within 3 seconds of 179 

the appearance of the red cue to receive a liquid reward.  When it was an inanimate trial, the 180 

monkey had to continue to hold the bar until the red cue turned green to and then release the bar 181 

to receive a liquid reward. The red cue was displayed on the screen for 1-3 seconds before 182 

turning green in inanimate trials.   183 

 184 

Classification analyses:  185 

The statistical significance of classification accuracy was evaluated for each monkey 186 

individually using a permutation test.  For each monkey, we created a vector comprised of his 187 

responses on each trial (animate or inanimate), which we labeled as Vr, and an additional vector 188 

comprised of values representing the actual category of a trial (animate or inanimate), which we 189 

labeled as Vc. We then shuffled both the order of Vr and Vc. Then, for each row of the vectors, 190 

if the value in Vr matched that of Vc, we labeled that trial as correct and if not, as incorrect. 191 

Using this method, we calculated the overall accuracy (% correct irrespective of category), the 192 

accuracy for the animate category (% of animate trials correctly classified) and the accuracy for 193 

the inanimate category (% of inanimate trials correctly classified). The shuffling procedure was 194 

repeated 10,000 times for each monkey and for each permutation, we recorded these three 195 
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accuracy values.  At the end of the 10,000 permutations, each monkey had his own chance 196 

distributions (with 10,000 data points each), representing overall accuracy.  Using these chance 197 

distributions, we evaluated the significance of each monkey’s actual mean classification 198 

accuracy.  199 

 200 

Reaction time: 201 

Since the experiments used an asymmetric design, monkeys had more time to make a 202 

decision on inanimate trials, and less time on animate trials.  As such, analysis of reaction time 203 

would not yield useful information on how monkeys performed the task.  Therefore, reaction 204 

time was not analyzed and presented here.    205 

 206 

Quantifying the amount of curvilinear and rectilinear information of the synthesized stimuli: 207 

After matching the stimuli on size, background, mean luminance and contrast, we 208 

calculated the amount of curvilinear and rectilinear information present in each image using a 209 

method presented previously in Zachariou et al. (2018) and Yue et al. (2014, 2020) (see 210 

Supplementary Materials for a detailed description).   211 

 212 

Logistic regression of monkeys’ performance with trial numbers:  213 

As the monkeys were rewarded when they correctly performed the categorization in the 214 

testing phase of Experiments 1 and 2, their averaged performance likely resulted from both the 215 

use of features they learned from the training images to categorize animate and inanimate images 216 

and continuous learning during the testing phase.  To determine the contribution of these two 217 

factors to the overall performance, we conducted a logistic regression on each monkey's 218 

performance using trial number as a regressor. Specifically, we regressed the monkey's response 219 

for each trial (either right or wrong) with the trial number, in which the trial number was treated 220 

as a continuous variable.  The trials in which monkeys failed to respond were excluded from the 221 

analysis.   In this model, a significantly positive nonzero intercept means that the ratio of 222 

performing right over wrong is substantially larger than 1, indicating that a monkey performed 223 

the task significantly above the chance at the beginning of the experiment.  A significantly larger 224 

than zero slope means their performance continuously improved as the experiment proceeded.  225 

 226 
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Logistic regression of monkeys’ performance with curvilinear and rectilinear values of visual 227 

stimuli. 228 

To determine whether and the extent to which the amount of intermediate image features 229 

(such as curvilinear and rectilinear image features) presented in Experiments 1 and 2 contribute 230 

to monkeys’ performance, we conducted a logistic regression of monkeys’ performance (right or 231 

wrong) with the curvilinear and rectilinear values of our visual stimuli (Yue et al. 2014; 232 

Zachariou et al., 2018).  The trials in which monkeys failed to respond were excluded from the 233 

analysis.   234 

The analysis was conducted at the group level to increase the signal-to-noise ratio using 235 

MATLAB (MathWorks, Inc) with the following procedure.  First, the performance from the 236 

three monkeys was concatenated to create a group response.  Then curvilinear and rectilinear 237 

values for each stimulus were entered into the logistic regression model as two independent 238 

regressors.  We included stimulus type (animate or inanimate) as a categorical variable in the 239 

logistic regression model to examine the interaction between amount of intermediate image 240 

features and stimulus type on monkeys’ performance.  As raw responses from each monkey were 241 

used, curvilinear and rectilinear values of a stimulus that more than one monkey responded to 242 

appeared more than once in the regression model.   243 

To determine the contribution of the amount of intermediate visual features to the 244 

monkeys’ performance, we used raw responses in a logistic regression instead of average 245 

response accuracies per stimulus in a linear regression for two reasons. First, to avoid over-246 

estimating the influence of stimuli that only one monkey responded to, and second, to avoid 247 

creating artificially continuous responses with averaging because responses were discrete. 248 

 249 

Deep convolutional neural network (DCNN) training and correlation analysis:  250 

The DCNN, AlexNet (Krizhevsky et al, 2012), was imported into MATLAB, and pre-251 

trained on the ImageNet database (Deng et al., 2009). All pre-trained weights in the first 22 252 

layers were kept the same, while the last three layers—fully connected layer, SoftMax layer, and 253 

classification layer—were trained to classify each intact image into animate or inanimate 254 

categories. The training was conducted on the 500 intact animate and 500 intact inanimate 255 

images used in Experiment 1, using the stochastic gradient descent with momentum optimizer, 256 

minimum batch size 64, maximum epochs 20, and an initial learning rate of 10-4. After 300 257 
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iterations, the neural network performance converged on an accuracy of 99.9%. Then the trained 258 

neural network was tested to classify the same 1000 synthesized images used in Experiment 2 259 

into either the animate or inanimate category. 260 

To compute the correlation of the DCNN classification accuracies and monkeys' response 261 

accuracies to the synthesized images in Experiment 2, we arranged the responses of the DCNN 262 

and each monkey according to the ascending order of curvilinear values of the synthesized 263 

images presented in each trial.  The ordered responses were then grouped into 40 bins.  The 264 

monkeys’ accuracies used for the correlation analysis were averaged across all three animals.   265 

Next, the response accuracy for each bin was calculated for the DCNN and monkeys, resulting in 266 

two sets of 40 data points.  The significance of the correlation was assessed by a permutation test 267 

(10,000 iterations). 268 

 269 

 270 

 271 

  272 
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Results 273 

Experiment 1: Intact images  274 

1) Overall classification accuracy for individual monkeys 275 

During the testing phase of Experiment 1, in which novel intact images were used for the 276 

categorization task, each image was presented only once regardless of the monkeys’ responses. 277 

This eliminated the option of memorizing test images to perform the task.  Across five days of 278 

testing, all monkeys performed the task significantly above chance (overall accuracy for M1: 279 

80.88%, p < 0.0001; M2: 78.38%, p < 0.0001; M3: 76.95%, p < 0.0001). The statistical 280 

significance was determined by the permutation test (see Methods).  The overall response rate 281 

was 99.64% for M1, 73.43% for M2, and 98.86% for M3.   282 

Upon closer inspection of the data we found that M2 memorized all 40 training images to 283 

perform the categorization task.  Thus, in the first day of testing, M2 was learning the 284 

categorization task.  After eliminating data from this day, overall performance was 85.64% (p < 285 

0.001), and overall response rate was 73.3%.  Unless stated otherwise, subsequent analyses used 286 

M2’s testing data from day 2 to day 5 only.  Data from all five days of testing are included in 287 

Supplementary Figure 1.  288 

The data show that monkeys were able to successfully classify intact images that they had 289 

no previous experience with into animate and inanimate object categories, suggesting that image-290 

based features distinguishing the two categories played a significant role in monkeys’ 291 

categorization performance.  292 

 293 

2)  Generalization and learning effect for individual monkeys:  294 

Because monkeys were given a liquid reward whenever they categorized images 295 

correctly in the testing phase, their overall performance could have resulted from continuously 296 

learning to categorize testing images as animate and inanimate due to reward feedback.  In other 297 

words, significantly above-chance performance in the testing phase may not have captured the 298 

full picture of the monkeys’ complex performance processing.  Their performance could have 299 

more to do with this continuous feedback than with generalizing visual features learned during 300 

the training set to categorize the testing images. To separate the effect of generalization from the 301 

effect of learning during the testing phase, we performed a logistic regression (see Methods) on a 302 

single-trial basis to quantify the generalization as the intercept and learning as the slope of the 303 
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regression model. We anticipated that, if there were a generalization effect, then the intercept of 304 

the logistic regression model would be significantly greater than zero, and if there were a 305 

learning effect, then the slope of the regression model would be significantly greater than zero.  306 

Monkeys were able to use the information they learned during training to perform the 307 

categorization task on unfamiliar images at the onset of the testing phase, as shown in Table 1, 308 

where the intercept of the logistic regression is shown to be significantly above chance for all 309 

three monkeys.  The slope of the logistic regression was positive and significantly different from 310 

zero in all monkeys, indicating that performance improved as testing progressed. All three 311 

monkeys’ performance was significantly predicated by trial number, as shown in Figure 3 and 312 

Table 1 (for M1: χ2 (595) = 58.545, p = 1.98 x 10-14; M2: χ2(584) = 18.361, p = 1.828 x 10-5; M3: 313 

χ2(986) = 13.252, p = 2.72 x 10-4), further indicating that monkeys continued to learn during the 314 

testing phase, improving their performance even though each image was presented only once.   315 

Taken together, the significantly above-chance performance and significant 316 

generalization effect in categorizing the intact novel images suggests that all three monkeys 317 

learned to distinguish between the two categories during the training phase (M1 and M3) or after 318 

the first day of testing (M2), by generalizing the features learned from the small set of training 319 

images to the unfamiliar images in the larger testing set. 320 

 321 

Table 1. Logistic regression results from Experiment 1. 322 

Monkeys Logistic regression 

Intercept Slope 

M1 0.359 (p = 2.4 x 10-2) 2.951x10-2 (p = 5.241 x 10-13) 

M2 1.086 (p = 2.921 x 10-9) 1.94 x 10-2 (p = 2.746 x 10-5) 

M3 0.809 (p = 1.211x10-10) 6.368 x 10-3 (p = 2.969 x 10-3) 
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 323 
Figure 3.  The logistic regression results of Experiment 1 for M1 (top), M2 (middle), and M3 324 
(bottom).  The x-axis represents the number of response trials (trials without responses were 325 
removed), and the y-axis represents the monkey’s response.  The monkeys’ responses for each 326 
trial are shown as blue dots, which appears as a blue line because of the large number of trials.  327 
The red line represents the predicted response probability produced from the logistic regression 328 
analysis. The black dotted line represents the response accuracy of a moving average of 20 trials, 329 
which is for illustration purposes only and not used for calculating logistic regression.  The 330 
intercepts of the regression lines for all three monkeys are larger than 0.5, indicating that all three 331 
monkeys were able to generalize from the training set to the testing set.  The regression line 332 
increased along with the trial numbers, suggesting that monkeys continued to learn during the 333 
testing phase to improve their performance.  M1 was tested only for three days; therefore, it has 334 
only 600 trials.  M2 was tested for five days, but data from the first day were removed from the 335 
logistic regression.   336 
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 337 

3) Contribution of curvilinear and rectilinear features to monkeys’ performance at the group 338 

level. 339 

We aimed to understand the extent to which the amount of intermediate image features, 340 

specifically curvilinear and rectilinear features (see Methods), present in the images in 341 

Experiment 1 contributed to the monkeys' performance on the categorization task. To answer this 342 

question, we conducted a logistic regression analysis of curvilinear and rectilinear values with 343 

monkeys' performance, which was performed at the group level to increase the signal-to-noise 344 

ratio (see Methods).  345 

We found that the amount of intermediate image features in the intact images 346 

significantly predicted monkeys' performance (main effect: χ2 (2768) = 107.4, p = 1.450 x 10-21), 347 

suggesting that the amount of intermediate image features might assist them in categorizing 348 

intact images into animate and inanimate groups. Furthermore, we found that curvilinear values 349 

of intact images significantly predicted monkeys’ performance (beta = 0.974, p = 0.031), but 350 

rectilinear values did not (beta = -0.4817, p = 0.272).  There was a significant interaction 351 

between the curvilinear values and the stimulus category (beta = -2.21, p = 1.118 x 10-4), 352 

indicating that curvilinear values predicted monkeys' performance in animate trials differently 353 

than on inanimate trials. Figure 4 shows the functional relationship between curvilinear values 354 

and monkeys' performance across animate and inanimate trials, which was produced from the 355 

logistic regression model.  As the amount of curvilinear information in an image increased, 356 

monkeys’ performance increased for animate images and decreased for inanimate images.    357 

These results suggest that, in addition to recognizing local or global features that the 358 

monkeys had learned during daily training, monkeys may also have used the amount of 359 

curvilinear image features present in the stimuli to categorize objects into animate and inanimate 360 

groups.   361 

 362 
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 363 
Figure 4. Functional relationship between the amount of curvilinear information present in visual 364 

stimuli and monkeys’ performance across stimulus category in Experiment 1.  The x-axis 365 

represents the curvilinear values of the stimuli. The y-axis represents the response probability of 366 

the monkeys’ performance.  The solid lines represent the response probability to visual stimuli 367 

calculated with the logistic regression model that was created using the monkeys’ group raw 368 

response.  The dotted lines represent a moving average of 60 trials, which is for illustration 369 

purposes only and was not used for fitting the logistic regression model.  The red line represents 370 

the response probability resulting from the logistics regression fitting for the animate trials.  The 371 

black line represents the response probability resulting from the logistics regression fitting for 372 

the inanimate trials 373 

 374 

Experiment 2: Synthesized images 375 

1) Overall classification accuracy for individual monkeys: 376 

The monkeys were never trained to categorize the synthesized images presented in 377 

Experiment 2. Furthermore, the synthesized images were each shown only once, regardless of 378 

the monkeys' responses. As shown in Figure 3B,  all three monkeys performed the categorization 379 

task significantly above chance (overall accuracy for M1, 64.48%, p < 0.0001; M2, 59.10%, p < 380 

0.0001; M3, 60.27%, p < 0.0001). The overall response rate was 99.6% for M1, 92.7% for M2, 381 
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and 85.1% for M3.  Although the overall classification accuracies were lower than those for the 382 

intact images in Experiment 1, the significant above-chance performances suggest that the image 383 

features distinguishing the two groups of synthesized images provided sufficient information for 384 

monkeys to classify the images into the two categories.  385 

 386 

2) Generalization and learning effect for individual monkeys:  387 

To provide a parallel analysis to the one performed in Experiment 1, we ran a logistic 388 

regression to evaluate if the monkeys’ overall accuracies for categorizing the synthesized images 389 

resulting from generalizing visual features learned from the intact images to the synthesized 390 

images and/or continuous learning.  We found that the intercept, but not the slope, of the logistic 391 

regression model was significant for all three monkeys, as shown in Table 2.  Performance was 392 

not significantly determined by test trial number for any monkeys (for M1: χ2 (994) = 0.365, p = 393 

0.546; M2: χ2(925) = 0.340, p = 0.560; M3: χ2(849) = 0.032, p = 0.859), indicating that 394 

monkeys’ performance did not improve as testing progressed.  These results reveal that, at the 395 

onset of Experiment 2, all three monkeys used information they learned on the categorization 396 

task in Experiment 1 to classify the synthesized images as animate and inanimate objects.  397 

 398 

Table 2. Logistic regression result of Experiment 2. 399 

Monkeys Logistic regression 

intercept Slope 

M1 0.533 (p = 2.038 x 10-6) 9.095 x 10-5 (p = 0.521) 

M2 0.313 (p = 1.480x10-2) 1.150 x 10-3 (p = 0.606) 

M3 0.428 (p = 4.816 x 10-3) -1.930 x 10-5 (p = 0.919) 

 400 

 401 

 402 
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 403 
Figure 5: The logistic regression results of Experiment 2 for M1 (top), M2 (middle), and M3 404 

(bottom).  Axes are the same as those used in Figure 3. As shown in Table 2, all three monkeys 405 

showed significant generalization but no learning effects.  These results suggest that the monkeys 406 

employed some image features distinguishing intact animate images from intact inanimate 407 

images to categorize the synthesized images as animate or inanimate.   408 

 409 
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3) Contribution of curvilinear and rectilinear features to monkeys’ performance at the 410 

group level  411 

To examine the extent to which the amount of intermediate visual features contributed to 412 

monkeys' performance in Experiment 2, we used the same testing procedure as Experiment 1 but 413 

with synthesized images.  414 

We found a significant main effect of the amount of curvilinear and rectilinear image 415 

features on monkeys' performance (χ2 (2768) = 177.160, p = 2.160 x 10-36).  Furthermore, both 416 

curvilinear and rectilinear values of synthesized images significantly predicted monkeys’ 417 

performance (curvilinear: beta = 1.617, p = 2.615 x 10-7; rectilinear: beta = -1.257, p = 5.865 x 418 

10-4).  However, the data suggested that the amount of curvilinear image features present in the 419 

synthesized images played a more dominant role than the amount of rectilinear image features. 420 

To test this hypothesis, we performed a regression Wald test to examine whether the curvilinear 421 

coefficient was significantly different from the rectilinear coefficient. The curvilinear coefficient 422 

was significantly larger than the rectilinear coefficient (Wald test: χ2(1) = 19.938, p = 7.994 x 10-423 
6), indicating that the amount of curvilinear image features present in the synthesized images was 424 

more informative for the categorization task than the amount of rectilinear image features.  As 425 

such, the following analysis of interaction between the amount of intermediate image features 426 

and stimulus category was focused on the contribution of the amount of curvilinear image 427 

features on monkeys’ performance across stimulus categories.  Results of the analysis of the 428 

interaction effect between the amount of rectilinear image features with stimulus category are 429 

shown in Supplementary Figure 2.    430 

We observed a significant interaction between the curvilinear values of stimuli and 431 

stimulus category (beta = -4.040, p = 1.672 x 10-20).  Monkeys' performance on synthesized 432 

images increased when curvilinear values increased in the animate trials but decreased in the 433 

inanimate trials (Figure 6); similar to what we observed in Experiment 1 (Figure 4). These data 434 

indicate that the more curvilinear information present in an animate image, the more likely it was 435 

to be categorized correctly, whereas the opposite is true for inanimate images. 436 
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 437 
Figure 6. Functional relationship between amount of curvilinear information present in the visual 438 

stimuli and monkey’s group performance across stimulus category in Experiment 2.  The x-axis 439 

represents the curvilinear values of visual stimuli. The y-axis represents the response probability 440 

of the monkeys’ performance.  The solid lines represent the response probability to visual stimuli 441 

calculated with the logistic regression model that was created using the monkeys’ group raw 442 

response.  The dotted lines represent a moving average of 60 trials, which is for illustration 443 

purposes only.  The red line represents the response probability resulting from the logistics 444 

regression fitting for the animate trials.  The black line represents the response probability 445 

resulting from the logistics regression fitting for the inanimate trials. 446 

 447 

4) Correlation of monkeys’ performance with DCNN performance at the group level  448 

Because monkeys were never trained to classify synthesized images into animate and 449 

inanimate categories, the possibility remained that monkeys categorized the images into two 450 

groups using differences between synthesized images that were entirely unrelated to the animate 451 

and inanimate category but happened to coincide with the two categories in the set of testing 452 

images used.  As such, we used the DCNN to address this concern (see Methods). The network 453 

was trained to classify the 1000 intact images used in Experiment 1 into animate and inanimate 454 

categories and then tested on the categorization task with the 1000 synthesized images used in 455 
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Experiment 2 (see Methods). We found a significant positive correlation of the DCNN’s 456 

categorization performance with the monkeys’ group performance (r = 0.739, p = 5.0502 x 10-8) 457 

(Figure 7), suggesting that the monkeys performed the animate vs. inanimate categorization in 458 

Experiment 2, when the global form in the images was distorted beyond recognition.  These data 459 

provided further evidence that the monkeys used image features distinguishing intact animate 460 

and inanimate images to categorize the synthesized images. 461 

 462 

 463 
Figure 7:  Correlation of monkeys’ response accuracies with DCNN classification accuracies.  464 
To compute the correlation of the DCNN classification accuracies and monkeys' response 465 
accuracies to the synthesized images, we arranged the responses of the DCNN and each monkey 466 
according to the ascending order of curvilinear values of the synthesized images.  The monkeys’ 467 
accuracies used for the correlation analysis were averaged across all three animals.  The ordered 468 
responses were then grouped into 40 bins.  Next, the response accuracy for each bin was 469 
calculated for the DCNN and monkeys separately, resulting in two sets of 40 data points.  Each 470 
red dot represents the classification accuracy for each bin.  We observed a significant correlation 471 
between monkeys’ response accuracies and DCNN classification accuracies (r = 0.739, p = 472 
5.0502 x 10-8), indicating that monkeys performed the animate vs. inanimate categorization.   473 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 26, 2020. ; https://doi.org/10.1101/2020.08.25.267393doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.267393


22 
 

Discussion 474 

This study investigated the contributions of both training and image-based features to the 475 

perceptual categorization of animacy.  In Experiment 1, we found that naïve monkeys trained to 476 

categorize a small set of animate and inanimate images classified a large set of unfamiliar images 477 

into animate and inanimate categories with high accuracy.  In Experiment 2, we tested whether 478 

image-based features that differ between the two object categories in the statistics of natural 479 

environments, i.e. curvilinear and rectilinear information (Kurbat, 1997; Levin et al. 2001; 480 

Perrinet and Bednar, 2015; Long et al. 2017; Zachariou et al., 2018), determined the monkeys’ 481 

classification accuracy. We created sets of synthetic animate and inanimate images using an 482 

algorithm that significantly distorted the global shape of the original images while maintaining 483 

the original images’ intermediate features (Portilla and Simoncelli, 2000).  The monkeys’ 484 

classification accuracy on these synthesized images was still significantly above chance and 485 

correlated with the amount of curvilinear information present in the stimuli.  These data indicate 486 

that image-based features, in this case curvilinearity, can be used to distinguish animate from 487 

inanimate objects in the absence of global shape information without prior training.  488 

As monkeys raised in the laboratory have limited experiences with objects that humans 489 

are otherwise familiar with, they are ideal candidates to study the contribution of experiences and 490 

image-based features to the emergence of perceptual categorization (e.g. Arcaro & Livingstone, 491 

2017). Our results show that monkeys performed an animacy categorization task with intact 492 

images significantly above chance at the very beginning of the test phase of Experiment 1, 493 

suggesting that monkeys used what they had learned during training to classify novel images of 494 

objects, with which they had no previous experience, into animate and inanimate categories. 495 

Further, the curvilinear values of intact images had a significant interaction with stimulus 496 

category, and significantly predicted the monkeys’ performance. These findings indicate that 497 

image-based features that are predictive of each category provide substantial information that 498 

monkeys can use to distinguish the two categories with little training. In other words, experience 499 

interacting with objects may not be the only origin of behavioral categorization of animacy in 500 

monkeys.  501 

To confirm this, using the synthesized images in Experiment 2, we eliminated local 502 

features (faces, ears, etc.) that monkeys might have been familiar with and could have used to 503 

classify the images into animate and inanimate categories. We found that the monkeys were able 504 
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to perform the categorization of the synthesized images significantly above chance, which 505 

indicates that the image-based features were sufficient for the emergence of perceptual 506 

categorization. It is worth noting that human participants also classified synthesized images 507 

similar to those used in this experiment into animate and inanimate categories with significant 508 

above-chance accuracy (Zachariou, et al., 2018; Long et al., 2017). Although humans and 509 

monkeys do not share the collective experience of what and how objects are encountered in daily 510 

life, they perform similarly when classifying synthesized images into animate and inanimate 511 

categories (Figure 6, Figure 3 in Zachariou, et al., 2018), which suggests that image-based 512 

feature differences could play a critical role in the emergence of perceptual categorization 513 

abilities across species.  Together, our findings provide strong evidence in support of the 514 

hypothesis that perceptual categorization can emerge from image-based features that are 515 

predictive of each category in the natural statistics of the visual environment.  516 

Recent fMRI studies (Long et al., 2018; Yue et al, 2020) have shown that visual cortical 517 

areas selective for curvilinear features encompass animate-processing visual areas while those 518 

selective for rectilinear features encompass inanimate-processing visual areas.  These results 519 

provide neural evidence to support the current finding that the processing of image-based 520 

features, such as curvilinearity, interacts with the representation of animate and inanimate 521 

categories. 522 

Overall, monkeys categorized the intact object images with significantly greater accuracy 523 

than the synthesized images.  However, for synthesized images with high curvilinear values (in 524 

the range of 1.4 – 1.6), monkeys’ classification accuracy for the animate category could reach 525 

above 80% which is comparable to the classification accuracy for intact images (Figure 6).  This 526 

illustrates that monkeys could achieve high accuracy when synthesized images with extreme 527 

curvilinear values were used as stimuli. Thus, the overall difference in classification accuracy 528 

between the intact and synthesized images does not argue against the idea that image-based 529 

features play a significant role in determining perceptual categorization.    530 

The primate visual system takes significant time to fully mature postnatally (Gilmore et al., 531 

2018; Ellemberg et al., 1999; Kovacs et al., 1999). During development, young infants view the 532 

world as consisting not of coherent objects but instead visual pieces that move in unpredicted 533 

ways (Hyvärinen, et al., 2014). In such a fragmented visual world, differentiating animate from 534 

inanimate objects would be challenging.  Infants who can differentiate animate from inanimate 535 
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objects would have a better chance to avoid being harmed by animals to survive than those who 536 

cannot. Through natural selection, our brains may have evolved the capacity to differentiate 537 

animate and inanimate objects quite quickly, first based on sensory information that represents 538 

visual statistics of the natural environment.  Experience with objects would play a significant 539 

role in later life to further differentiate categories.  Our data provide evidence to support this 540 

hypothesis by showing that monkeys (as well as humans (Zachariou, et al., 2018)) are able to 541 

classify synthesized images that: 1) neither species has experience with; and 2) have similar 542 

statistics as the natural original images, into animate and inanimate categories significantly 543 

above chance by using the degree of curvilinearity in the images. This hypothesis raises many 544 

interesting questions.  For which object categories and with which image features is the primate 545 

brain biased to use image-based differences for perceptual categorization, and under what 546 

conditions?  The answers to such questions are critical to understand the functional and 547 

anatomical organization of the primate visual system.  548 

 549 

 550 

  551 
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Supplmentary Materials 646 

 647 

 648 

Figure 1.  The logistic regression results of the experiment 1 for M2.  The x-axis represents the 649 

number of response trials for all five days, and the y-axis represents the monkey’s response.  The 650 

monkey responses for each trial are shown as blue dots, which appears as a blue line because of 651 

the large number of trials.  The red line represents the predicted response probability produced 652 

from the logistic regression analysis. The black dot line represents the response accuracy of a 653 

moving average of 20 trials, which is for illustration purposes only and not used for calculating 654 

logistic regression.   655 
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 659 
Figure 2.  Functional relationship between amount of rectilinear information present in the visual 660 

stimuli and monkey’s group performance across stimulus category in Experiment 2.  The x-axis 661 

represents the rectilinear values of visual stimuli. The y-axis represents the response probability 662 

of the monkeys’ performance.  The solid lines represent the response probability to visual stimuli 663 

calculated with the logistic regression model that was created using the monkeys’ group raw 664 

response.  The dotted lines represent a moving average of 60 trials, which is for illustration 665 

purposes only.  666 
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