
1

SARS-CoV-2 genomic and quasispecies analyses in cancer patients reveal relaxed 

intrahost virus evolution

Juliana D. Siqueira1¶*, Livia R. Goes1,2¶, Brunna M. Alves1¶, Pedro S. de Carvalho1, Claudia 

Cicala2, James Arthos2, João P.B. Viola4, Andréia C. de Melo3 and Marcelo A. Soares1, on 

behalf of the INCA COVID-19 Task Forceˆ.

1Programa de Oncovirologia, Instituto Nacional de Câncer. Rio de Janeiro, RJ, Brazil

2Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, 
Bethesda, MD, USA

3Divisão de Pesquisa Clínica e Desenvolvimento Tecnológico, Instituto Nacional de Câncer, 
Rio de Janeiro, RJ, Brazil

4Programa de Imunologia e Biologia de Tumores, Instituto Nacional de Câncer, Rio de 
Janeiro, RJ, Brazil

¶Authors contributed equally to this work

*Corresponding author:

sidoju@hotmail.com  (JDS)

^Membership of INCA COVID-19 Task Force is provided in the Acknowledgments.

Keywords: SARS-CoV-2; COVID-19; cancer; quasispecies; single nucleotide variant; full-

length genome

USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted August 26, 2020. ; https://doi.org/10.1101/2020.08.26.267831doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.26.267831


2

Abstract

Numerous factors have been identified to influence susceptibility to SARS-CoV-2 infection 

and disease severity. Cancer patients are more prone to clinically evolve to more severe 

COVID-19 conditions, but the determinants of such a more severe outcome remain largely 

unknown. We have determined the full-length SARS-CoV-2 genomic sequences of cancer 

patients and healthcare workers (HCW; non-cancer controls) by deep sequencing and 

investigated the within-host viral quasispecies of each infection, quantifying intrahost genetic 

diversity. Naso- and oropharyngeal SARS-CoV-2+ swabs from 57 cancer patients and 14 

healthcare workers (HCW) from the Brazilian Cancer Institute were collected in April–May 

2020. Complete genome amplification using ARTIC network V3 multiplex primers was 

performed followed by next-generation sequencing. Assemblies were conducted in Geneious 

R11, where consensus sequences were extracted and intrahost single nucleotide variants 

(iSNVs) were identified. Maximum likelihood phylogenetic analysis was performed using 

PhyMLv.3.0 and lineages were classified using Pangolin and CoV-GLUE. Phylogenetic 

analysis showed that all but one strain belonged to clade B1.1. Four genetically linked 

mutations known as the globally dominant SARS-CoV-2 haplotype (C241T, C3037T, 

C14408T and A23403G) were found in the majority of consensus sequences. SNV signatures 

of previously characterized Brazilian genomes were also observed in most samples. Another 

85 SNVs were found at a lower frequency (1.4-19.7%). Cancer patients displayed a 

significantly higher intrahost viral genetic diversity compared to HCW (p = 0.009). Intrahost 

genetic diversity in cancer patients was independent of SARS-CoV-2 Ct values, and was not 

associated with disease severity, use of corticosteroids, or use of antivirals, characteristics that 

could influence viral diversity. Such a feature may explain, at least in part, the more adverse 

outcomes to which cancer/COVID-19 patients experience. 
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Author Summary

Cancer patients are more prone to clinically evolve to more severe COVID-19 conditions, but 

the determinants of such a more severe outcome remain largely unknown. In this study, 

phylogenetic and variation analysis of SARS-CoV-2 genomes from cancer patients and non-

cancer healthcare workers at the Brazilian National Cancer Institute were characterized by 

deep sequencing. Viral genomes showed signatures characteristic of Brazilian viruses, 

consistent with the hypothesis of local, community transmission rather than virus importation 

from abroad. Despite most genomes in patients and healthcare workers belonging to the same 

lineage, intrahost variability was higher in cancer patients when compared to non-cancer 

counterparts. The intrahost genomic diversity analysis presented in our study highlights the 

relaxed evolution of SARS-CoV-2 in a vulnerable population of cancer patients. The high 

number of minor variations can result in the selection of immune escape variants, resistance 

to potential drugs, and/or increased pathogenicity. The impact of this higher intrahost 

variability over time warrants further investigation.
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Introduction

In December 2019, a new form of pneumonia was described in patients with severe 

acute respiratory syndrome in the city of Wuhan, province of Hubei, China [1]. Soon after, a 

new beta-coronavirus was identified as the causative agent of that disease [2]. The new virus 

was named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), and the 

disease was called Coronavirus Disease 2019 (COVID-19) [2]. Since its initial discovery, 

COVID-19 has become a pandemic of catastrophic proportions, with over 17 million 

confirmed cases of viral infection and over 670,000 deaths worldwide 

(https://www.worldometers.info/coronavirus/, last accessed on July 30th, 2020).

Numerous demographic, clinical, genetic, and behavioral factors have been identified 

to influence susceptibility to SARS-CoV-2 infection and, among those infected, the severity 

of the disease, including the risk of death. Those factors include age, sex [3], genetic loci of 

certain cytokines/chemokines and the ABO blood system group [4, 5], smoking history [6], 

obesity and underlying comorbidities such diabetes, hypertension, lung diseases [7, 8], and 

cancer [9-11]. Among cancer patients, those with malignancies of hematological origin have 

been reported as particularly vulnerable to COVID-19 [12].

SARS-CoV-2 is a single-stranded RNA virus that replicates using an RNA-dependent 

RNA polymerase. As such, the virus is subjected to high rates of nucleotide sequence 

changes, and has evolved through molecular evolution and founder effects during its 

explosive spread throughout the globe. Virus replication rates directly impact the 

accumulation of mutations in the virus genome, enabling the existence of a viral quasispecies 

(a swarm of different, yet highly related, viral entities) within an infected host. Although 

within-host variations of SARS-CoV-2 have been documented [13, 14], the impact of 

underlying comorbidities that promote persistent viral RNA detection and shedding on virus 

evolution remains to be elucidated. Moreover, viral genetic variation, as a source of novel 
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mutations, may hinder future therapeutic antiviral and vaccine strategies targeting COVID-19, 

by the selection of drug-resistant and vaccine escape mutants [15].

In the present work, we have determined the full-length SARS-CoV-2 genomic 

sequences of 57 cancer patients and 14 healthcare workers (non-cancer controls) employing 

next-generation sequencing (NGS), and analyzed their epidemiological relatedness and 

lineage classification. This approach also allowed us to study the within-host viral 

quasispecies of each infection, quantify intrahost viral genetic diversity and characterize 

specific genetic changes with potential to impact the virus biology. Finally, we have also 

assessed associations between viral diversity and patients’ clinical and laboratory 

characteristics, thereby identifying determinant factors of viral evolution in this particular 

group of patients.

Results

Clinical characteristics of the studied population

Summarized demographic and clinical characteristics of the patients and healthcare 

workers from whom SARS-CoV-2 sequences were studied can be seen in Table 1. Among 

patients, the median age was 61 years and most of them (72%) had solid malignancies, 16% 

of patients used corticosteroids and 14% used oseltamivir previously or during COVID-19 

diagnosis specimen collection. Among healthcare workers (HCW), the median age was 40 

years and most (86%) were female. The most prevalent COVID-19 symptoms among patients 

were cough, fever and dyspnea. Death from COVID-19 occurred in 33.3% of the cases. For 

HCW, cough and coryza were the mainly reported COVID-19 symptoms (85.7% each), and 

all subjects recovered from the disease, with no deaths reported. No difference was found in 

sex distribution between the two groups (p = 0.118), but HCW had a lower median age when 

compared to cancer patients (p < 0.001).
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Table 1. Demographic and clinic characteristics of the cancer patients and 

healthcare workers studied

Characteristic
Patients (%)

n = 57
Healthcare workers (%) 

n = 14
Age years (median, range) 61 (9-79) 40.5 (33-57)
Age 

< 25 years 3.5 0
25 to 64 years 57.9 100
≥ 65 years 38.6 0

Gender 
Female 61.4 85.7
Male 38.6 14.3

Symptoms at COVID-19 diagnosis 
Cough 59.6 85.7
Fever 57.9 57.1
Dyspnea 56.1 7.1
Fatigue 24.6 21.4
Diarrhea 14.0 7.1
Nausea/Vomiting 12.3 0
Anorexia 7.0 0
Sore throat 5.3 42.8
Myalgia 3.5 0
Headache 3.5 42.8
Anosmia 3.5 42.8
Ageusia 3.5 0
Coryza 3.5 85.7
None 0 0
Missing 7.0 0

Death 
Yes, from COVID-19 33.3 0
Yes, other cause 5.3 0
No 54.4 100
Missing 7.0 0

Smoking 
Past/current 21.0 NC*
Never 24.6 NC
Missing 54.4 NC

Primary cancer site 
Solid Tumors 71.9 NA#

Hematological malignancies 28.1 NA
Metastatic disease 

Yes, to the lung 14.0 NA
Yes, to other organs 24.6 NA
No 47.4 NA
Missing 14.0 NA

Use of corticosteroid 
Yes 19.3 NA
No 87.2 NA
Missing 3.5 NA
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Use of oseltamivir 
Yes 14.0 NA
No 82.4 NA
Missing 3.5 NA

*NC – not collected; # NA – not applicable

Sequence coverage, quality and metrics

A total of 27,433,528 reads were obtained from sequencing, with an average of 

382,118 reads per sample, ranging from 217,922 to 631,796 reads. Reads of each sample were 

assembled with Wuhan-Hu-1 reference genome with a minimum mapping quality of 30 Phred 

and the average depth coverage obtained was 1,468 (465-2,530). The coverage was 

heterogeneous across the genome but was similar among the samples (S1 Fig). Consensus 

sequences containing more than 97.9% of the SARS-CoV-2 complete genome were generated 

from all 57 cancer patient and 14 HCW samples.

Phylogenetic and epidemiological profile of SARS-CoV-2 sequences

SARS-CoV-2 genome sequence submission to the Pangolin and CoV-GLUE 

algorithms resulted in the same lineage classification in all cases, defining all but one virus 

belonging to clade B1.1, while the remaining sequence was classified as B.1. A phylogenetic 

analysis of the viruses together with sequences previously defined as Brazilian circulating 

strains B1.1-BR and B1.1-EU/BR showed that most B1.1 genomes generated in this study 

clustered with B1.1-BR sequences (Fig 1A) [16].  A phylogenetic tree including all local 

SARS-CoV-2 sequences isolated from patients residing in the state of Rio de Janeiro 

available at the GISAID database (accessed on July 27th, 2020, S1 Table) was performed to 

investigate potential epidemiological linkage between samples (Fig 1B). We noted that some 

of the viruses sequenced at INCA clustered in clades containing identical sequences, 

suggesting a transmission link between the study subjects. In some instances, both cancer 

patients and HCW were involved in those epidemiological clusters. Although in some cases 

sequences from outside the hospital were also identical to viruses from our series, therefore 
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not excluding the possibility of community transmission, the most likely scenario for those 

cases is a nosocomial transmission between patients and/or HCW.

Single nucleotide variations across the SARS-CoV-2 genomes

Overall, 95 single nucleotide variations (SNVs) and three deletions were found across 

the SARS-CoV-2 genomes analyzed (Fig 2). Four genetically linked mutations previously 

described as the globally dominant haplotype in April 2020 were found in the majority of our 

consensus sequences: C241T (100%; 5’UTR region), C3037T (98.6%; silent mutation), 

C14408T (100%; resulting in P4715L/P323L amino acid change in ORF1ab) and A23403G 

(100%; resulting in D614G amino acid change in S) [17]. Additionally, SNV signatures of 

previously characterized Brazilian genomes were found in most samples, such as G28881A 

and G28882A (98.6%; resulting in R203K change in N), G28883C (98.6%; resulting in 

G204R change in N), T27299C (91.6%; resulting in I33T change in ORF6), and T29148C 

(90.1%; resulting in I292T change in N) [16, 18]. The two latter SNVs are synapomorphic 

traits of the B1.1-EU/BR and B1.1-BR Brazilian circulating strains [16]. Another 85 SNVs 

were observed in our sequences in a lower frequency (1.4-19.7%; S2 Table), including nine 

non-synonymous mutations in S protein (V16F, V367L, K558N, Q675H, A879V, S939F, 

V1176F, K1191N and G1219V). Deletions were found in three genomes: a 12-bp in-frame 

deletion in S (comprising positions 21603-21614), a 6-pb in-frame deletion in ORF3a (25710-

25715) and a 244-pb frameshift deletion in ORF7 (27508-27751), resulting in a truncated 

protein. All deletions were confirmed by Sanger sequencing (data not shown).

SARS-CoV-2 intrahost genetic diversity

The next-generation sequencing method used for the study viruses allowed us to 

assess the intrahost SNVs (iSNVs) that compose each subject’s viral quasispecies. The 

number of iSNVs across the viral genome can be visualized in Figs 3A (patients) and 3B 

(HCW). All but one iSNV with intrahost frequency greater than 20% were found exclusively 

in cancer patients’ samples (Fig 4). Interestingly, patients displayed a significantly higher 
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intrahost viral genetic diversity when compared to HCW (p = 0.009; Fig 5A) and remained 

significant even after outlier subjects with higher virus diversity were excluded from the 

analysis (p = 0.029; Fig 5B). Viral genetic diversity within each ORF was compared between 

the two groups, and cancer patients carried a higher genetic diversity in ORF 1A when 

compared to non-cancer HCW (p = 0.045).

As the within-host genetic diversity of viruses is commonly associated with viral 

replication, we have evaluated the correlation of the quasispecies diversity in our subjects 

with the Ct values obtained in the RT-PCR swab tests of the same samples. Ct values work as 

a proxy for SARS-CoV-2 viral load in samples and are expected to be inversely correlated 

with viral diversity and replication. Surprisingly, however, Ct of the samples did not inversely 

correlate with viral diversity, but rather showed a positive significant correlation, despite 

having rs values below 0.5 (Fig 5). This was true for patients’ samples (rs = 0.490; p = 0.001; 

Fig 6A) and also when all patients and HCW were analyzed together (rs = 0.478; p < 0.0001; 

Fig 6B). Of note, no differences were found when Ct values were compared between the two 

groups (p = 0.175). Despite the above mentioned age difference observed between HCW and 

cancer patients, age did not correlate with viral genetic diversity (S2 Fig, p = 0.844).

Regarding patients' characteristics, intrahost virus diversity was not associated with 

disease severity (overall death [p = 0.632] or death due to COVID-19 [p = 0.934], ICU 

requirement [p = 0.612]), use of corticosteroids chronically or during COVID-19 course (p = 

0.333), or use of oseltamivir prior to COVID-19 diagnosis (p = 0.144; S3A-E Fig). We also 

assessed the potential association of cancer patients with hematological malignancies 

compared to those with solid cancers, but no association was found (p = 0.473; S3F Fig).

Discussion

The biology of SARS-CoV-2 infection in humans is striking to infectious disease 

clinicians worldwide, because no viral infection has been previously seen with such an 
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enormous range of phenotypic outcomes, from no symptoms to severe respiratory distress and 

death. Most of this physiological variance, however, has been attributed to host genetic and 

behavioral factors. Numerous characteristics have been associated with susceptibility to 

SARS-CoV-2 infection and disease severity among infected subjects, and underlying 

comorbidities seem to play a major role in unfavorable disease outcomes. Chronic non-

communicable diseases such as cancer are among those conditions. Cancer patients have been 

reported to be more prone to SARS-CoV-2 infection and to clinically evolve to more severe 

conditions upon infection [9-11], but the determinants of these severe outcomes remain 

largely unknown.

In this study we have evaluated the near full-length sequences of SARS-CoV-2-

infected cancer inpatients in one of the largest public cancer hospitals in South America, the 

Brazilian National Cancer Institute, and compared these sequences with those generated from 

healthcare professionals from the same institution. These complete SARS-CoV-2 genomes 

showed signatures characteristic of the virus that spread globally and is currently the 

predominant strain [17]. All but one virus also belonged to clade B1.1, which is the clade 

primarily circulating in the Americas. The viral genomes also displayed sequence features of 

other already characterized Brazilian viruses, consistent with the hypothesis of local, 

community transmission rather than virus importation from abroad. In fact, the timeframe of 

the analyzed infections (from April 7th to May 5th, 2020) is consistent with a period in Brazil 

where community virus transmission was already established and ongoing [18]. Moreover, as 

a public and free hospital in the Brazilian Public Health System, INCA is also likely to admit 

patients with low socioeconomic resources who are mostly unable to travel abroad and most 

likely acquired viral infections from local sources.

We explored the evolutionary and phylogenetic relationships between the SARS-CoV-

2 sequences of the studied samples. Upon a phylogenetic inference with viral sequences 

isolated from other infected subjects residing in the state of Rio de Janeiro (the same 
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geographic location of the study site), we found that almost half of the sequences from our 

subjects lie in clusters with sequences from other patients and/or from HCW. Some of the 

consensus sequences within each cluster were identical, suggesting a direct epidemiological 

link between those groups of patients/HCW. Some identical sequences retrieved from the 

database representing subjects from the community outside the hospital were also identical to 

some hospital-based sequences, ruling out the possibility of completely excluding 

transmission from outside the hospital. However, the most parsimonious explanation is 

nosocomial transmission in those cases. Indeed, the subjects’ samples were collected at a time 

in Brazil when tests for SARS-CoV-2 infection were not easily accessible, and inpatients and 

HCW had to wait several days for a test result, thus presenting a risk for further transmission.

Single nucleotide variations were found across the entire SARS-CoV-2 genome. The 

spike (S) D614G mutation, found in all samples analyzed, has been associated with higher 

viral titers, suggesting increased viral infectivity [17]. Other variations were also found in 

different regions of the spike protein, including a 12-bp in-frame deletion that harbors part of 

the signal peptide and the predicted cleavage site in the beginning of S. As expected, the 

P323L change in the RNA-dependent RNA polymerase (RdRp), genetically linked to D614G, 

was also found in all our samples. In silico analysis showed that P323L may have an impact 

on the protein secondary structure, leading to a reduction in its molecular flexibility [19]. 

However, the phenotypic impact of these mutations is still poorly understood. Numerous 

other missense mutations were found that warrant further investigation concerning their 

phenotypes.

The most striking observation of our intrahost quasispecies variation analysis was that 

cancer patients carried significantly higher numbers of minor variants when compared to non-

cancer counterparts (Fig 5). This difference was independent of, and unrelated to the Ct 

values obtained at the diagnostic tests, which did not differ between the two groups. Ct values 

(as a proxy to viral load) not only did not inversely correlate with virus diversity, but indeed 
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showed a direct correlation, albeit with a low rs coefficient. It is well established that naso- 

and oropharyngeal swabs are not the best types of sample for detecting SARS-CoV-2, 

compared to sputum for example, which contain a larger amount of viral genetic material 

[20]. Our data underscore the possibility that the variation in the viral quasispecies that we see 

is not generated in the naso- or oropharynx, but rather more distally in the respiratory tract 

(lungs) or even in other tissues such as the gut. Reports on the comparative expression of the 

virus’ cellular receptor ACE2 support the idea that those other tissues might be relevant 

sources of viral replication and, consequently, sites where diversity emerges [21, 22].

Unexpectedly, the intrahost quasispecies variation observed in cancer patients was not 

related to disease severity (requirement for ICU, death by any cause or COVID-19-related) or 

to the use of corticosteroids (which could lower their immunity status). Diversity was neither 

related to the use of oseltamivir, which was used by some patients to overcome a potential 

H1N1 infection until the COVID-19 diagnosis was released. Finally, the genetic diversity was 

not associated with the type of primary malignancy developed by the patient (solid tumor vs. 

hematologic tumors). Despite conflicting data existing in the literature, the hematologic 

cancer patients infected with SARS-CoV-2 herein analyzed did not show an increased chance 

of COVID-19 severe outcomes when compared to those with solid tumors [23]. 

Despite the fact we do not know the mechanisms by which or the anatomical sites 

where the SARS-CoV-2 quasispecies variation is generated in cancer patients, such increased 

variation compared to non-cancer patients may explain, at least in part, the more adverse 

outcomes to which cancer patients with COVID-19 are subjected to. By generating a higher 

number of distinct variants, the virus can explore wider areas of the sequence landscape and 

test variants with different regulatory and structural changes. Variation may impact tissue 

tropism, protein expression and function, stability, immune escape, drug resistance and 

pathogenicity. Further studies on SARS-CoV-2 diversity, especially in vulnerable patients 
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with underlying comorbidities will shed light on our understanding of the underlying wide 

spectrum of disease outcomes associated with COVID-19 in humans.

Methods

Study population

Fifty-seven cancer patients followed at the Brazilian National Cancer Institute 

(INCA), Rio de Janeiro, Brazil, and 14 healthcare workers (HCW) diagnosed with COVID-19 

between April 7th and May 5th 2020, early in the COVID-19 pandemic in Rio de Janeiro, were 

included in this study. SARS-CoV-2 infection was diagnosed through naso- and 

oropharyngeal swab specimens using RT-qPCR following the U.S. Centers for Disease 

Control and Prevention (CDC) protocol [24]. 

Ethics Statement

All participants agreed to be enrolled in the study and signed an informed consent. 

Participants’ data were treated anonymously. This study was approved by the Brazilian 

National Commission for Ethics in Research (CONEP) (approval number: CAAE 

30608220.8.0000.5274).

SARS-CoV-2 nucleic acid isolation, amplification and sequencing

Naso- and oropharyngeal swabs were collected and placed into a conical tube 

containing 2 ml of viral transport medium (VTM, Thermo Fisher Scientific, Waltham, MA). 

Viral DNA and RNA were extracted with the QIAamp MiniElute Virus Spin Kit (QIAGEN, 

Chatsworth, CA) according to manufacturer's instructions. All cDNAs were synthesized in 

duplicate using the SuperScript™ III First-Strand Synthesis System (Thermo Fisher 

Scientific). The SARS-CoV-2 complete genome amplification was based on an openly 

available protocol developed by the ARTIC network (https://artic.network/ncov-2019, 

accessed March 26, 2020) using the V.3 multiplex primers scheme and Platinum Taq DNA 

Polymerase High Fidelity (Thermo Fisher Scientific). Positive PCR products were purified 

with the ReliaPrep™ DNA Clean-Up and Concentration System (Promega, Madison, WI). 
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Genomic libraries were constructed with the Nextera XT DNA Sample Preparation kit 

(Illumina Inc., San Diego, CA) according to the manufacturer’s protocol, pooled with 1% 

denatured PhiX DNA (sequencing control) and sequenced in a MiSeq platform (2× 251 cycles 

paired-end run; Illumina). New PCR reactions using combinations of the primers described 

above were carried out to cover regions with low coverage for each sample. Positive products 

were purified and sequenced by Sanger using the BigDye Terminator kit (Thermo Fisher 

Scientific) in an automated 3130XL Genetic Analyzer (Thermo Fisher Scientific). Sequences 

were edited and assembled with SeqMan v.7.0.0 (DNAStar Inc., Madison, WI).

SARS-CoV-2 near full-length consensus sequence and nucleotide variations 

All analyses were conducted using Geneious R11 software (Biomatters, Auckland, 

New Zealand), where the reads were trimmed to achieve an error rate below 0.1% and 

assembled to the Wuhan-Hu-1 reference sequence genome (GenBank number MN908947). A 

minimum mapping quality of 30 was required, providing a 99.9% confidence level that the 

mapping is correct. Additionally, all assemblies were visually inspected to evaluate the 

mapped reads and consequently to ensure the quality of the consensus generated and single 

nucleotide variation (SNVs) analysis. Consensus sequences representing SARS-CoV-2 near 

full-length genomes were extracted for each sample and aligned to the Wuhan-Hu-1 reference 

sequence genome. Nucleotide variations in relation to the reference sequence were identified 

and classified as SNVs. Intrahost single nucleotide variation (iSNV) was defined as a 

variation with a frequency greater than 2% and depth coverage by at least 500 reads. iSNVs 

were manually verified, and the intrahost viral genetic diversity rate was calculated as the 

number of nucleotide substitutions with a frequency greater than 2% for the given sample 

divided by the number of positions with depth coverage greater than 500 times multiplied by 

10-4 (substitutions/site x 10-4). 

SARS-CoV-2 classification and phylogenetic analysis
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For SARS-CoV-2 lineage classification, consensus genomes were submitted to 

Pangolin software (https://github.com/cov-lineages/pangolin, downloaded on June 10th, 2020) 

and to CoV-GLUE lineage system (http://cov-glue.cvr.gla.ac.uk/#/home, accessed on June 

10th, 2020)[25], both based on the nomenclature proposed by Rambaut et al [26]. An 

alignment including the consensus sequences generated and genomes from Brazilian 

sequences available on the GISAID Database classified as B1, B1.1 and the Brazilian clusters 

B1.1-BR/ B1.1-EU/BR (S1 Table) were submitted to a maximum likelihood phylogenic 

reconstruction using PhyML v.3.0 and the best model of nucleotide substitution was defined 

with Model Generator (GTR) to investigate the sublineage classification of the study 

sequences [16, 27, 28]. Furthermore, a phylogenetic analysis that included the generated 

consensus sequences generated along with all SARS-CoV-2 sequences from Rio de Janeiro 

state (Brazil) presently available at GISAID (https://www.epicov.org/epi3/frontend, accessed 

on July 27th, 2020, S1 Table) was performed in order to investigate epidemiological 

relatedness of sequences.

Statistical analyses

Mann-Whitney two-tailed test was used to compare intrahost diversity 

(substitutions/site x 10-4) between cancer patients and HCWs and between cancer patients’ 

clinical categorical variables. Spearman’s rank was employed to evaluate the correlation 

between intrahost diversity and continuous variables (such as age and SARS-CoV-2 RT-

qPCR Ct values). All graphical representations and statistical analyses were performed using 

Geneious R11 (Biomatters) and GraphPad Prism v.8.0.1 (GraphPad Software Inc., San Diego, 

CA).
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Supporting information

S1 Fig. Depth coverage across SARS-CoV-2 genome. Samples’ depth coverage is shown in 
gray and median coverage in red. Genome coordinates are relative to the SARS-CoV-2 
Wuhan-Hu-1 reference sequence genome (GenBank acc.# MN908947).

S2 Fig. Spearman correlation analysis of viral genetic diversity and patients’ age. No 
correlation was observed between viral genetic diversity and patients' age. Spearman 
correlation analysis rs and p-values are indicated.

S3 Fig. Viral genetic diversity association with clinical outcomes. Tukey boxplots show 
viral genetic diversity distribution according to the following clinical criteria: death (A), death 
from COVID-19 (B), admission to intensive care unit (ICU) (C), use of corticosteroid 
(chronic or during COVID-19 diagnostics) (D), use of oseltamivir (during COVID-19 
diagnostics) (E), type of cancer (hematological vs. solid tumors) (F). All comparisons were 
submitted to Mann-Whitney test (two-tailed), no statistically significant differences were 
found.

S1 Table. SARS-CoV-2 sequences downloaded from GISAID database.

S2 Table. Synonymous and non-synonymous nucleotide variations found in the 71 
samples analyzed.

Figure legends 

Fig 1. Maximum likelihood phylogenetic trees of near full-length SARS-CoV-2 genomes 

characterized. Tree including cancer patients (depicted in red circles), healthcare workers (in 

blue), Brazilian sequences classified as B1, B1.* and the Brazilian circulating strains B1.1-

BR/ B.1.1-EU/BR available on GISAID (in gray). (B) Tree showing epidemiological linkage 

of cancer patients (shown in red), healthcare workers (in blue) and all SARS-Cov-2 sequences 

from Rio de Janeiro state (in gray) available on GISAID Database. In both cases, GISAID 

was accessed on July 27th, 2020. Bootstrap values greater than 70 are shown in both trees.

Fig 2. Distribution of variations in the SARS-CoV-2 genome. Variations found across 

different ORFs of SARS-CoV-2 genomes analyzed. Synonymous mutations and changes 

found in noncoding regions are highlighted in green, non-synonymous mutations in blue and 

deletions in red. Genome coordinates are relative to the SARS-CoV-2 Wuhan-Hu-1 reference 

sequence genome (GenBank acc.# MN908947).
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Fig 3. Number of intrahost single nucleotide variants (iSNVs) per ORF analyzed. Data 

for cancer patients (A) and healthcare workers (B) are shown. iSNV shown are those with an 

intrahost frequency greater than 2% and a minimum depth coverage of 500x. The table on the 

right shows ORF names and genome coordinates based on the SARS-CoV-2 Wuhan-Hu-1 

reference sequence genome (GenBank acc.# MN908947), ORF size in bp, number of samples 

analyzed that fulfilled the criteria, average base pairs analyzed (considering a minimum depth 

coverage of 500x for at least 60% of the ORF region) and average (min - max) substitutions 

per site x 10-4.

Fig 4. Frequency of intrahost single nucleotide variants (iSNVs) across the SARS-CoV-2 

genome.  Distribution (x-axis) and frequency (y-axis) of iSNVs  (>2%) with a minimum 

depth coverage of 500x. Red dots represent cancer patients and blue dots represent healthcare 

worker samples. Structural genes (S, E, M and N) are highlighted in green and non-structural 

genes in light-red. Genome coordinates are relative to the SARS-CoV-2 Wuhan-Hu-1 

reference sequence genome (GenBank acc.# MN908947).

Fig 5. Viral genetic diversity in cancer patients and healthcare workers (HCWs). 

Diversity was calculated by number of minor substitutions per site x10-4. Tukey boxplots 

show the viral genetic diversity in cancer patients (n=57) compared to HCW (n=14) (Mann-

Whitney test (two-tailed), **p=0.0093) (A). The difference remains significant when outlier 

patients (n=6) are removed from the analysis (Mann-Whitney test (two-tailed), *p=0.0299) 

(B). 

Fig 6. Spearman correlation of viral genetic diversity and Ct values. Cancer patients 

samples (n=57) showed a positive correlation with Ct values (A). The same result was found 

when both patients and healthcare workers samples were combined (n=71) (B). Spearman 

correlation analysis rs and p-values are indicated.
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