1	Integrated Collection of Stem Cell Bank data, a
2	data portal for standardized stem cell information
3	
4	Authors
5	Ying Chen ¹ , Kunie Sakurai ^{1†} , Sumihiro Maeda ² , Tohru Masui ³ , Hideyuki Okano ² ,
6	Johannes Dewender ⁴ , Stefanie Seltmann ⁴ , Andreas Kurtz ⁴ , Hiroshi Masuya ⁵ , Yukio
7	Nakamura ⁶ , Michael Sheldon ⁷ , Juliane Schneider ⁸ , Glyn N. Stacey ^{9,10,11} , Yulia Panina ¹ ,
8	and Wataru Fujibuchi ^{1,*}
9	
10	Affiliations
11	¹ Center for iPS Cell Research and Application (CiRA), Kyoto University, 53
12	Kawahara-cho, Sho-goin, Sakyo-ku, Kyoto 606-8507, Japan
13	² Department of Physiology, Keio University School of Medicine, Tokyo 160-8582,
14	Japan
15	³ National Center for Medical Genetics, Keio University School of Medicine, Tokyo
16	160-8582, Japan

- ⁴ BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin,
- 18 Augustenburger Platz 1, 13353 Berlin, Germany
- ⁵ Integrated Bioresource Information Division, RIKEN BioResource Research Center,
- 20 Tsukuba, Ibaraki 305-0074, Japan
- ⁶ Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki

22 **305-0074**, Japan

- ²³ ⁷ Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The
- 24 State University of New Jersey, Piscataway, New Jersey 08854, U.S.A.
- 25 ⁸ Harvard Catalyst | Clinical and Translational Science Center, Boston, Massachusetts

26 02215, U.S.A.

- ⁹ International Stem Cell Banking Initiative, 2 High Street, Barley, Herts, SG88HZ, UK
- ²⁸ ¹⁰ National Stem Cell Resource Centre, Institute of Zoology, Chinese Academy of
- 29 Sciences, Beijing 100190, China
- ³⁰ ¹¹ Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences,
- 31 Beijing 100101, China
- 32

33 Additional Footnotes

34	[†] Present address: Department of Cellu	ular Biology and Phar	macology, Florida

35 International University, Herbert Wertheim College of Medicine, Florida 33199, U.S.A.

36

37 Contact

38 Wataru Fujibuchi*

- 39 Address: Center for iPS Cell Research and Application (CiRA), Kyoto University, 53
- 40 Kawahara-cho, Sho-goin, Sakyo-ku, Kyoto 606-8507, Japan
- 41 <u>E-mail</u>: fujibuchi-g@cira.kyoto-u.ac.jp
- 42 <u>Tel</u>: +81-75-366-7012

44 SUMMARY

The last decade has witnessed an extremely rapid increase in the number of newly 45 46 established stem cell lines worldwide. However, due to the lack of a standardized 47 format, data exchange among stem cell line information resources has been challenging, and no system can search all stem cell lines across resources worldwide. To solve this 48 49 problem, we have developed the Integrated Collection of Stem Cell Bank data (ICSCB) 50 (http://icscb.stemcellinformatics.org/), a new and largest database search portal for stem 51 cell line data from various resources, based on the standardized data items and terms of 52 the MIACARM framework. Currently, ICSCB can retrieve 15,796 cell lines from four 53 major data resources in Europe, Japan, and the U.S. ICSCB is automatically updated to 54 provide the latest cell line information, and its integrative search engine helps users 55 collect cell line information from donors with rare diseases worldwide, which has been 56 a formidable task, thereby distinguishing itself from other database search portals.

57

58 INTRODUCTION

59	Since the first report of human induced pluripotent stem cells (iPSCs) (Takahashi et al.,
60	2007), there has been a rapid rise in the number of iPSC lines and related information
61	worldwide (Table 1). This remarkable growth has not only accelerated studies of
62	regenerative medicine but also provided opportunities to understand such pragmatic
63	issues as the quality of pluripotent stem cells (Nishizawa et al., 2016) and the disease
64	mechanisms (Sasaki et al., 2016). Stem cell banks and registries are expected to provide
65	necessary data of individual stem cell lines. However, the exchange of data among
66	different institutions is not a trivial matter, and scientific reproducibility based on
67	available information is problematic for both basic studies and clinical applications
68	(Yaffe et al., 2016; Isasi and Knoppers, 2011; Thirumala et al., 2009). Moreover, as
69	technologies for the characterization of cell lines continue to progress, the addition of
70	new quality standards as necessary data items is complicating and diversifying data
71	formats among different stem cell banks and registries (Hug, 2009; Knoppers and Isasi,
72	2010). As an attempt to solve these problems, we previously reported MIACARM
73	(Minimum Information About a Cellular Assay for Regenerative Medicine) guidelines in

74	2016 (Sakurai et al., 2016), which proposed the utilization of standardized data items and
75	formats for all stem cell lines in regenerative medicine. Presently, MIACARM contains
76	258 items, covering such areas as stem cell production and materials (e.g., donor
77	information, source cell information, and cell culture medium and substrate information),
78	cell banking processes, cell characterization, sterility testing, and even ethical concerns.
79	Later, a standardized nomenclature for pluripotent stem cells was introduced in 2018 with
80	unification of cell line codification and minimization of information loss and confusion
81	regarding cell lines as goals (Kurtz et al., 2018). Nevertheless, with the growing number
82	of registered cell lines, existing data deposition formats have made it increasingly harder
83	for not only data depositors but also users to seek and obtain cell lines collected under
84	different projects, disease status, and privacy issues (Godard et al., 2003; Winickoff et al.,
85	2009).
86	In this paper, as our next step towards the unification and utilization of stem

cell line data in the world, we report our new database portal, Integrated Collection of
Stem Cell Bank data (ICSCB), which was designed using MIACARM guideline items
and formats. The main objectives of ICSCB are i) to establish an integrated stem cell

90	database portal that can cover the majority of stem cell resources in the world, and ii) to
91	offer users minimum but efficient access to information on stem cell lines based on
92	MIACARM guidelines. Currently, ICSCB provides data of more than 15,000 stem cell
93	lines registered in four major stem cell line databases: hPSCreg (Seltmann et al., 2015),
94	SKIP (Kim et al., 2017), RIKEN BRC (Kobayashi et al., 2016), and eagle-i (Vasilevsky et
95	al., 2012). ICSCB has a user-friendly search engine for stem cell lines and can be
96	accessed directly at http://icscb.stemcellinformatics.org/, or as a slim version by
97	removing cell line redundancy as much as possible through the SHOGoiN (Human
98	Omics Database for the Generation of iPS and Normal Cells) homepage at
99	http://shogoin.stemcellinformatics.org/.
100	
101	RESULTS AND DISCUSSION

102 Web interface

ICSCB was designed for researchers searching for available cell lines to conduct various studies, such as regenerative medicine and disease analysis. Covering as many diverse cell lines as possible was the first priority when deciding which resources to include in

106	ICSCB. Sharing cell line information between different stem cell banks and registries is
107	problematic due to different cell naming methods, different policies on cell assessment in
108	different registries, unclear data sources, and so on. ICSCB is a collection of cell lines
109	from four major and reliable cell line data resources based in Europe, Japan, and the
110	United States. ICSCB updating is regularly performed for new SKIP and eagle-i stem cell
111	line data as well as automatically performed for hPSCreg and RIKEN BRC data in a
112	synchronized manner. Users can retrieve all related stem cell line information by using a
113	free text search. Detailed information for a specific cell line can be accessed by clicking
114	on the stem cell ID, which is linked to the information page in the original resources
115	(Figure 1). The results can be further filtered according to users' requests. There may be
116	several records for the same cell line if the cell line is included in multiple data resources.
117	To provide users as much information as possible, the results page is designed to show
118	cell lines with matching cell names as well as close descriptions.

119

120 Data coverage

121	ICSCB covers more data than any other stem cell line repository available. The
122	integration of all major data resources allows us to check the current state of stem cell
123	research in the world (Figure 2). Although we recognize redundancies in the data,
124	according to our statistics, the number of iPSC lines constitutes more than 80% of all cell
125	lines and the ratio of healthy to diseased donors is approximately 3 to 2 (Figure 2A,B).
126	The total number of countries from which cell lines can be retrieved is 36 (as of March
127	26, 2020), of which the top 9 countries identified in SKIP and hPSCreg are (in descending
128	order) the United Kingdom, United States, Japan, Germany, China, Spain, Sweden,
129	Denmark, and Italy (Figure 2C). In addition, as the recent number of iPSC lines
130	generated from patient donors is growing, ICSCB supports disease-oriented search to
131	help users find all disease-related stem cell lines by using disease names. The distribution
132	of disease and disorder types is shown in Figure 2D.
133	

134 **Easy search interface on SHOGoiN homepage**

135 ICSCB also has a quick and easy search module on the SHOGoiN homepage136 (https://stemcellinformatics.org/). SHOGoiN is a repository for accumulating and

137	integrating diverse human cell information to support a wide range of research using
138	cell-related data. The database consists of several modules that store cell lineage maps,
139	transcriptomes, methylomes, cell conversions, cell type markers, and cell images with
140	morphology data curated from public as well as contracted resources based on
141	sophisticated cell taxonomy. Collaboration between ICSCB and SHOGoiN makes it
142	possible for users to directly use free text searches for stem cell line data on the
143	SHOGoiN homepage. The ICSCB easy search module in SHOGoiN supports a
144	simplified ICSCB search with keywords, and the advanced search is designed to redirect
145	users to the ICSCB homepage with full functions. Results from the SHOGoiN
146	homepage share the same structure with the ICSCB homepage.
147	

148 **Concluding remarks and future plan**

149 So far, the registration and submission of newly established cell lines have been 150 complicated by the lack of standardized data formats. Most data registries are currently 151 limited by respective domestic policies and have adopted their information structures and 152 validation processes independently (Andrews et al., 2015; Zarzeczny et al., 2009). The

153	lack of standardized data formats has caused problems for researchers who must usually
154	search several websites to find the stem cell lines they are looking for (Wells et al., 2013).
155	In the present work, we developed ICSCB, an integrated data distribution system that
156	provides stem cell line information from major stem cell banks and registries all over the
157	world. ICSCB adopts a standardized information format based on the "Source Cell"
158	module of MIACARM to integrate different data resources while keeping important
159	information.
160	In the future, in order to respond to the rapid growth in the number of stem cell
161	lines, we will include more data resources in ICSCB, including the Taiwan Human
162	Disease iPSC Service Consortium and other recently developed stem cell banks, to make
163	ICSCB more resource-abundant and usable. We also plan to add a detailed quality check
164	to help users find stem cell lines of high quality. As the largest stem cell line information
165	resource, we will support stem cell communities by improving the quality and increasing
166	the scale of our database.
167	

168 EXPERIMENTAL PROCEDURES

169 Data resources

170	ICSCB resources were selected from existing major stem cell registries that collect cell
171	line information in Europe, Japan, and the U.S., and stem cell banks that provide cell lines
172	with information of the attributes. We checked the number of registered cell lines and the
173	criteria for registration in these registries and banks to decide to what extent their cell line
174	data can fulfill MIACARM guidelines for inclusion in ICSCB. Considering the size,
175	accessibility, and diversity of the different databases, three stem cell registries and one
176	stem cell bank were included: (1) SKIP (5,615 cell lines), (2) hPSCreg (3,099 cell lines),
177	(3) RIKEN BRC (3,534 cell lines), and (4) eagle-i (3,548 cell lines) (as of March 26,
178	2020). These data resources were selected because they had the highest number of
179	registered cell lines and large diversity, which would provide a good regional balance of
180	cell sources to reduce redundancies in cell line entries. RIKEN BRC basically collected
181	cell lines from Japanese institutions, SKIP contained data mostly from other Japanese and
182	Asian institutions, hPSCreg collected data mainly from European institutions, and eagle-i
183	collected data mostly from the United States. Details of the data sources are listed in
184	Figure 3.

185

186 **Data integration**

187 Since our previous research on the listed stem cell banks (Sakurai et al., 2016), the 188 number of registered cell lines had skyrocketed from 1,483 to approximately 8,000 in the 189 past three years. As a result, stem cell registries are facing the demand to collect 190 information on the rapidly increasing number of new cell lines and register the cell lines 191 into their databases as quickly as possible. However, because the stem cell banks and 192 registries are using their own formats for data entry, the integration of the data into a 193 centralized collection system is an extraordinary challenge. To solve this problem, we 194 used a decentralized or distributed database system (Fujibuchi et al., 1998) by adopting 195 items of different database formats into 12 attributes, or terms, from three MIACARM 196 modules: stem cell general identification, donor identification, and source cell 197 identification (Table 2). To practically integrate the data from the four data resources 198 (SKIP, hPSCreg, RIKEN BRC, and eagle-i), we adopted a mechanism of cross-reference 199 tables that allow users to conduct a search using MIACARM terms that are translated into 200 the corresponding terms in the individual data resources to implement the search. For

201	example, the term "Stem cell ID" in MIACARM was translated into the terms "stem cell
202	id" (hPSCreg), "stem cell id" (SKIP), "CellID" (RIKEN BRC), and "cell line label"
203	(eagle-i) for the search implementation. Thus, ICSCB submits search requests to each
204	data resource with its own (translated) terms and integrates all retrieved results by
205	common MIACARM terms, thereby achieving a standardized data format at the level of
206	display (Figure 4).
207	
208	ICSCB workflow and search engine updating
209	In order to provide fast and easy access to the latest and accurate cell line information, we
210	built an automatic updating system that adds newly released cell lines to ICSCB as soon
211	as they become available in any of the four data resources. Data from eagle-i and SKIP
212	are directly collected and stored in the MySQL database with the terms required for the
213	MIACARM modules. Data from hPSCreg and RIKEN BRC are collected on the fly per
214	request using a web application programming interface (API) provided by the respective
215	sites. RIKEN BRC also uses SPARQL language for data retrieval requests (Kim et al.,
216	2017; Kobayashi et al., 2016).

217	To simplify the search process, ICSCB provides an easy-to-use and
218	mobile-friendly web application. The goal of the application is to help users find the
219	desired stem cell lines as quickly as possible. The interface of the search engine is
220	designed with the 12 MIACARM terms (Table 2) except the term "Stem cell ID". Users
221	receive result pages with all the matching results listed in a table that includes all the basic
222	attributes under the structure of MIACARM. To ensure a more specific search with a
223	wide variety of attributes, ICSCB is designed to accommodate searches not only by
224	standardized terms from MIACARM but also by terms specific to each of the four data
225	resources, such as "age" or "country" (Figure 5A). When user queries are submitted,
226	ICSCB simultaneously retrieves MIACARM standardized data and resource-specific
227	data so as not to miss any relevant entries. If a keyword entered by a user in a general
228	keyword search does not exist in MIACARM terms but is included in data specific to any
229	of the four data resources, the user will get detailed descriptions of the matching data in
230	the results page. For example, even if the standardized MIACARM terms do not contain
231	"transgene", it is still possible to enter a gene name into the keyword field (e.g., Sox2)
232	such that the results page will display relevant entries by showing the indicated keyword

233	in the extra field below (Figure 5B). Furthermore, the user can filter the results by data
234	resource and detailed keywords from "Searching options" box inside the results page to
235	narrow down the results list. In addition, all the results can be easily downloaded as a
236	table directly from the results page.
237	In addition, ICSCB provides a quality control panel based on MIACARM,
238	supporting customized searches according to quality control results. At present, assays
239	for teratoma formation, differentiation ability in vitro, morphology data, marker gene
240	expression/surface antigen expression data, karyotyping assay results, copy number
241	variation, residual exogene detection results, genome profiling, transcriptome profiling,
242	and epigenome profiling data are accessible from ICSCB.
243	

245 SUPPLEMENTAL INFORMATION

- 246 Supplemental Information includes Supplemental Experimental Procedures, three
- figures, and five tables, and can be found with this article online at:

248

249 AUTHOR CONTRIBUTIONS

250 YC and YP drafted the manuscript. SM, TM, HO, JD, SS, AK, HM, YN, MS, JS, and

251 WF provided and facilitated the stem cell data. WF conceptualized the research. AK,

- 252 GS, and WF led the project.
- 253

254 ACKNOWLEDGEMENTS

The authors deeply appreciate Dr. Peter Karagiannis for kindly reviewing the manuscript. This work was partially supported by the Core Center for iPS Cell Research, Research Center Network for Realization of Regenerative Medicine (16bm0104001h0004), and the Formulation of Regenerative Medicine National Consortium which Renders Nation-wide Assistance to Clinical Researches, Project to Build Foundation for Promoting Clinical Research of Regenerative Medicine

261	(19bk0204001h0004, 19bk0204001s0104), Japan Agency for Medical Research and
262	Development, AMED, and German Academic Exchange Service (DAAD) PPP grant.
263	
264	COMPETING INTERESTS
265	H.O. is a founding scientist of SanBio Co., Ltd. and K Pharma Inc.
266	
267	
268	REFERENCES
269	Andrews, P.W., Baker, D., Benvinisty, N., Miranda, B., Bruce, K., Brüstle, O., Choi, M.,
270	Choi, YM., Crook, J.M., Dvorak, P. (2015). Points to consider in the development of
271	seed stocks of pluripotent stem cells for clinical applications: International Stem Cell
272	Banking Initiative (ISCBI). Regen. Med. 10, 1-44.
273	
274	Fujibuchi, W., Goto, S., Migimatsu, H., Uchiyama, I., Ogiwara, A., Akiyama, Y.,
275	Kanehisa, M. (1998). DBGET/LinkDB: an integrated database retrieval system. In Pac.
276	Symp. Biocomput. 98, 683–694.

277	Godard, B., Schmidtke, J., Cassiman, J.J., Aymé, S. (2003). Data storage and DNA
278	banking for biomedical research: informed consent, confidentiality, quality issues,
279	ownership, return of benefits. A professional perspective. Eur. J. Hum. Genet. 11, S88-
280	S122
281	
282	Hug, K. Banks, repositories and registries of stem cell lines in Europe: regulatory and
283	ethical aspects. Stem Cell Rev. Rep. 5, 18–35.
284	
285	Isasi, R., and Knoppers B.M. (2011). From banking to international governance:
286	fostering innovation in stem cell research. Stem cells Int. 2011, 498132.
287	

- 288 Kim, J.H., Kurtz, A., Yuan, B.Z., Zeng, F., Lomax, G., Loring, J.F., Crook, J., Ju, J.H.,
- 289 Clarke, L., Inamdar, M.S., et al. (2017). Report of the International Stem Cell Banking
- 290 Initiative workshop activity: current hurdles and progress in seed-stock banking of
- human pluripotent stem cells. Stem Cells Transl. Med. 6, 1956–1962.

292	Knoppers, B.M., and Isasi, R. (2010). Stem cell banking: between traceability and
293	identifiability. Genome Med. 2, 73
294	
295	Kobayashi, N., Lenz, K., and Masuya, H. (2016). RIKEN MetaDatabase: a database
296	platform as a microcosm of linked open data cloud in the life sciences. In Joint
297	International Semantic Technology Conference. (Springer, Cham), pp. 99–115.
298	
299	Kurtz, A., Seltmann, S., Bairoch, A., Bittner, M.S., Bruce, K., Capes-Davis, A.,
300	Laurence, D., Johannes, D., et al. (2018). A standard nomenclature for referencing and
301	authentication of pluripotent stem cells. Stem Cell Rep. 10, 1-6.
302	
303	Nishizawa, M., Chonabayashi, K., Nomura, M., Tanaka, A., Nakamura, M., Inagaki, A.,
304	Nishikawa, M., Takei, I., Oishi, A., Tanabe, K., et al. (2016). Epigenetic variation
305	between human induced pluripotent stem cell lines is an indicator of differentiation
306	capacity. Cell Stem Cell 19, 341–354.

307	Sakurai, K.	, Kurtz, A.,	Stacey, C	3., S	Sheldon,	М.,	and F	fujibuchi,	W.	(2016)	. First	propos	sal
-----	-------------	--------------	-----------	-------	----------	-----	-------	------------	----	--------	---------	--------	-----

308 of minimum information about a cellular assay for regenerative medicine. Stem Cells

309 Transl. Med. 5, 1345–1361.

310

- 311 Sasaki, K., Makiyama, T., Yoshida, Y., Wuriyanghai, Y., Kamakura, T., Nishiuchi, S.,
- 312 Hayano, M., Harita, T., Yamamoto, Y., Hirose, S., et al. (2016). Patient-specific human
- induced pluripotent stem cell model assessed with electrical pacing validates S107 as a
- 314 potential therapeutic agent for catecholaminergic polymorphic ventricular tachycardia.
- 315 PLoS One 11. e0164795.

316

- 317 Seltmann, S., Lekschas, F., Müller, R., Stachelscheid, H., Bittner, M.S., Zhang, W.,
- Luam, K., Anna, S., Anna, V., Stacey, G.N., et al. (2015). hPSCreg-the human
- 319 pluripotent stem cell registry. Nucleic Acids Res. 44, D757–D763.

	321	Takahashi.	K	Tanabe.	K.,	Ohnuki	M.,	Narita.	M.,	Ichisaka.	, T.,	Tomoda	, K.,	and
--	-----	------------	---	---------	-----	--------	-----	---------	-----	-----------	-------	--------	-------	-----

322 Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by

- 323 defined factors. Cell *31*, 861–872.
- 324
- 325 Thirumala, S., Goebel, W.S., Woods, E.J. (2009). Clinical grade adult stem cell banking.
- 326 Organogenesis 5, 143–154.
- 327
- 328 Vasilevsky, N., Johnson, T., Corday, K., Torniai, C., Brush, M., Segerdell, E., Wilson,
- 329 M., Shaffer, C., Robinson, D., Haendel, M. (2012). Research resources: curating the
- new eagle-i discovery system. Database 2012, bar067.
- 331
- 332 Wells, C.A., Mosbergen, R., Korn, O., Choi, J., Seidenman, N., Matigian, N.A., Vitale,
- 333 A.M., Shepherd, J. (2013). Stemformatics: visualisation and sharing of stem cell gene
- and expression. Stem Cell Res. 10, 387–395.

- 335 Winickoff, D.E., Saha, K., Graff, G.D. (2009). Opening stem cell research and
- 336 development: A policy proposal for the management of data, intellectual property, and
- ethics. Yale J. Health Pol'y, L. & Ethics 9, 52–127.
- 338
- 339 Yaffe, M.P., Noggle, S.A., and Solomon, S.L. (2016). Raising the standards of stem cell
- 340 line quality. Nat. Cell Biol. 18, 236.
- 341
- 342 Zarzeczny, A., Scott, C., Hyun, I., Bennett, J., Chandler, J., Chargé, S., Heine, H., Isasi,
- R., Kato, K., Lovell-Badge, R., et al. (2009). iPS cells: mapping the policy issues. Cell,
- 344 *139*, 1032–1037.

346 FIGURE LEGENDS

347 Fig. 1: Web interface of ICSCB.

- 348 (A) The ICSCB search page. Any keyword related to cell lines (including cell line name,
- 349 disease name, gender, and so on) can be used to perform an instant search. (B) The
- 350 ICSCB results page. Matched or partially matched cell lines are listed according to
- 351 MIACARM terms. To check the details of the cell lines, the user can click on the stem cell
- 352 ID, which is linked to the original source of cell line information.
- 353

354 **Fig 2**. Details of cell lines collected by ICSCB.

355 Cell line information is categorized as (A) stem cell type, (B) health/disease status of

donor, (C) country that established the cell lines, and (D) disease category.

357

358 **Fig. 3: Overview of ICSCB.**

- 359 ICSCB includes data from three stem cell registries and one cell bank in order to
- 360 maximize data coverage worldwide.
- 361

362 Fig. 4: Workflow of ICSCB data integration.

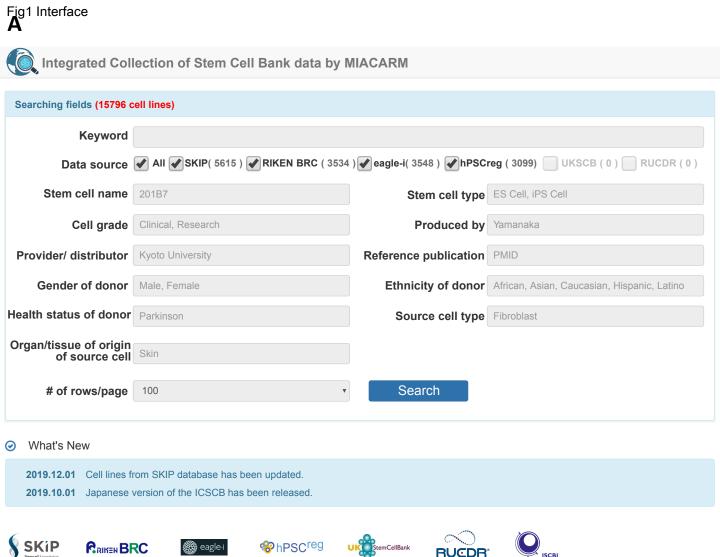
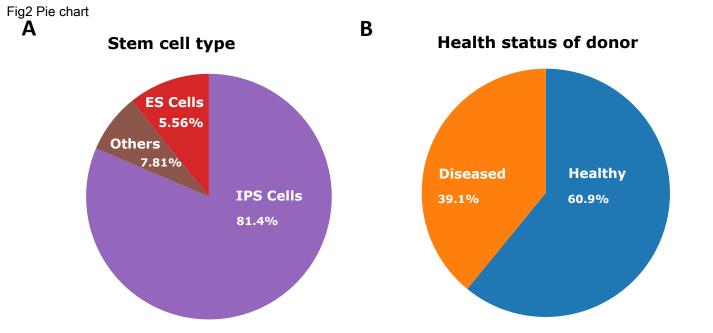

- 363 The SKIP and eagle-i databases were fully replicated from websites and imported to
- 364 MySQL (even when updating ICSCB), whereas hPSCreg and RIKEN BRC used a web
- 365 API and SPARQL for data collection. Cross-reference tables (Table 3) were used when
- 366 ICSCB integrated and standardized cell line data.
- 367

Fig. 5: Keyword search is automatically extended to all terms provided by the four
data resources even if a keyword is not included in standardized MIACARM
terms.

371 (A) Terms specific to each of the four data resources. (B) Even if the standardized

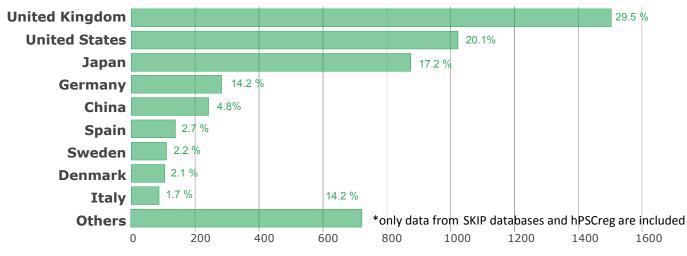
372 MIACARM terms do not contain, for example, "transgene", it is still possible to enter a

- 373 gene name into the keyword field (e.g., Sox2), which will lead users to results from the
- four data resources with relevant information. The results of the match will be shown in
- another row below the standardized fields.

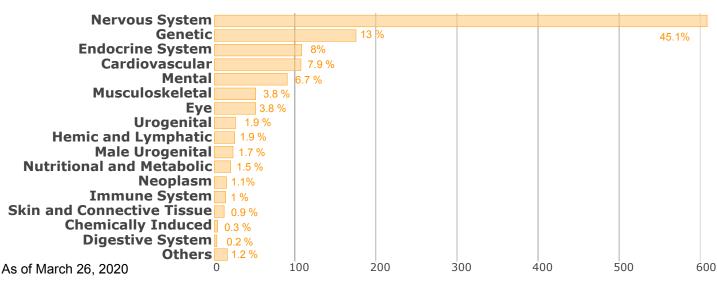


В

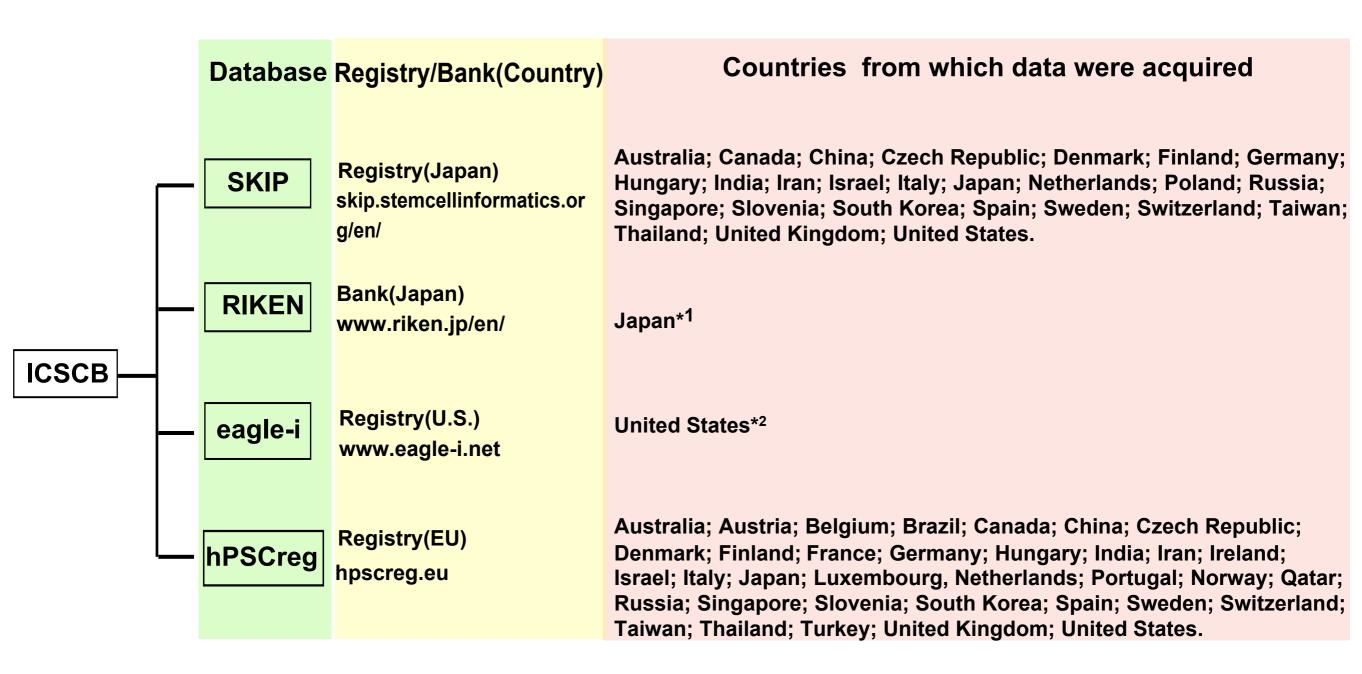
🔍 Integrated Collection of Stem Cell Bank data by MIACARM


Items: 1 ~ 100 / 15656 Source cell Stem cell production Data Stem cell general identification Donor identification Source cell identification source **Organ/tissue** Stem cell ID Stem cell Stem Cell Produced Provider/ Reference Gender Ethnicity Health Source of origin of name cell grade by distributor publication of donor of donor status of donor cell type source cell type SKIP SKIP000001 201B7 18035408 Skin iPS Research Yamanaka Center for Female Caucasian iPS Cell Cell Grade Shinya 23300777 Research and 27073925 Application, 27161380 Kyoto Yamanaka Center for SKIP SKIP000002 253G1 iPS Female Caucasian Skin iPS Cell Cell Shinya Research and Application, Kyoto SKIP SKIP000003 iPS-TIG107 iPS Yamanaka Center for 18035408 Female Asian Skin Cell iPS Cell 3f1 Shinya Research and Application, Kyoto SKIP SKIP000004iPS-TIG107 iPS 18035408 Female Skin Yamanaka Center for Asian iPS Cell Cell 4f1 Shinya Research and Application, Kyoto

As of March 26, 2020

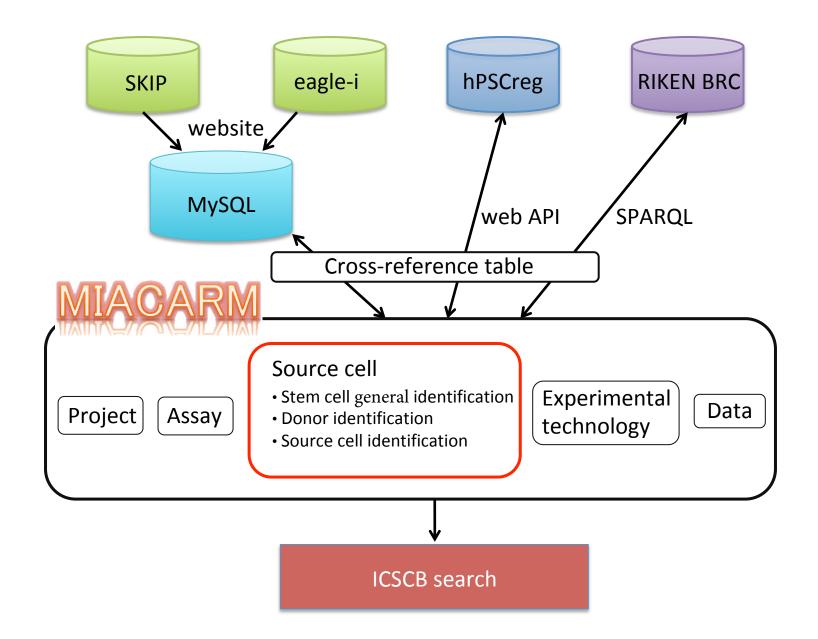

C Country*

D



Cell line count

Disease/Disorder


Disease count

1. Related organization list: https://www.amed.go.jp/content/000043772.pdf

2. Participating institutions: https://www.eagle-i.net/about/participating-institutions/

As of March 26, 2020

Keyword search

SKIP	eagle-i	hPSCreg	Riken BRC
cell id	cell id	source organism	cell name
stemcell_id	cell line label	race	
cell line name	cell line provider	cell lineage	description original website
research grade		health status	originator
establisher name	sex	shogoin cell id	depositor
establisher organization	ethnicity	stem cell id	taxon
pubmed ID	diagnosed disease	stem cell name	depiction
donor sex	cell line type	produced by	common name
donor race	cell line URL	distributor	cell grouping
disease name		publication	reference
cell type		gender	derived from
organ/tissue of origin of source cell		race	gender
in vivo differentiation assay		health status	race
in vitro differentiation		source cell type	country
cell morphology		source cell description	disease
pluripotent marker		origin of source cell	age
karyotype assay			
CNV detail			
remaining vector detection test assay			
whole genome detail			
stem cell transcriptome analysis detail			
epigenetics detail			

(Ò,	Integrated C	ollection	of Stem C	ell Bank	data by MIA	CARM							
						Sour	ce cell						
	Stem cell production												
Data source			Stem	cell gene	eral identifi	cation		Donor ide	Source cell identification				
	Stem cell ID	Stem cell name	Stem cell type	Cell grade	Produced by				Ethnicity of donor	Health status ofdonor	Source cell type	Organ/ tissue of origin of source cell	
SKIP	SKIP000001	201B7		Research Grade	Oblass	Center for iPS Cell Research and Application, Kyoto University	18035408 23300777 27073925 27161380		Caucasian			Skin	

B/R*	Stem cell bank or registry	Country	Website	Number of cell lines
В	BLCB	Spain	http://www.cmrb.eu/	79
R	hPSCreg	Germany	https://hpscreg.eu/	3099
R	HipSci	United Kingdom	http://www.hipsci.org/	799
В	U.K. Stem Cell Bank	United Kingdom	https://www.nibsc.org/	36
В	EBiSC	Germany	https://ebisc.org/	897
B/R	CIRM / FUJIFILM	United States	https://fujifilmcdi.com/the-cirm-ipsc- bank/	1545
В	Harvard Stem Cell Institute	United States	http://stemcelldistribution.harvard.edu/	40
В	NYSCF	United States	https://nyscf.org/	63
В	NINDS Human Cell and Data Repository	United States	https://bioq.nindsgenetics.org/	377
В	WiCell Research Institute	United States	https://www.wicell.org/	1505
B/R	eagle-i	United States	https://www.eagle-i.net/	3548
B/R	RIKEN BRC	Japan	https://en.brc.riken.jp/	3545
R	SKIP	Japan	https://skip.stemcellinformatics.org/	5615
В	JCRB	Japan	https://cellbank.nibiohn.go.jp/	16
В	Taiwan Human Disease iPSC Service Consortium	Taiwan	https://catalog.bcrc.firdi.org.tw/Welco me/	89
В	National Stem Cell Bank of Korea	Korea	http://kscr.nih.go.kr/nscb/en/kscr/index .do/	172

* B, bank; R, registry

Table 1. Stem cell banks and registries worldwide (as of March 26, 2020)

MIACARM module	ICSCB term	hPSCreg	SKIP	RIKEN BRC	eagle-i
	Stem cell ID	stem cell id	stem cell id	CellID	cell line label
	Stem cell name	stem cell name	cell line name	CellName	cell line label
	Stem cell type	N.A.	cell type	cell grouping	cell line type
Stem cell general identification	Cell grade	N.A.	research grade	N.A.	N.A.
dentification	Produced by	produced by	establisher name	originator	N.A.
	Provider/ distributor	distributor	establisher organization	depositor	cell line provider
	Reference publication	publication	pubmed ID	reference	N.A.
	Gender of donor	gender	donor sex	gender	sex
Donor identification	Ethnicity of donor	race	donor race	race	ethnicity
	Health status	health status	disease name	disease	diagnosed disease
	Source cell type	source cell type	N.A.	N.A.	N.A.
Source cell identification	Organ/tissue of origin of source cell	origin of source cell	organ/tissue of origin of source cell	N.A.	N.A.

N.A., not available.

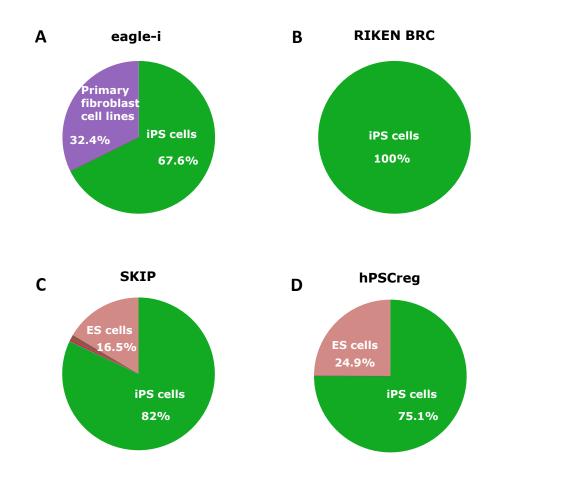
Table 2. Cross-reference table for integration of four databases according to MIACARM module (as of March 26, 2020).

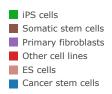
1 SUPPLEMENTAL INFORMATION

- 2 Integrated Collection of Stem Cell Bank data, a
- 3 data portal for standardized stem cell
- 4 information
- 5

6 Authors

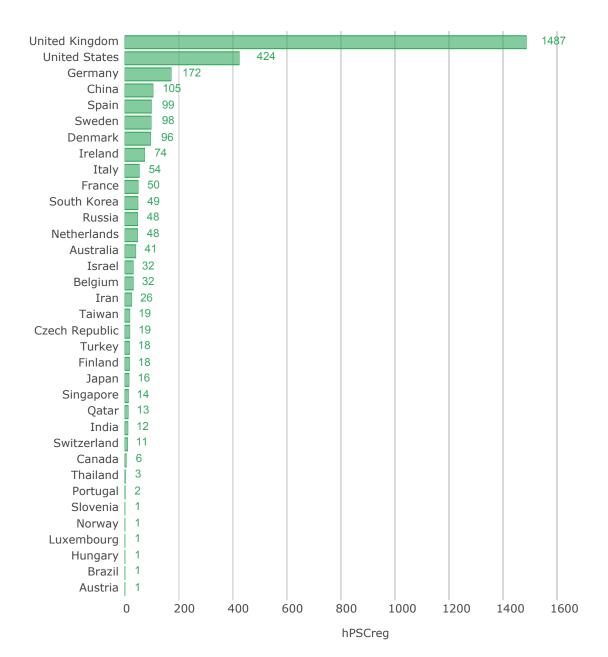
- 7 Ying Chen, Kunie Sakurai, Sumihiro Maeda, Tohru Masui, Hideyuki Okano, Johannes
- 8 Dewender, Stefanie Seltmann, Andreas Kurtz, Hiroshi Masuya, Yukio Nakamura,
- 9 Michael Sheldon, Juliane Schneider, Glyn N. Stacey, Yulia Panina, and Wataru

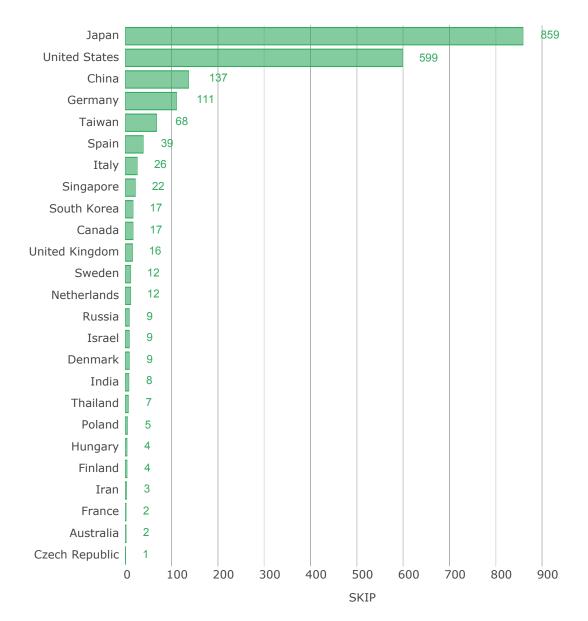

10 Fujibuchi


11 SUPPLEMENTAL FIGURES

12	Fig S1. Details of cell line types collected by eagle-i, RIKEN BRC, SKIP, and
13	hPSCreg (as of March 26, 2020). (A) eagle-i, (B) RIKEN BRC, (C) SKIP, and (D)
14	hPSCreg
15	
16	Fig S2. Details of countries that have established cell lines in hPSCreg (as of March
17	26, 2020).
18	
19	Fig S3. Details of countries that have established cell lines in SKIP (as of March 26,

20 2020).


21 Fig. S1


23 Fig. S2

hPSCreg

25 Fig. S3

SKIP

27 SUPPLEMENTAL TABLES

28	Table S1. Related to Figure 5: List of full information of ICSCB as of March 26,
29	2020.
30	
31	Table S2. Related to Figure 5A and Figure S1: List of cell line types across all four
32	databases (as of March 26, 2020).
33	
34	Table S3. Related to Figure 5B: Statistics of healthy/diseased cell lines in ICSCB
35	(as of March 26, 2020).
36	
37	Table S4. Related to Figure 5C: Statistics of cell line types based on country (as of
38	March 26, 2020).
39	
40	Table S5. Related to Figure 5D: Statistics of diseased cell lines based on disease
41	category (as of March 26, 2020).

42 **EXPERIMENTAL PROCEDURES**

43 Generation of Fig. 1

- 44 Among all the databases, SKIP and hPSCreg provided details of countries from which
- 45 data were acquired. For SKIP, this information was provided on its homepage
- 46 (skip.stemcellinformatics.org/en/). For hPSCreg, country information for every cell line
- 47 could be accessed from its homepage (https://hpscreg.eu/) by clicking "find by
- 48 location".
- 49

50 Generation of Fig. 5

- 51 Full information data were directly downloaded from ICSCB results page (Table S1)
- 52 and filtered according to the following criteria: (A) stem cell type (**Table S2**); (B)
- 53 health/disease status (Table S3); (C) country (Table S4); and (D) disease (Table S5).
- 54 Disease categories were determined by search results with keywords under the "Disease
- 55 Category" in NCBI MeSH page (<u>https://www.ncbi.nlm.nih.gov/mesh</u>). For example,
- searching with keywords of "Parkinson disease" will lead to the MeSH term "Nervous

- 57 System Diseases" under the "Disease Category". Pie charts and bar graphs were
- 58 produced by R (graph.r) using the package "plotly".

Click here to access/download Supplemental Movies and Spreadsheets TableS1.200407.xlsx

Click here to access/download Supplemental Movies and Spreadsheets TableS2.200407.xlsx

Click here to access/download Supplemental Movies and Spreadsheets TableS3.200407.xlsx

Click here to access/download Supplemental Movies and Spreadsheets TableS4.200407.xlsx

Click here to access/download Supplemental Movies and Spreadsheets TableS5.200407.xlsx